Antecedentes Históricos
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Classification of Mammals 61
© Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORCHAPTER SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Classification © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 4 NOT FORof SALE MammalsOR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 2ND PAGES 9781284032093_CH04_0060.indd 60 8/28/13 12:08 PM CHAPTER 4: Classification of Mammals 61 © Jones Despite& Bartlett their Learning,remarkable success, LLC mammals are much less© Jones stress & onBartlett the taxonomic Learning, aspect LLCof mammalogy, but rather as diverse than are most invertebrate groups. This is probably an attempt to provide students with sufficient information NOT FOR SALE OR DISTRIBUTION NOT FORattributable SALE OR to theirDISTRIBUTION far greater individual size, to the high on the various kinds of mammals to make the subsequent energy requirements of endothermy, and thus to the inabil- discussions of mammalian biology meaningful. -
Illustratedencycloped Iadinosaursandprehist
I L L U S T R A T E D E N C Y C L Baryonyx THEROPODS F A C T F I L E O # Tyrannosaurus Rex’s head was about 1.5 m long. Its lower jaw was hinged in such heropods were a group of mostly a way as to maximize its gape. An eight-year- P meat-eating saurischian ( 13) or old child could have squatted in its jaws. “lizard hipped” dinosaurs. They all T # Compsognathus, discovered in Germany had three toes and their name means in the 1850s, was the first ever dinosaur to E “beast-footed”. Theropods were the first be found as a complete skeleton. kind of dinosaur to evolve. They had large # Most experts agree that birds evolved eyes and long tails.They ran on their two Baryonyx A meat-eating dinosaur from the Compsognathus A tiny meat-eating from small dinosaurs. Archaeopteryx, the D strong back legs, leaving their arms free to Cretaceous period. It had the body of a dinosaur from the Late Jurassic. It was first known bird, is closely related to the raptors and may have evolved directly from grasp or pin down their prey. They ranged large carnivore, about eight metres long, about the size of a chicken and preyed on them. The presence of small bumps or quill in size from tiny Compsognathus, the size but its skull was long and narrow, with insects and lizards. It was probably the bones on a Velociraptor fossil I of a chicken, to 18 m long Spinosaurus. -
71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas. -
Genus/Species Skull Ht Lt Wt Stage Range Abalosia U.Pliocene S America Abelmoschomys U.Miocene E USA A
Genus/Species Skull Ht Lt Wt Stage Range Abalosia U.Pliocene S America Abelmoschomys U.Miocene E USA A. simpsoni U.Miocene Florida(US) Abra see Ochotona Abrana see Ochotona Abrocoma U.Miocene-Recent Peru A. oblativa 60 cm? U.Holocene Peru Abromys see Perognathus Abrosomys L.Eocene Asia Abrothrix U.Pleistocene-Recent Argentina A. illuteus living Mouse Lujanian-Recent Tucuman(ARG) Abudhabia U.Miocene Asia Acanthion see Hystrix A. brachyura see Hystrix brachyura Acanthomys see Acomys or Tokudaia or Rattus Acarechimys L-M.Miocene Argentina A. minutissimus Miocene Argentina Acaremys U.Oligocene-L.Miocene Argentina A. cf. Murinus Colhuehuapian Chubut(ARG) A. karaikensis Miocene? Argentina A. messor Miocene? Argentina A. minutissimus see Acarechimys minutissimus Argentina A. minutus Miocene? Argentina A. murinus Miocene? Argentina A. sp. L.Miocene Argentina A. tricarinatus Miocene? Argentina Acodon see Akodon A. angustidens see Akodon angustidens Pleistocene Brazil A. clivigenis see Akodon clivigenis Pleistocene Brazil A. internus see Akodon internus Pleistocene Argentina Acomys L.Pliocene-Recent Africa,Europe,W Asia,Crete A. cahirinus living Spiny Mouse U.Pleistocene-Recent Israel A. gaudryi U.Miocene? Greece Aconaemys see Pithanotomys A. fuscus Pliocene-Recent Argentina A. f. fossilis see Aconaemys fuscus Pliocene Argentina Acondemys see Pithanotomys Acritoparamys U.Paleocene-M.Eocene W USA,Asia A. atavus see Paramys atavus A. atwateri Wasatchian W USA A. cf. Francesi Clarkforkian Wyoming(US) A. francesi(francesci) Wasatchian-Bridgerian Wyoming(US) A. wyomingensis Bridgerian Wyoming(US) Acrorhizomys see Clethrionomys Actenomys L.Pliocene-L.Pleistocene Argentina A. maximus Pliocene Argentina Adelomyarion U.Oligocene France A. vireti U.Oligocene France Adelomys U.Eocene France A. -
