Metamodeling for Method Engineering

Total Page:16

File Type:pdf, Size:1020Kb

Metamodeling for Method Engineering computer science editors and Mylopoulos, Jeusfeld, Jarke, Metamodeling for Method edited by Manfred A. Jeusfeld, Engineering Matthias Jarke, and John Mylopoulos This text is a guide to the foundations of method engineering, a developing field concerned with the definition of techniques for designing software systems. The approach is based on metamodeling, the construction of a model about a collection of other models. The book applies the metamodeling approach in five case studies, each describ- ing a solution to a problem in a specific domain. Suitable for classroom use, the book is also useful as a reference for practitioners. Engineering Metamodeling for Method The book first presents the theoretical basis of metamodeling for method engineering, discussing information Metamodeling for Method modeling, the potential of metamodeling for software systems development, and the introduction of the metamodeling tool ConceptBase. The second, and larger, portion of the book reports on applications of the metamodeling approach to method engineering. These detailed case studies range from telecommunication service specification, hypermedia design, and data warehousing to cooperative requirements engineering, chemical device modeling, and design of new Engineering abstraction principles of modeling languages. Although these chapters can stand alone as case studies, they also relate to the earlier theoretical chapters. The metamodeling approach described in the book is based on the Telos metamodel- ing language implemented by the ConceptBase system. An accompanying CD-ROM contains the ConceptBase system and a large collection of Telos metamodels discussed in the text. The CD-ROM enables readers to start directly with 2021 Open-access Edition method engineering, from small method chunks up to complete method definitions. The complete definition of Ed Yourdon’s structured analysis method is included as an instructional example. edited by Manfred A. Jeusfeld, MANFRED JEUSFELD IS ASSISTANT PROFESSOR OF INFORMATION SYSTEMS AND MANAGEMENT, TILBURG UNIVERSITY, THE MD DALIM #1021972 4/21/09 NETHERLANDS. MATTHIAS JARKE IS EXECUTIVE DIRECTOR OF THE FRAUNHOFER INSTITUTE OF APPLIED IT, BONN, GERMANY. Matthias Jarke, and JOHN MYLOPOULOS IS PROFESSOR IN THE DEPARTMENT OF COMPUTER SCIENCE AT THE UNIVERSITY OF TORONTO AND DISTIN- John Mylopoulos GUISHED PROFESSOR IN THE DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE AT THE UNIVERSITY OF TRENTO. Cooperative Information Systems series “With the increased complexity of cooperative information systems Contributors that organizations and society require today, the role played by BIRGIT BAYER WOLFGANG NEJDL methods that support their development becomes crucial. Meth- ALEX BORGIDA ALAIN PIROTTE od engineering has emerged in response to the need to adapt MOHAMED DAHCHOUR CHRISTOPH QUIX methods to better fit the requirements of the development task ARMIN EBERLEIN WILLIAM N. ROBINSON METGRAY at hand. Its aim is to provide techniques for modeling reusable MATTHIAS JARKE MARTIN WOLPERS method components, adapting and assembling these together to MANFRED A. JEUSFELD form the new method. This book provides the foundations for RALF KLAMMA method engineering and demonstrates their use in different case KALLE LYYTINEN studies.” WOLFGANG MARQUARDT BLUE Colette Rolland, Professor of Computer Science, Department of JOHN MYLOPOULOS Mathematics and Informatics, Université Paris 1 Panthéon Sorbonne BLK 978-0-262-10108-0 THE MIT PRESS MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02142 HTTP://MITPRESS.MIT.EDU Metamodeling for Method Engineering 2021 Open-Access Edition Cooperative Information Systems Michael P. Papazoglou, Joachim W. Schmidt, and John Mylopoulos, editors Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, Nikota K. Kasabov Advances in Object-Oriented Data Modeling, Michael P. Papazoglou, Stefano Spaccapietra, and Zahir Tari, editors Workflow Management: Models, Methods, and Systems, Wil van der Aalst and Kees Max van Hee A Semantic Web Primer, Grigoris Antoniou and Frank van Harmelen Aligning Modern Business Processes and Legacy Systems: A Component-Based Perspective, Willem-Jan van den Heuvel A Semantic Web Primer, second edition, Grigoris Antoniou and Frank van Harmelen Service-Oriented Computing, Dimitrios Georgakopoulos and Michael P. Papazoglou, editors At Your Service, Elisabetta di Nitto, Anne-Marie Sassen, Paolo Traverso, and Arian Zwegers, editors Metamodeling for Method Engineering, Manfred A. Jeusfeld, Matthias Jarke, and John Mylopoulos, editors Metamodeling for Method Engineering Edited by Manfred A. Jeusfeld, Matthias Jarke, John Mylopoulos This online edition is published by its editors, (c) 2021 This is the 2021 Open-Access Edition of the book "Metamodeling for Method Engineering" Re- published by its editors under the Creative Commons license CC BY-NC-ND 4.0,see https://creativecommons.org/licenses/by-nc-nd/4.0/ All rights to this edition held by the editors. Contact: Manfred A. Jeusfeld, University of Skövde, Box 408, 54128 Skövde, Sweden email: [email protected] Copyright notice of the original 2009 book publication: 6 2009 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please email [email protected] or write to Special Sales Department, The MIT Press, 5 Cambridge Center, Cambridge, MA 02142. This book was set in Times New Roman and Syntax on 3B2 by Asco Typesetters, Hong Kong. