Phylogenetic Relationships of African Green Snakes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Addo Elephant National Park Reptiles Species List
Addo Elephant National Park Reptiles Species List Common Name Scientific Name Status Snakes Cape cobra Naja nivea Puffadder Bitis arietans Albany adder Bitis albanica very rare Night adder Causes rhombeatus Bergadder Bitis atropos Horned adder Bitis cornuta Boomslang Dispholidus typus Rinkhals Hemachatus hemachatus Herald/Red-lipped snake Crotaphopeltis hotamboeia Olive house snake Lamprophis inornatus Night snake Lamprophis aurora Brown house snake Lamprophis fuliginosus fuliginosus Speckled house snake Homoroselaps lacteus Wolf snake Lycophidion capense Spotted harlequin snake Philothamnus semivariegatus Speckled bush snake Bitis atropos Green water snake Philothamnus hoplogaster Natal green watersnake Philothamnus natalensis occidentalis Shovel-nosed snake Prosymna sundevalli Mole snake Pseudapsis cana Slugeater Duberria lutrix lutrix Common eggeater Dasypeltis scabra scabra Dappled sandsnake Psammophis notosticus Crossmarked sandsnake Psammophis crucifer Black-bellied watersnake Lycodonomorphus laevissimus Common/Red-bellied watersnake Lycodonomorphus rufulus Tortoises/terrapins Angulate tortoise Chersina angulata Leopard tortoise Geochelone pardalis Green parrot-beaked tortoise Homopus areolatus Marsh/Helmeted terrapin Pelomedusa subrufa Tent tortoise Psammobates tentorius Lizards/geckoes/skinks Rock Monitor Lizard/Leguaan Varanus niloticus niloticus Water Monitor Lizard/Leguaan Varanus exanthematicus albigularis Tasman's Girdled Lizard Cordylus tasmani Cape Girdled Lizard Cordylus cordylus Southern Rock Agama Agama atra Burrowing -
Animals Traded for Traditional Medicine at the Faraday Market in South Africa: Species Diversity and Conservation Implications M
Journal of Zoology Journal of Zoology. Print ISSN 0952-8369 Animals traded for traditional medicine at the Faraday market in South Africa: species diversity and conservation implications M. J. Whiting1,2, V. L. Williams1 & T. J. HibbittsÃ,1 1 School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa 2 Department of Biological Sciences, Macquarie University, Sydney, Australia Keywords Abstract biodiversity; threatened species; ethnozoology; mammal; bird; reptile. In South Africa, animals and plants are commonly used as traditional medicine for both the healing of ailments and for symbolic purposes such as improving Correspondence relationships and attaining good fortune. The aim of this study was twofold: to Department of Biological Sciences, quantify the species richness and diversity of traded animal species and to assess Macquarie University, Sydney, NSW 2109, the trade in species of conservation concern. We surveyed the Faraday traditional Australia. medicine market in Johannesburg and conducted 45 interviews of 32 traders Email: [email protected] during 23 visits. We identified 147 vertebrate species representing about 9% of the total number of vertebrate species in South Africa and about 63% of the total ÃCurrent address: Department of Wildlife number of documented species (excluding domestic animals) traded in all South and Fisheries Sciences, Texas A & M African traditional medicine markets. The vertebrates included 60 mammal University, College Station, TX 77843-2258, species, 33 reptile species, 53 bird species and one amphibian species. Overall, USA. species diversity in the Faraday market was moderately high and highest for mammals and birds, respectively. Evenness values indicated that relatively few Editor: Andrew Kitchener species were dominant. -
Herpetological Bulletin