Matses Indian Rainforest Habitat Classification and Mammalian Diversity in Amazonian Peru
Journal of Ethnobiology 20(1): 1-36 Summer 2000 MATSES INDIAN RAINFOREST HABITAT CLASSIFICATION AND MAMMALIAN DIVERSITY IN AMAZONIAN PERU DAVID W. FLECK! Department ofEveilltioll, Ecology, alld Organismal Biology Tile Ohio State University Columbus, Ohio 43210-1293 JOHN D. HARDER Oepartmeut ofEvolution, Ecology, and Organismnl Biology Tile Ohio State University Columbus, Ohio 43210-1293 ABSTRACT.- The Matses Indians of northeastern Peru recognize 47 named rainforest habitat types within the G61vez River drainage basin. By combining named vegetative and geomorphological habitat designations, the Matses can distinguish 178 rainforest habitat types. The biological basis of their habitat classification system was evaluated by documenting vegetative ch<lracteristics and mammalian species composition by plot sampling, trapping, and hunting in habitats near the Matses village of Nuevo San Juan. Highly significant (p<:O.OOI) differences in measured vegetation structure parameters were found among 16 sampled Matses-recognized habitat types. Homogeneity of the distribution of palm species (n=20) over the 16 sampled habitat types was rejected. Captures of small mammals in 10 Matses-rc<:ognized habitats revealed a non-random distribution in species of marsupials (n=6) and small rodents (n=13). Mammal sighlings and signs recorded while hunting with the Matses suggest that some species of mammals have a sufficiently strong preference for certain habitat types so as to make hunting more efficient by concentrating search effort for these species in specific habitat types. Differences in vegetation structure, palm species composition, and occurrence of small mammals demonstrate the ecological relevance of Matses-rccognized habitat types. Key words: Amazonia, habitat classification, mammals, Matses, rainforest. RESUMEN.- Los nalivos Matslis del nordeste del Peru reconacen 47 tipos de habitats de bosque lluvioso dentro de la cuenca del rio Galvez. -
Gross Anatomy and Vascularization of the Brain of Pacarana (Dinomys Branickii)
Acta Scientiae Veterinariae, 2018. 46: 1598. RESEARCH ARTICLE ISSN 1679-9216 Pub. 1598 Gross Anatomy and Vascularization of the Brain of Pacarana (Dinomys branickii) Letícia Menezes Freitas1, Kleber Fernando Pereira2, Fabiano Rodrigues de Melo1, Leandro Silveira3, Odeony Paulo dos Santos1, Dayane Kelly Sabec Pereira4, Fabiana Cristina Silveira Alves de Melo5, Anah Tereza de Almeida Jácomo3 & Fabiano Campos Lima1 ABSTRACT Background: The pacarana lives in South America and has herbivorous and nocturnal habits. It is a rare species with scarce data concerning its morphology and adding more data is important in establishing its vulnerability. The aim was to describe its macroscopic brain anatomy, as well as the brain vascularization. Materials, Methods & Results: Two specimens were available for this study, that were donated post-mortem. The animals were injected with latex and fixed with 10% formaldehyde. Upon exposure and removal of the brain its main features were described. The rhinal fissure is single and the lateral sulcus arises from its caudal part. There are two sagittal sulci, an extensive medial sulcus and a short lateral sulcus. The piriform lobe is vermiform and the rostral part is smaller. The caudal colliculus is larger than the rostral colliculus and they are separated by a sulcus. The cerebellum has oval shape and the flocculus lobe is not conspicuous. The cerebral arterial circle was analyzed and described. The brain is supplied by the vertebrobasilar system only. The cerebral arterial circle is formed by the terminal branch of the basilar artery, the caudal communicating artery, the rostral cerebral artery and the rostral communicating artery. The caudal and middle cerebellar arteries are branches of the basilar artery. -