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Metamodeling for method engineering / edited by Manfred A. Jeusfeld, Matthias Jarke, John Mylopoulos. p. cm. — (Cooperative information systems) Includes bibliographical references and index. ISBN 978-0-262-10108-0 (hc : alk. paper) 1. Programming (Mathematics) 2. Engineering models. I. Jeusfeld, Manfred. II. Jarke, Matthias. III. Mylopoulos, John. IV. Series. T57.7.M48 2009 003 0.3—dc22 2008047203 10987654321 Contents Series Foreword vii Introduction xi 1 A Sophisticate’s Guide to Information Modeling 1 Alex Borgida and John Mylopoulos 2 Metamodeling 43 Matthias Jarke, Ralf Klamma, and Kalle Lyytinen 3 Metamodeling and Method Engineering with ConceptBase 89 Manfred A. Jeusfeld 4 Conceptual Modeling in Telecommunications Service Design 169 Armin Eberlein 5 Metadata for Hypermedia Textbooks: From RDF to O-Telos and Back 233 Martin Wolpers and Wolfgang Nejdl 6 Monitoring Requirements Development with Goals 257 William N. Robinson 7 Definition of Semantic Abstraction Principles 295 Mohamed Dahchour and Alain Pirotte 8 Metadatabase Design for Data Warehouses 329 Christoph Quix 9 A Conceptual Information Model for the Chemical Process Design Lifecycle 357 Birgit Bayer and Wolfgang Marquardt List of Contributors 383 Index 387 Online resources for the 2021 Open-Access Edition The ConceptBase system used as a tool for exercises in this book can be downloaded from http://conceptbase.cc under a BSD-style open-source license. Sources for examples for some of the chapters and other resources such as slides for lectures on metamodeling can be obtained from http://conceptbase.cc/CB-Resources.html This replaces the content of the CD-ROM that was accompanying the original 2009 book edition of the textbook. Series Foreword The traditional view of information systems as tailor-made, cost-intensive database applications is changing rapidly. The change is fueled partly by a maturing software industry, which is making greater use of o¤-the-shelf generic components and stan- dard software solutions, and partly by the onslaught of the information revolution. In turn, this change has resulted in a new set of demands for information services that are homogeneous in their presentation and interaction patterns, open in their software architecture, and global in their scope. The demands have come mostly from application domains such as e-commerce and banking, manufacturing (includ- ing the software industry itself ), training, education, and environmental manage- ment, to mention just a few. Future information systems will have to support smooth interaction with a large variety of independent multivendor data sources and legacy applications, running on heterogeneous platforms and distributed information networks. Metadata will play a crucial role in describing the contents of such data sources and in facilitating their integration. As well, a greater variety of community-oriented interaction patterns will have to be supported by next-generation information systems. Such interactions may involve navigation, querying, and retrieval, and will have to be combined with personalized notification, annotation, and profiling mechanisms. Such interactions will also have to be intelligently interfaced with application software, and will need to be dynami- cally integrated into customized and highly connected cooperative environments. Morever, the massive investments in information resources, by governments and businesses alike, call for specific measures that ensure security, privacy, and accuracy of their contents. All these are challenges for the next generation of information systems. We call such systems cooperative information systems, and they
Recommended publications
  • From Plain Prolog to Logtalk Objects: Effective Code Encapsulation and Reuse