The HERPETOLOGICAL BULLETIN Number 80 — Summer 2002 PUBLISHED BY THE BRITISH HERPETOLOGICAL SOCIETY THE HERPETOLOGICAL BULLETIN The Herpetological Bulletin is produced quarterly and publishes, in English, a range of articles concerned with herpetology. These include full-length papers of mostly a semi-technical nature, book reviews, letters from readers, society news, and other items of general herpetological interest. Emphasis is placed on natural history, conservation, captive breeding and husbandry, veterinary and behavioural aspects. Articles reporting the results of experimental research, descriptions of new taxa, or taxonomic revisions should be submitted to The Herpetological Journal (see inside back cover for Editor's address). ISSN 1473-0928 © The British Herpetological Society. All rights reserved. No part of this publication may be reproduced without the permission of the Editor. Printed by Metloc Printers Limited, Old Station Road, Loughton, Essex. Information for contributors 1. Contributions should be submitted in hard copy form (2 copies of manuscript, double-spaced) AND on computer diskette in Windows format only. The Bulletin is typeset directly from the author's diskette, so wherever possible all manuscripts should be prepared using a word-processor. Please indicate word-processing software used, and if possible also include a text-only version of the file. The text should be arranged in the following order: Title; Name(s) of author(s); Address(es) of authors (please indicate corresponding author); Abstract (optional - if included should not exceed 10% of total word length); Text; Acknowledgements; References; Appendices. Footnotes should not be included. Refer to this issue for style and format information. 2. Slides and high resolution scanned images are the preferred form of illustration, although good quality prints are also acceptable. -
New Records of the Large-Eyed Green Snake, Philothamnus Macrops (Boulenger 1895), from Mozambique
Herpetology Notes, volume 12: 19-29 (2019) (published online on 09 January 2019) New records of the Large-eyed Green Snake, Philothamnus macrops (Boulenger 1895), from Mozambique William R. Branch1,2,†, Luke Verburgt3, Julian Bayliss4, Christoph Kucharzewski5, Mark-Oliver Rödel5, and Werner Conradie1,6,* Abstract. Northern Mozambique is one of the most poorly known regions in south-eastern Africa and only in the last decade has it received attention through a series of multi-collaborative biodiversity surveys. These surveys have revealed numerous new species but also species hitherto unrecorded from Mozambique. One of these is the Large-eyed Green snake, Philothamnus macrops, which was previously restricted to Tanzania and south-eastern coastal Kenya. We present seven new records of P. macrops from northern and central Mozambique, the first collected as early as 1997. Additional material and genetic analysis confirmed the material to be P. macrops, which extend the species’ known range for more than 1000 km to the south. A historical overview of the species and its current known geographical distribution is also provided. Keywords. Colubridae, montane, coastal, biodiversity Introduction Philothamnus. With additional herpetological studies in Tanzania the known geographical distribution of P. Philothamnus macrops (Boulenger 1895) was macrops expanded and historical reviews of the East described from the Usambara Mountains, Tanzania, and African snake fauna, Barbour and Loveridge (1928), is therefore also known as the Usambara Green Snake Loveridge (1958), Broadley and Howell (1991) and (Spawls et al., 2018a). It was placed in the new genus Rasmussen (1981) consistently summarized the species’ Oligolepis by Boulenger (1895), based presumably distribution as “coastal Tanzania and Zanzibar”. -
A Preliminary Herpetological Survey of the Vilanculos Coastal Wildlife Sanctuary on the San Sebastian Peninsula, Vilankulo, Mozambique
Herpetology Notes, volume 3: 181-193 (2010) (published online on 31 May 2010) A preliminary herpetological survey of the Vilanculos Coastal Wildlife Sanctuary on the San Sebastian Peninsula, Vilankulo, Mozambique Niels H.G. Jacobsen1*, Errol W. Pietersen2 & Darren W. Pietersen3 Abstract. This paper reports on and discusses the findings of a herpetofaunal survey of the San Sebastian Peninsula, Vilankulo, Mozambique. A total of 39 reptile and 20 amphibian species were recorded including new records for Mozambique, range extensions and taxa previously considered endemic to the Bazaruto Archipelago. Keywords. Herpetofauna, San Sebastian Peninsula, Vilankulo, Mozambique. Introduction These islands form a northward extension of the San Sebastian Peninsula. The herpetofauna of Mozambique is still relatively A survey of the herpetofauna of the San Sebastian