The Largest Fossil Rodent Andre´S Rinderknecht1 and R
Proc. R. Soc. B doi:10.1098/rspb.2007.1645 Published online The largest fossil rodent Andre´s Rinderknecht1 and R. Ernesto Blanco2,* 1Museo Nacional de Historia Natural y Antropologı´a, Montevideo 11300, Uruguay 2Facultad de Ingenierı´a, Instituto de Fı´sica, Julio Herrera y Reissig 565, Montevideo 11300, Uruguay The discovery of an exceptionally well-preserved skull permits the description of the new South American fossil species of the rodent, Josephoartigasia monesi sp. nov. (family: Dinomyidae; Rodentia: Hystricognathi: Caviomorpha). This species with estimated body mass of nearly 1000 kg is the largest yet recorded. The skull sheds new light on the anatomy of the extinct giant rodents of the Dinomyidae, which are known mostly from isolated teeth and incomplete mandible remains. The fossil derives from San Jose´ Formation, Uruguay, usually assigned to the Pliocene–Pleistocene (4–2 Myr ago), and the proposed palaeoenviron- ment where this rodent lived was characterized as an estuarine or deltaic system with forest communities. Keywords: giant rodents; Dinomyidae; megamammals 1. INTRODUCTION 3. HOLOTYPE The order Rodentia is the most abundant group of living MNHN 921 (figures 1 and 2; Museo Nacional de Historia mammals with nearly 40% of the total number of Natural y Antropologı´a, Montevideo, Uruguay): almost mammalian species recorded (McKenna & Bell 1997; complete skull without left zygomatic arch, right incisor, Wilson & Reeder 2005). In general, rodents have left M2 and right P4-M1. body masses smaller than 1 kg with few exceptions. The largest living rodent, the carpincho or capybara 4. AGE AND LOCALITY (Hydrochoerus hydrochaeris), which lives in the Neotro- Uruguay, Departament of San Jose´, coast of Rı´odeLa pical region of South America, has a body mass of Plata, ‘Kiyu´’ beach (348440 S–568500 W). -
Fossil Calibration Schemes the Soft Explosive Model Of
Supplemental File 2: Fossil calibration schemes The soft explosive model of placental mammal evolution Matthew J. Phillips*,1 and Carmelo Fruciano1 1School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Australia *Corresponding author: E-mail: [email protected] Contents Fossil Calibration schemes ......................................................................................................... 1 Table S2 .................................................................................................................................. 1 New calibrations ..................................................................................................................... 3 Figure S2 ................................................................................................................................ 7 References ............................................................................................................................ 10 Calibration schemes Table S2. Soft-bound calibrations employed for the MCMCtree analyses of the 122-taxon, 128- taxon, and 57-taxon empirical datasets. Calibrations among placental mammals are largely based on dos Reis et al. [1], hence the designations dR32 and dR40 (numbers indicating the number of calibrations). Several new calibrations, including some inspired by Springer et al. [2], are described below the table. Also note that the 122-taxon dR40, 128-taxon and 57-taxon analyses employ bounds as listed below, whereas the dR32 analyses, -