    From Plain Prolog to Logtalk Objects: Effective Code Encapsulation and Reuse Paulo Moura Dep. of Computer Science, Univ. of Beira Interior, Portugal Center for Research in Advanced Computing Systems INESC Porto, Portugal http://logtalk.org/ [email protected] ICLP 2009 Inivited Talk Someone said I need one... 2 Spoilers • Objects in a Prolog world • Logtalk design goals • Logtalk architecture • Logtalk versus Prolog and Prolog modules • Logtalk overview and quick tour • Some demos (if time allows) • Logtalk as a portable Prolog application • Logtalk programming support 3 A warning... • I have a laser and I’m not afraid to use it ... Beware of asking embarrassing questions! • But please feel free to interrupt and ask nice ones that make the speaker shine! 4 A bit of history... • Project started in January 1998 • First version for registered users in July 1998 • First public beta in October 1998 • First stable version in February 1999 5 Logtalk in numbers • Compiler + runtime: ~11000 lines of Prolog code • 37 major releases, 122 including minor ones • Current version: Logtalk 2.37.2 minor release number major release number second generation of Logtalk • ~1500 downloads/month (so many earthlings, so little time) 6 Logtalk distribution • Full sources (compiler/runtime, Prolog config files, libraries) • MacOS X (pkg), Linux (rpm), Debian (deb), and Windows (exe) installers XHTML and PDF User and Reference Manuals • (121 + 144 pages) • +90 programming examples • Support for several text editors and syntax highlighters (text services and code publishing) 7 Objects in Prolog?!? We’re being invaded! 8 Objects have identifiers and dynamic state! • It seems Prolog modules are there first: Identifier! :- module(broadcast, [...]).
    [Show full text]
  • Using BEAM Software to Simulate the Introduction of On-Demand, Automated, and Electric Shuttles for Last Mile Connectivity in Santa Clara County
    San Jose State University SJSU ScholarWorks Mineta Transportation Institute Publications 1-2021 Using BEAM Software to Simulate the Introduction of On-Demand, Automated, and Electric Shuttles for Last Mile Connectivity in Santa Clara County Gary Hsueh Mineta Transportation Institute David Czerwinski San Jose State University Cristian Poliziani Mineta Transportation Institute Terris Becker San Jose State University Alexandre Hughes San Jose State University See next page for additional authors Follow this and additional works at: https://scholarworks.sjsu.edu/mti_publications Part of the Sustainability Commons, and the Transportation Commons Recommended Citation Gary Hsueh, David Czerwinski, Cristian Poliziani, Terris Becker, Alexandre Hughes, Peter Chen, and Melissa Benn. "Using BEAM Software to Simulate the Introduction of On-Demand, Automated, and Electric Shuttles for Last Mile Connectivity in Santa Clara County" Mineta Transportation Institute Publications (2021). https://doi.org/10.31979/mti.2021.1822 This Report is brought to you for free and open access by SJSU ScholarWorks. It has been accepted for inclusion in Mineta Transportation Institute Publications by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. Authors Gary Hsueh, David Czerwinski, Cristian Poliziani, Terris Becker, Alexandre Hughes, Peter Chen, and Melissa Benn This report is available at SJSU ScholarWorks: https://scholarworks.sjsu.edu/mti_publications/343 Project 1822 January 2021 Using BEAM Software to
    [Show full text]
  • Sysml Distilled: a Brief Guide to the Systems Modeling Language
    ptg11539604 Praise for SysML Distilled “In keeping with the outstanding tradition of Addison-Wesley’s techni- cal publications, Lenny Delligatti’s SysML Distilled does not disappoint. Lenny has done a masterful job of capturing the spirit of OMG SysML as a practical, standards-based modeling language to help systems engi- neers address growing system complexity. This book is loaded with matter-of-fact insights, starting with basic MBSE concepts to distin- guishing the subtle differences between use cases and scenarios to illu- mination on namespaces and SysML packages, and even speaks to some of the more esoteric SysML semantics such as token flows.” — Jeff Estefan, Principal Engineer, NASA’s Jet Propulsion Laboratory “The power of a modeling language, such as SysML, is that it facilitates communication not only within systems engineering but across disci- plines and across the development life cycle. Many languages have the ptg11539604 potential to increase communication, but without an effective guide, they can fall short of that objective. In SysML Distilled, Lenny Delligatti combines just the right amount of technology with a common-sense approach to utilizing SysML toward achieving that communication. Having worked in systems and software engineering across many do- mains for the last 30 years, and having taught computer languages, UML, and SysML to many organizations and within the college setting, I find Lenny’s book an invaluable resource. He presents the concepts clearly and provides useful and pragmatic examples to get you off the ground quickly and enables you to be an effective modeler.” — Thomas W. Fargnoli, Lead Member of the Engineering Staff, Lockheed Martin “This book provides an excellent introduction to SysML.
