Disease of Aquatic Organisms 105:1

Total Page:16

File Type:pdf, Size:1020Kb

Disease of Aquatic Organisms 105:1 Vol. 105: 1–8, 2013 DISEASES OF AQUATIC ORGANISMS Published July 9 doi: 10.3354/dao02594 Dis Aquat Org Megalocytivirus infection in orbiculate batfish Platax orbicularis Preeyanan Sriwanayos1, Ruth Francis-Floyd1,2, Mark F. Stidworthy3, Barbara D. Petty1,2, Karen Kelley4, Thomas B. Waltzek5,* 1Program in Fisheries and Aquatic Sciences, School of Forestry Resources and Conservation, University of Florida, Gainesville, Florida 32653, USA 2Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610, USA 3International Zoo Veterinary Group, Station House, Parkwood Street, Keighley, West Yorkshire BD21 4NQ, UK 4Interdisciplinary Center for Biotechnology Research (ICBR), Cellomics Division, Electron Microscopy and Bio-imaging Core Laboratory, University of Florida, Gainesville, Florida 32611, USA 5Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32608, USA ABSTRACT: Megalocytiviruses cause systemic disease in both marine and freshwater fishes, neg- atively impacting ornamental and food fish aquaculture. In this report, we characterize a megalo- cytivirus infection in a captive marine ornamental fish, the orbiculate batfish Platax orbicularis. Histologic examination revealed cytomegalic cells characterized by strongly basophilic granular intracytoplasmic inclusions within various organs. Transmission electron microscopy revealed icosahedral virus particles within the cytoplasm of cytomegalic cells consistent with an iridovirus infection. Analysis of the major capsid protein gene sequence confirmed that the orbiculate batfish virus is a member of the family Iridoviridae and is identical to the only other megalocytivirus reported from a marine ornamental fish, the Banggai cardinalfish Pterapogon kauderni iridovirus. KEY WORDS: Iridovirus · Megalocytivirus · Orbiculate batfish · Phylogeny Resale or republication not permitted without written consent of the publisher INTRODUCTION are large, double-stranded DNA viruses with an icosahedral capsid (Kurita & Nakajima 2012). Mem- Iridoviruses have been identified from various bers of the genus Megalocytivirus are pathogenic to species of fishes and are important problems for a wide variety of freshwater and marine fishes, and aquaculture industries (Ahne et al. 1997, Rodger et have had a negative impact on ornamental and food al. 1997, He et al. 2000, Paperna et al. 2001, Wang et fish aquaculture worldwide (Armstrong & Ferguson al. 2003, Shi et al. 2004, Wang et al. 2011). Members 1989, Anderson et al. 1993, Fraser et al. 1993, Rodger of the family Iridoviridae infect a range of poikilo- et al. 1997, Sudthongkong et al. 2002, Gibson-Kueh thermic hosts, including invertebrates, fish, amphib- et al. 2004, Jeong et al. 2008a,b, Chinchar et al. 2009, ians, and reptiles (Chinchar et al. 2009). The family is Weber et al. 2009, Kim et al. 2010, Yanong & Waltzek organized into 5 genera, Iridovirus, Chloriridovirus, 2010, Zhang et al. 2011). Megalocytiviruses induce Ranavirus, Megalocytivirus, and Lymphocystivirus; lethal systemic disease at water temperatures rang- the latter 3 genera infect fishes. Megalocytiviruses ing from 7.5 to 32°C (45.5 to 89.6°F) (Chen et al. 2003, *Corresponding author. Email: [email protected] © Inter-Research 2013 · www.int-res.com 2 Dis Aquat Org 105: 1–8, 2013 Yanong & Waltzek 2010, Wang et al. 2011, Zhang et type was recently recognized following disease al. 2011, Waltzek et al. 2012). Epizootics may result in episodes in ornamental and food fish species (Ku- up to 100% mortality under intensive aquaculture rita & Nakajima 2012), which included Banggai conditions (Fraser et al. 1993, Rodger et al. 1997, He cardinalfish iridovirus (BCIV) isolated from a mar- et al. 2000, Sudthongkong et al. 2002). These viruses ine ornamental species (Banggai cardinalfish Ptera- can spread horizontally from fish to fish by cohabi - pogon kau derni) and marbled