4. Palaeontology
118 4. Palaeontology Lionel Cavin, Damien Becker, Christian Klug Swiss Geological Survey – swisstopo, Schweizerisches Komitee für Stratigraphie, Naturhistorisches Museum Bern, Symposium 4: Palaeontology Schweizerische Paläontologische Gesellschaft, Kommission des Schweizerischen Paläontologischen Abhandlungen (KSPA) TALKS: 4.1 Aguirre-Fernández, G., Carrillo-Briceño, J. D., Sánchez, R., Jaramillo, C., Sánchez-Villagra, M. R.: Fossil whales and dolphins (Cetacea) from the Miocene of Venezuela and Colombia 4.2 Anquetin J.: A new diverse turtle fauna in the late Kimmeridgian of Switzerland 4.3 Bagherpour B., Bucher H., Brosse M., Baud A., Frisk Å., Guodun K.: Tectonic control on the deposition of Permian-Triassic boundary microbialites in the Nanpanjiang Basin (South China) 4.4 Carrillo J. D., Carlini A. A., Jaramillo C., Sánchez-Villagra M. R.: New fossil mammals from the northern neotropics (Urumaco, Venezuela, Castilletes, Colombia) and their significance for the new world diversity patterns and the Great American Biotic Interchange 4.5 Costeur L., Mennecart B., Rössner G.E., Azanza B.,: Inner ear in earyl deer 4.6 Hiard F., Métais G., Goussard F.: On the “thumb” of anoplotheriins: a 3D comparative study of the hand of Anoplotherium and Diplobune. 4.7 Klug C., Hoffmann R.: The origin of the complexity of ammonoid sutures 4.8 Koppka, J.: The oysters (Ostreoidea, Bivalvia) of the Reuchenette Formation (Kimmeridgian, Upper Jurassic) in Northwestern Switzerland 4.9 Leuzinger L., Kocsis L., Billon-Bruyat J.-P., Spezzaferri S.: Taxonomy and biogeochemistry of a new chondrichthyan fauna from the Swiss Jura (Kimmeridgian): an unusual isotopic signature for the hybodont shark Asteracanthus 4.10 Maridet O., Costeur L., Schwarz C., Furió M., van Glabbeek F. -
Investigating Evolutionary Processes Using Ancient and Historical DNA of Rodent Species
Investigating evolutionary processes using ancient and historical DNA of rodent species Thesis submitted for the degree of Doctor of Philosophy (PhD) University of London Royal Holloway University of London Egham, Surrey TW20 OEX Selina Brace November 2010 1 Declaration I, Selina Brace, declare that this thesis and the work presented in it is entirely my own. Where I have consulted the work of others, it is always clearly stated. Selina Brace Ian Barnes 2 “Why should we look to the past? ……Because there is nowhere else to look.” James Burke 3 Abstract The Late Quaternary has been a period of significant change for terrestrial mammals, including episodes of extinction, population sub-division and colonisation. Studying this period provides a means to improve understanding of evolutionary mechanisms, and to determine processes that have led to current distributions. For large mammals, recent work has demonstrated the utility of ancient DNA in understanding demographic change and phylogenetic relationships, largely through well-preserved specimens from permafrost and deep cave deposits. In contrast, much less ancient DNA work has been conducted on small mammals. This project focuses on the development of ancient mitochondrial DNA datasets to explore the utility of rodent ancient DNA analysis. Two studies in Europe investigate population change over millennial timescales. Arctic collared lemming (Dicrostonyx torquatus) specimens are chronologically sampled from a single cave locality, Trou Al’Wesse (Belgian Ardennes). Two end Pleistocene population extinction-recolonisation events are identified and correspond temporally with - localised disappearance of the woolly mammoth (Mammuthus primigenius). A second study examines postglacial histories of European water voles (Arvicola), revealing two temporally distinct colonisation events in the UK. -