    [Show full text]
  • Metamodeling and Method Engineering with Conceptbase”
    This is a pre-print of the book chapter M. Jeusfeld: “Metamodeling and method engineering with ConceptBase” . In Jeusfeld, M.A., Jarke, M., Mylopoulos, J. (eds): Metamodeling for Method Engineering, pp. 89-168. The MIT Press., 2009; the original book is available from MIT Press http://mitpress.mit.edu/node/192290 This pre-print may only be used for scholar, non-commercial purposes. Most of the sources for the examples in this chapter are available via http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3782591 for download. They require ConceptBase 7.0 or later available from http://conceptbase.cc. Metamodeling and Method Engineering with ConceptBase Manfred Jeusfeld Abstract. This chapter provides a practical guide on how to use the meta data repository ConceptBase to design information modeling methods by using meta- modeling. After motivating the abstraction principles behind meta-modeling, the language Telos as realized in ConceptBase is presented. First, a standard factual representation of statements at any IRDS abstraction level is defined. Then, the foundation of Telos as a logical theory is elaborated yielding simple fixpoint semantics. The principles for object naming, instantiation, attribution, and specialization are reflected by roughly 30 logical axioms. After the language axiomatization, user-defined rules, constraints and queries are introduced. The first part is concluded by a description of active rules that allows the specification of reactions of ConceptBase to external events. The second part applies the language features of the first part to a full-fledged information modeling method: The Yourdan method for Modern Structured Analysis. The notations of the Yourdan method are designed along the IRDS framework.
    [Show full text]
  • Using Telelogic DOORS and Microsoft Visio to Model and Visualize
    Using DOORS & Visio to Model and Visualize Complex Business Processes Bob Sherman - [email protected] [email protected] Using Telelogic DOORS and Microsoft Visio to Model and Visualize Complex Business Processes - v1.0 © 2005 Galactic Solutions Group LLC – Authors: Bob Sherman ([email protected]), [email protected] 1 © Telelogic AB Agenda • The Unmet Need • The Solution – Strategy: Business Driven Application Lifecycle – Tactics: Business Modeling via DOORS & VISIO – Tactics: DOORS/VISIO Integration • Case Study Results Using Telelogic DOORS and Microsoft Visio to Model and Visualize Complex Business Processes - v1.0 © 2005 Galactic Solutions Group LLC – Authors: Bob Sherman ([email protected]), [email protected] 2 © Telelogic AB Chronic IT Project Problems Top IT Project Problems • User/Stakeholder Engagement Outages • Unclear Objectives • Incomplete or Changing Requirements *Standish Group Chaos Studies Using Telelogic DOORS and Microsoft Visio to Model and Visualize Complex Business Processes - v1.0 © 2005 Galactic Solutions Group LLC – Authors: Bob Sherman ([email protected]), [email protected] 3 © Telelogic AB Chronic IT Project Problems Rework • 35-65% of project budget *Standish Group spent on rework. • ~50% of rework is due to requirements errors * IEEE & University of Southern California Using Telelogic DOORS and Microsoft Visio to Model and Visualize Complex Business Processes - v1.0 © 2005 Galactic Solutions Group LLC – Authors:
    [Show full text]
  • Using Telelogic DOORS and Microsoft Visio to Model and Visualize Complex Business Processes
    Using Telelogic DOORS and Microsoft Visio to Model and Visualize Complex Business Processes “The Business Driven Application Lifecycle” Bob Sherman Procter & Gamble Pharmaceuticals [email protected] Michael Sutherland Galactic Solutions Group, LLC [email protected] Prepared for the Telelogic 2005 User Group Conference, Americas & Asia/Pacific http://www.telelogic.com/news/usergroup/us2005/index.cfm 24 October 2005 Abstract: The fact that most Information Technology (IT) projects fail as a result of requirements management problems is common knowledge. What is not commonly recognized is that the widely haled “use case” and Object Oriented Analysis and Design (OOAD) phenomenon