poorly known, especially when compared to the rest of Peninsula was undertaken as part of a larger study of southern Africa. The most recent accounts are those of the vegetation and fauna to assess the conservation Broadley (1966a, 1983), Poynton & Broadley (1985a, importance of the area. b, 1987, 1988) and Channing 2001. In addition, it appears that some early records have been overlooked The Study Site in museum collections. Apart from these, most The San Sebastian Peninsula lies south-east of the recent records often emanate from scant, sporadic town of Vilankulo, forming the mainland extension of or opportunistic collecting (Downs & Wirminghaus the Bazaruto Archipelago which includes Margaruque, 1990). As a result there is a void in our knowledge, Benguera, Bazaruto and Santa Carolina islands (Fig. 1). which also complicates the interpretation of species’ The Vilanculos Coastal Wildlife Sanctuary (VCWS) distributions and even the taxonomic status of some lies along the peninsula between 22.0833 and 22.3500° species. -
Snakes of Durban
SNakes of durban Brown House Snake Herald Snake Non - venomous Boaedon capensis Crotaphopeltis hotamboeia Often found near human habitation where they Also referred to as the Red-lipped herald. hunt rodents, lizards and small birds. This nocturnal (active at night) snake feeds They are active at night and often collected mainlyly on frogs and is one of the more common for the pet trade. snakes found around human dwellings. SPOTTED BUSH Snake Eastern Natal Green Snake Southern Brown Egg eater Philothamnus semivariegatus Philothamnus natalensis natalensis Dasypeltis inornata Probably the most commonly found snake in This green snake is often confused with the This snake has heavily keeled body scales and urban areas. They are very good climbers, Green mamba. This diurnal species, (active during is nocturnal (active at night) . Although harmless, often seen hunting geckos and lizards the day) actively hunts frogs and geckos. they put up an impressive aggression display, in the rafters of homes. Max length 1.1 metres. with striking and open mouth gaping. Can reach This diurnal species (active during the day) over 1 metre in length and when they are that big is often confused with the Green mamba. they can eat chicken eggs. Habitat includes Max length 1.1 metres. grasslands, coastal forests and it frequents suburban gardens where they are known to enter aviaries in search of eggs. night adder Causus rhombeatus A common snake often found near ponds and dams because they feed exclusively on amphibians. They have a cytotoxic venom and bite symptoms will include pain and swelling. Max length 1 metre. -
From Southern Nigeria
SHORT NOTES HERPETOLOGJCAL JOURNAL, Vol. 12, pp. 179-182 (2002) the territories surveyed cf. Luiselli & Angelici, 2000), situated in the easternaxis of the Niger Delta (Bayelsa DIET OF THELOTORNIS KIR TL ANDII and Rivers States), in Anambra, Akwa-Ibom, Abia and (SERPENTES: COLUBRIDAE: Cross River States. The study region is tropical, with a DISPHOLIDINI) FROM SOUTHERN wet season from May to September and a dry season fromOctober to April. The wettest period of the year is NIGERIA June-July, and the driest period between late December and February. GODFREY AKANI LUCA LUISELLI AND C. 1, 2•3 Methods used to survey the study area, capture FRANCESCO ANGELIC! M. 2·3 snakes and analyse their food items, are detailed else where (e.g. Luiselli et al., 1998, 2002). Fieldwork was 1 Department of Biological Sciences, Rivers State University of Science and Technology, P.M.B. 5080, Port conducted under all climatic conditions, but with a bias Harcourt (R ivers State), Nigeria toward diurnalhours (from 0800-1800 hrs) due to secu rity constraints related to the prevailing unstable Centre of Environmental Studies "Demetra ", Via dei 2 political situation. Field effort was almost identical in Cochi 48/B, I-00133 Rome, Italy the wet (421 field days) and dry (418 field days) sea 3 F.I.Z. V., via Olona 7, I-00198 Rome, Italy sons. We searched for snakes along standardized routes in Key words: Africa, feeding ecology, snake the various microhabitats frequented by snakes at the study areas. We captured snakes by hand, but additional Th elotornis kirt/andii is an arboreal, venomous free-ranging specimens were captured by pitfall traps colubrid snake with a wide distribution ranging fromthe with drift fences and by traps used by locals to capture islands of the Bijagos Archipelago, Guinea Bissau; east terrestrial animals. -