Animal Health Requirements for Importation of Rodents, Hedgehogs, Gymnures and Tenrecs Into Denmark
INTERNATIONAL TRADE DIVISION ANIMAL HEALTH REQUIREMENTS FOR IMPORTATION OF RODENTS, HEDGEHOGS, GYMNURES AND TENRECS INTO DENMARK. La 23,0-2111 These animal health requirements concern veterinary import requirements and certification re- quirements alone and shall apply without prejudice to other Danish and EU legislation. Rodents, hedgehogs, gymnures and tenrecs meaning animals of the Genera/Species listed below: Order Family Rodentia Sciuridae (Squirrels) (except Petaurista spp., Biswamoyopterus spp., Aeromys spp., Eupetaurus spp., Pteromys spp., Glaucomys spp., Eoglaucomys spp., Hylopetes spp., Petinomys spp., Aeretes spp., Trogopterus spp., Belomys, Pteromyscus spp., Petaurillus spp., Iomys spp.), Gliridae (Dormous’), Heteromyidae (Kangaroo rats, kangaroo mice and rock pocket mice), Geomyidae (Gophers), Spalaci- dae (Blind mole rats, bamboo rats, root rats, and zokors), Calomyscidae (Mouse-like hamsters), Ne- somyidae (Malagasy rats and mice, climbing mice, African rock mice, swamp mice, pouched rats, and the white-tailed rat), Cricetidae (Hamsters, voles, lemmings, and New World rats and mice), Muridae (mice and rats and gerbils), Dipodidae (jerboas, jumping mice, and birch mice), Pedetidae (Spring- hare), Ctenodactylidae (Gundis), Diatomyidae (Laotian rock rat), Petromuridae (Dassie Rat), Thryon- omyidae (Cane rats), Bathyergidae (Blesmols), Dasyproctidae (Agoutis and acouchis), Agoutidae (Pacas), Dinomyidae (Pacarana), Caviidae (Domestic guinea pig, wild cavies, mara and capybara), Octodontidae (Rock rats, degus, coruros, and viscacha rats), Ctenomyidae (Tuco-tucos), Echimyidae (Spiny rats), Myocastoridae (Coypu ), Capromyidae (Hutias), Chinchillidae (Chinchillas and visca- chas), Abrocomidae (Chinchilla rats). Erinaceomorpha Erinaceidae (Hedgehogs and gymnures) Afrosoricida Tenrecidae (Tenrecs) The importation of rodents, hedgehogs, gymnures and tenrecs to Denmark (excluding import to ap- proved bodies, institutes and centres as defined in Art. 2, 1, (c) of Directive 92/65/EEC) must comply with the requirements of Danish order no. -
Palaeontology, Palaeobiology and Evolution
Palaeontology, palaeobiology and evolution The chemical conditions for life (January 2003) Robert Williams (Oxford University) and João Fraústo da Silva (Technical University of Lisbon) have an unconventional, but plausible take on the conditions for life’s origin and evolution (Williams, R.J.P & Fraústo da Silva J.J.R. 2003. Evolution was chemically constrained. Journal of Theoretical Biology, v. 220, p. 323-343; doi: 10.1006/jtbi.2003.3152). However life began, presumably as cytoplasm containing DNA, RNA and proteins within a semi-permeable wall, it was surrounded by the chemistry of whatever environment it appeared in. The proto-cell would have drawn hydrogen ions from water, to perform the proton pumping that is essential to all living organisms, and thereby created more oxidising conditions in its immediate vicinity. Oxidation would have generated nitrogen from ammonia, released metals from their sulphides and converted other sulphides to sulphates. Conversely, ions in its surroundings would have been able to “leak” into the cell itself. By creating oxidised radicals, this inward leakage would have rebounded the cell’s activity on itself, with potentially toxic consequences. Survival depended on two things: exploiting the opportunities, such as nitrogen fixation, using oxygen and even photosynthetic chemistry; and fending off potential toxic shock. One of the most interesting aspects is the role assumed by calcium ions. Their presence inside a cell would have precipitated DNA, by binding to it, with fatal consequences. The upshot, according to Williams and Fraústo da Silva, is the special role of calcium as a messenger ion, perhaps having arisen through the necessity to pump it out again.