have resulted in little (if any) abatement of IT project failures. In fact, ten years after the advent of these methods, every major IT industry research group remains aligned on the fact that these projects are still failing at an alarming rate (less than a 30% success rate). Ironically, the popularity of use case and OOAD (e.g. UML) methods may be doing more harm than good by diverting our attention away from addressing the real root cause of IT project failures (when you have a new hammer, everything looks like a nail). This paper asserts that, the real root cause of IT project failures centers around the failure to map requirements to an accurate, precise, comprehensive, optimized business model. This argument will be supported by a using a brief recap of the history of use case and OOAD methods to identify differences between the problems these methods were intended to address and the challenges of today’s IT projects.
    [Show full text]
  • On the Implementation of a Cloud-Based Computing Test Bench Environment for Prolog Systems †
    information Article On the Implementation of a Cloud-Based Computing Test Bench Environment for Prolog Systems † Ricardo Gonçalves, Miguel Areias * ID and Ricardo Rocha ID CRACS & INESC TEC and Faculty of Sciences, University of Porto, Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal; [email protected] (R.G.); [email protected] (R.R.) * Correspondence: [email protected] † This paper is an extended version of our paper published in the Symposium on Languages, Applications and Technologies 2017. Received: 13 September 2017; Accepted: 13 October 2017; Published: 19 October 2017 Abstract: Software testing and benchmarking are key components of the software development process. Nowadays, a good practice in large software projects is the continuous integration (CI) software development technique. The key idea of CI is to let developers integrate their work as they produce it, instead of performing the integration at the end of each software module. In this paper, we extend a previous work on a benchmark suite for the YAP Prolog system, and we propose a fully automated test bench environment for Prolog systems, named Yet Another Prolog Test Bench Environment (YAPTBE), aimed to assist developers in the development and CI of Prolog systems. YAPTBE is based on a cloud computing architecture and relies on the Jenkins framework as well as a new Jenkins plugin to manage the underlying infrastructure. We present the key design and implementation aspects of YAPTBE and show its most important features, such as its graphical user interface (GUI) and the automated process that builds and runs Prolog systems and benchmarks.
    [Show full text]
  • OMG Meta Object Facility (MOF) Core Specification
    Date : October 2019 OMG Meta Object Facility (MOF) Core Specification Version 2.5.1 OMG Document Number: formal/2019-10-01 Standard document URL: https://www.omg.org/spec/MOF/2.5.1 Normative Machine-Readable Files: https://www.omg.org/spec/MOF/20131001/MOF.xmi Informative Machine-Readable Files: https://www.omg.org/spec/MOF/20131001/CMOFConstraints.ocl https://www.omg.org/spec/MOF/20131001/EMOFConstraints.ocl Copyright © 2003, Adaptive Copyright © 2003, Ceira Technologies, Inc. Copyright © 2003, Compuware Corporation Copyright © 2003, Data Access Technologies, Inc. Copyright © 2003, DSTC Copyright © 2003, Gentleware Copyright © 2003, Hewlett-Packard Copyright © 2003, International Business Machines Copyright © 2003, IONA Copyright © 2003, MetaMatrix Copyright © 2015, Object Management Group Copyright © 2003, Softeam Copyright © 2003, SUN Copyright © 2003, Telelogic AB Copyright © 2003, Unisys USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES The material in this document details an Object Management Group specification in accordance with the terms, conditions and notices set forth below. This document does not represent a commitment to implement any portion of this specification in any company's products. The information contained in this document is subject to change without notice. LICENSES The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any computer software to the specification.