The Relationship of Herpetofaunal
Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Spring 2009 The Relationship of Herpetofaunal Community Composition to an Elephant (Loxodonta Africana) Modified Savanna oodlandW of Northern Tanzania, and Bioassays with African Elephants Nabil A. Nasseri Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Recommended Citation Nasseri, Nabil A., "The Relationship of Herpetofaunal Community Composition to an Elephant (Loxodonta Africana) Modified Savanna oodlandW of Northern Tanzania, and Bioassays with African Elephants" (2009). Electronic Theses and Dissertations. 763. https://digitalcommons.georgiasouthern.edu/etd/763 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. THE RELATIONSHIP OF HERPETOFAUNAL COMMUNITY COMPOSITION TO AN ELEPHANT ( LOXODONTA AFRICANA ) MODIFIED SAVANNA WOODLAND OF NORTHERN TANZANIA, AND BIOASSAYS WITH AFRICAN ELEPHANTS by NABIL A. NASSERI (Under the Direction of Bruce A. Schulte) ABSTRACT Herpetofauna diversity and richness were compared in areas that varied in the degree of elephant impact on the woody vegetation ( Acacia spp.). The study was conducted at Ndarakwai Ranch in northeastern Tanzania. Elephants moving between three National Parks in Kenya and Tanzania visit this property. From August 2007 to March 2008, we erected drift fences and pitfall traps to sample herpetofaunal community and examined species richness and diversity within the damaged areas and in an exclusion plot. -
A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes
BMC Evolutionary Biology This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes BMC Evolutionary Biology 2013, 13:93 doi:10.1186/1471-2148-13-93 Robert Alexander Pyron ([email protected]) Frank T Burbrink ([email protected]) John J Wiens ([email protected]) ISSN 1471-2148 Article type Research article Submission date 30 January 2013 Acceptance date 19 March 2013 Publication date 29 April 2013 Article URL http://www.biomedcentral.com/1471-2148/13/93 Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ © 2013 Pyron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes Robert Alexander Pyron 1* * Corresponding author Email: [email protected] Frank T Burbrink 2,3 Email: [email protected] John J Wiens 4 Email: [email protected] 1 Department of Biological Sciences, The George Washington University, 2023 G St. -
Deliberate Tail Loss in Dolichophis Caspius and Natrix Tessellata (Serpentes: Colubridae) with a Brief Review of Pseudoautotomy in Contemporary Snake Families
NORTH-WESTERN JOURNAL OF ZOOLOGY 12 (2): 367-372 ©NwjZ, Oradea, Romania, 2016 Article No.: e162503 http://biozoojournals.ro/nwjz/index.html Deliberate tail loss in Dolichophis caspius and Natrix tessellata (Serpentes: Colubridae) with a brief review of pseudoautotomy in contemporary snake families Jelka CRNOBRNJA-ISAILOVIĆ1,2,*, Jelena ĆOROVIĆ2 and Balint HALPERN3 1. Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia. 2. Institute for Biological Research “Siniša Stanković”, University of Belgrade, Despota Stefana 142, 11000 Belgrade, Serbia. 3. MME BirdLife Hungary, Költő u. 21, 1121 Budapest, Hungary. * Corresponding author, J. Crnobrnja-Isailović, E-mail: [email protected] Received: 22. April 2015 / Accepted: 16. July 2015 / Available online: 29. July 2015 / Printed: December 2016 Abstract. Deliberate tail loss was recorded for the first time in three large whip snakes (Dolichophis caspius) and one dice snake (Natrix tessellata). Observations were made in different years and in different locations. In all cases the tail breakage happened while snakes were being handled by researchers. Pseudoautotomy was confirmed in one large whip snake by an X-Ray photo of a broken piece of the tail, where intervertebral breakage was observed. This evidence and literature data suggest that many colubrid species share the ability for deliberate tail loss. However, without direct observation or experiment it is not possible to prove a species’ ability for pseudoautotomy, as a broken tail could also be evidence of an unsuccessful predator attack, resulting in a forcefully broken distal part of the tail. Key words: deliberate tail loss, pseudoautotomy, Colubridae, Dolichophis caspius, Natrix tessellate. -