    [Show full text]
  • Metamodeling the Enhanced Entity-Relationship Model
    Metamodeling the Enhanced Entity-Relationship Model Robson N. Fidalgo1, Edson Alves1, Sergio España2, Jaelson Castro1, Oscar Pastor2 1 Center for Informatics, Federal University of Pernambuco, Recife(PE), Brazil {rdnf, eas4, jbc}@cin.ufpe.br 2 Centro de Investigación ProS, Universitat Politècnica de València, València, España {sergio.espana,opastor}@pros.upv.es Abstract. A metamodel provides an abstract syntax to distinguish between valid and invalid models. That is, a metamodel is as useful for a modeling language as a grammar is for a programming language. In this context, although the Enhanced Entity-Relationship (EER) Model is the ”de facto” standard modeling language for database conceptual design, to the best of our knowledge, there are only two proposals of EER metamodels, which do not provide a full support to Chen’s notation. Furthermore, neither a discussion about the engineering used for specifying these metamodels is presented nor a comparative analysis among them is made. With the aim at overcoming these drawbacks, we show a detailed and practical view of how to formalize the EER Model by means of a metamodel that (i) covers all elements of the Chen’s notation, (ii) defines well-formedness rules needed for creating syntactically correct EER schemas, and (iii) can be used as a starting point to create Computer Aided Software Engineering (CASE) tools for EER modeling, interchange metadata among these tools, perform automatic SQL/DDL code generation, and/or extend (or reuse part of) the EER Model. In order to show the feasibility, expressiveness, and usefulness of our metamodel (named EERMM), we have developed a CASE tool (named EERCASE), which has been tested with a practical example that covers all EER constructors, confirming that our metamodel is feasible, useful, more expressive than related ones and correctly defined.
    [Show full text]
  • 11. Metadata, Metamodelling, and Metaprogramming
    11. Metadata, Metamodelling, and Metaprogramming 1. Searching and finding components 2. Metalevels and the metapyramid 3. Metalevel architectures 4. Metaobject protocols (MOP) Prof. Dr. Uwe Aßmann 5. Metaobject facilities (MOF) Technische Universität Dresden 6. Metadata as component markup Institut für Software- und Multimediatechnik http://st.inf.tu-dresden.de 14-1.0, 23-Apr-14 CBSE, © Prof. Uwe Aßmann 1 Mandatory Literature ► ISC, 2.2.5 Metamodelling ► OMG MOF 2.0 Specification http://www.omg.org/spec/MOF/2.0/ ► Rony G. Flatscher. Metamodeling in EIA/CDIF — Meta-Metamodel and Metamodels. ACM Transactions on Modeling and Computer Simulation, Vol. 12, No. 4, October 2002, Pages 322–342. http://doi.acm.org/10.1145/643120.643124 Prof. U. Aßmann, CBSE 2 Other Literature ► Ira R. Forman and Scott H. Danforth. Metaclasses in SOM-C++ (Addision- Wesley) ► Squeak – a reflective modern Smalltalk dialect http://www.squeak.org ► Scheme dialect Racket ► Hauptseminar on Metamodelling held in SS 2005 ► MDA Guide http://www.omg.org/cgi-bin/doc?omg/03-06-01 ► J. Frankel. Model-driven Architecture. Wiley, 2002. Important book on MDA. ► G. Kizcales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the Metaobject Protocol. MIT Press, Cambridge, MA, 1991 ► Gregor Kiczales and Andreas Paepcke. Open implementations and metaobject protocols. Technical report, Xerox PARC, 1997 Prof. U. Aßmann, CBSE 3 Literature on Open Languages ► Shigeru Chiba and Takashi Masuda. Designing an extensible distributed language with a meta-level architecture. In O. Nierstrasz, editor, European Conference on Object-oriented Programming (ECOOP '93), number 707 in Lecture Notes in Computer Science, pages 483-502.
    [Show full text]
  • Early Verification and Validation in Model-Based Design
    ® ® Early Verification and Validation in Model-Based Design Amory Wakefield Technical Marketing The MathWorks © 2008 TheMathWorks, Inc. ® ® Introductions I spend most of my time: A. Creating specifications and requirements (systems and software) B. Implementation based on specification and requirements created by somebody else (generating, writing, deploying, debugging code) C. Both D. None of the above 2 ® ® Address the Entire Development Process RequirementsRequirements Design System V&V Requirements Validation Environment Robustness Testing Modeling Standards Checking Physical Components Component V&V Algorithms Design Verification Model Testing G e H t e Coverage and Test Generation G a a n e nd r e n - e r Property Proving e n a ra t te e e G Code Verification Digital Embedded Code Correctness Electronics Software Processor-In-The Loop Testing VHDL, Verilog C, C++ FPGA ASIC MCU DSP Integration Testing Software Integration Testing Integration Hardware-in-the-Loop Testing Hardware Connectivity Implement 3 ® ® Methods for Verification and Validation Traceability Requirements to model and code Model to code Modeling and Coding Standards Modeling standards checking Coding standards checking Testing Model testing in simulation Processor-in-the-loop Proving Proving design properties Proving code correctness 4 ® ® Increasing Confidence in Your Designs Confidence Traceability Modeling and Coding Model and Code Proving Design Standards Checking Testing Properties and Code Correctness Verification Method 5 ® ® Traceability System V&V Comp. V&V Integration Functional Requirements Design Environment Physical Components Tracing RequirementsÙModel Simulink Verification and Validation Algorithms H G e Tracing ModelÙSource Code G an t e e d a n ne - r e ra e r t n a e t Real-Time Workshop Embedded Coder e e G Digital Embedded Electronics Software Tracing RequirementsÙSource Code VHDL, Verilog C, C++ Simulink Verification and Validation FPGA ASIC MCU DSP Integration Implement 6 ® ® Tracing RequirementsÙModel System V&V Comp.
    [Show full text]
  • Case No COMP/M.4747 Œ IBM / TELELOGIC REGULATION (EC)
    EN This text is made available for information purposes only. A summary of this decision is published in all Community languages in the Official Journal of the European Union. Case No COMP/M.4747 – IBM / TELELOGIC Only the English text is authentic. REGULATION (EC) No 139/2004 MERGER PROCEDURE Article 8(1) Date: 05/03/2008 Brussels, 05/03/2008 C(2008) 823 final PUBLIC VERSION COMMISSION DECISION of 05/03/2008 declaring a concentration to be compatible with the common market and the EEA Agreement (Case No COMP/M.4747 - IBM/ TELELOGIC) COMMISSION DECISION of 05/03/2008 declaring a concentration to be compatible with the common market and the EEA Agreement (Case No COMP/M.4747 - IBM/ TELELOGIC) (Only the English text is authentic) (Text with EEA relevance) THE COMMISSION OF THE EUROPEAN COMMUNITIES, Having regard to the Treaty establishing the European Community, Having regard to the Agreement on the European Economic Area, and in particular Article 57 thereof, Having regard to Council Regulation (EC) No 139/2004 of 20 January 2004 on the control of concentrations between undertakings1, and in particular Article 8(1) thereof, Having regard to the Commission's decision of 3 October 2007 to initiate proceedings in this case, After consulting the Advisory Committee on Concentrations2, Having regard to the final report of the Hearing Officer in this case3, Whereas: 1 OJ L 24, 29.1.2004, p. 1 2 OJ C ...,...200. , p.... 3 OJ C ...,...200. , p.... 2 I. INTRODUCTION 1. On 29 August 2007, the Commission received a notification of a proposed concentration pursuant to Article 4 and following a referral pursuant to Article 4(5) of Council Regulation (EC) No 139/2004 ("the Merger Regulation") by which the undertaking International Business Machines Corporation ("IBM", USA) acquires within the meaning of Article 3(1)(b) of the Council Regulation control of the whole of the undertaking Telelogic AB ("Telelogic", Sweden) by way of a public bid which was announced on 11 June 2007.
    [Show full text]