Patterns of Species Richness, Endemism and Environmental Gradients of African Reptiles
Journal of Biogeography (J. Biogeogr.) (2016) ORIGINAL Patterns of species richness, endemism ARTICLE and environmental gradients of African reptiles Amir Lewin1*, Anat Feldman1, Aaron M. Bauer2, Jonathan Belmaker1, Donald G. Broadley3†, Laurent Chirio4, Yuval Itescu1, Matthew LeBreton5, Erez Maza1, Danny Meirte6, Zoltan T. Nagy7, Maria Novosolov1, Uri Roll8, 1 9 1 1 Oliver Tallowin , Jean-Francßois Trape , Enav Vidan and Shai Meiri 1Department of Zoology, Tel Aviv University, ABSTRACT 6997801 Tel Aviv, Israel, 2Department of Aim To map and assess the richness patterns of reptiles (and included groups: Biology, Villanova University, Villanova PA 3 amphisbaenians, crocodiles, lizards, snakes and turtles) in Africa, quantify the 19085, USA, Natural History Museum of Zimbabwe, PO Box 240, Bulawayo, overlap in species richness of reptiles (and included groups) with the other ter- Zimbabwe, 4Museum National d’Histoire restrial vertebrate classes, investigate the environmental correlates underlying Naturelle, Department Systematique et these patterns, and evaluate the role of range size on richness patterns. Evolution (Reptiles), ISYEB (Institut Location Africa. Systematique, Evolution, Biodiversite, UMR 7205 CNRS/EPHE/MNHN), Paris, France, Methods We assembled a data set of distributions of all African reptile spe- 5Mosaic, (Environment, Health, Data, cies. We tested the spatial congruence of reptile richness with that of amphib- Technology), BP 35322 Yaounde, Cameroon, ians, birds and mammals. We further tested the relative importance of 6Department of African Biology, Royal temperature, precipitation, elevation range and net primary productivity for Museum for Central Africa, 3080 Tervuren, species richness over two spatial scales (ecoregions and 1° grids). We arranged Belgium, 7Royal Belgian Institute of Natural reptile and vertebrate groups into range-size quartiles in order to evaluate the Sciences, OD Taxonomy and Phylogeny, role of range size in producing richness patterns. -
Herpetological Survey of Cangandala National Park, with a Synoptic List of the Amphibians and Reptiles of Malanje Province, Central Angola
408 ARTICLES ———, M.A. BANGOURA, AND W. BÖHME. 2004. The amphibians of the frogs: vocal sac glands of reed frogs (Anura: Hyperoliidae) contain south-eastern Republic of Guinea (Amphibia: Gymnophiona, An- species-specific chemical cocktails. Biol. J. Linn. Soc. 110:828–838. ura). Herpetozoa 17:99–118. ———, P. M. MAIER, W. HÖDL, AND D. PREININGER. 2018. Multimodal sig- ———, K. P. LAMPERT, AND K. E. LINSENMAIR. 2006. Reproductive biol- nal testing reveals gestural tapping behavior in spotted reed frogs. ogy of the West African savannah frog Hyperolius nasutus Günther, Herpetologica 74:127–134. 1864. Herpetozoa 19:3–12. TELFORD, S. R. 1985. Mechanisms of evolution and inter-male spacing SCHICK, S., M. VEITH, AND S. LÖTTERS. 2005. Distribution patterns of amphib- in the painted reedfrog (Hyperolius marmoratus). Anim. Behav. ians from the Kakamega forest, Kenya. Afr. J. Herpetol. 54:185–190. 33:1353–1361. SCHIØTZ A. 1967. The treefrogs (Rhacophoridae) of West Africa. Spolia ———, AND M. L. DYSON. 1988. Some determinants of the mating sys- Zoologica Musei Hauniensis 25:1–346. tem in a population of painted reed frogs (Hyperolius marmora- ———. 1999. Treefrogs of Africa. Edition Chimaira, Frankfurt, Ger- tus). Behaviour 106:265–278. many. 350 pp. ———, ———, AND N. I. PASSMORE. 1989. Mate choice occurs only in SCHMITZ, A., O. EUSKIRCHEN, AND W. BÖHME. 1999. Zur Herpetofauna small choruses of painted reed frogs Hyperolius marmoratus. Bio- einer montanen Regenwaldregion in SW-Kamerun (Mt. Kupe und acoustics 2:47–53. Bakossi-Bergland). I. Einleitung, Bufonidae, und Hyperoliidae. ———, AND N. I. PASSMORE. 1981. Selective phonotaxis of four sympat- Herpetofauna (Weinstadt) 21(121):5–17.