sleepy goby iri- tation, exposure to water or equipment carrying dovirus (MSGIV) isolated from a freshwater species the virus, and ingestion of infected fish or feed items (marbled sleeper goby Oxyeleotris marmorata) cul- (He et al. 2002, Go & Whittington 2006, Yanong & tured for food in China (Weber et al. 2009, Wang Waltzek 2010). et al. 2011). The third species, turbot reddish body Megalocytivirus-infected fish may exhibit non- iridovirus (TRBIV), has primarily been associated specific clinical signs including lethargy, anorexia, with disease in a cultured Asian flatfish species, the hyperpigmentation, exophthalmos, skin lesions, un- turbot Scophthalmus maximus (Shi et al. 2004). A usual swimming behavior, severe anemia, and white fourth megalocytivirus species was recently pro- feces (Chen et al. 2003, Weber et al. 2009, Wang et al. posed, threespine stickleback iridovirus (TSIV), 2011, Waltzek et al. 2012). On post-mortem exam - from an epizootic that occurred in a Canadian col- ination, fish infected with megalocytiviruses may ex - lection of threespine stickleback Gasterosteus hibit hemorrhagic lesions, renomegaly, spleno meg - aculeatus (Waltzek et al. 2012). aly, hepa tomegaly, and coelomic distension resul ting Orbiculate batfish Platax orbicularis are tropical from hemorrhagic fluid accumulation (Chen et al. marine ornamental species belonging to the order 2003, Weber et al. 2009, Yanong & Waltzek 2010, Perciformes, family Ephippidae. They can be found Wang et al. 2011, Zhang et al. 2011, Waltzek et al. throughout the Western Indo-Pacific region (Capuli 2012). Histo pathologic examination typically reveals & Ortanez 2011). Orbiculate batfish occur in a variety cyto megalic mesenchymal cells characterized by of habitats: mangroves in shallow coastal waters, strongly basophilic or amphophilic granular intracy- other sheltered waters, deep seaweed reefs, and toplasmic inclusions observed in multiple organs open waters. They prefer water temperatures rang- including the spleen, kidney, liver, heart, brain, gills, ing from 22 to 28°C (71.7 to 82.4°F) (Capuli & Ortanez intestine, eyes, and gonads (Chen et al. 2003, Gib- 2011). Orbiculate batfish have only recently been son-Kueh et al. 2003, Weber et al. 2009, Yanong & successfully bred in captivity, and thus information Waltzek 2010, Zhang et al. 2011, Waltzek et al. 2012). regarding viral diseases in this species is limited Transmission electron microscopy (TEM) invariably (David et al. 2010). Only 2 viral infections, lympho- reveals nume rous icosahedral virus particles with a cystis and betanodavirus, have previously been capsid diameter between 120 and 200 nm in the cyto- reported in P. orbicularis (Lawler et al. 1978, David et plasm of infected cells (Chen et al. 2003, Weber et al. al. 2010). 2009, Yanong & Waltzek 2010, Wang et al. 2011, In the present study, we report a megalocytivirus Zhang et al. 2011, Kurita & Nakajima 2012, Waltzek infection in Platax orbicularis that was associated et al. 2012). with mortality in recently imported wild-caught fish Phylogenetic analyses support 4 separate species acquired by a public aquarium in Belgium. The ob - within the genus Megalocytivirus (Kurita & Naka- jective of this study was to compare clinical aspects of jima 2012, Waltzek et al. 2012). Megalocytiviruses the disease as well as microscopic and ultrastructural related to red sea bream iridovirus (RSIV) cluster features of the virus with previously described mega- into 1 of 2 genotypes and have been associated locytiviruses, including the virus associated with the with mass mortality epizootics in more than 30 only other marine ornamental epizootic reported in maricultured species in Japan, Korea, China, and Banggai cardinalfish. Southeast Asia (Inouye et al. 1992, Jung & Oh 2000, Kawakami & Nakajima 2002, Wang et al. 2003). Infectious spleen and kidney necrosis virus MATERIALS AND METHODS (ISKNV), originally isolated from mandarin fish Siniperca chuatsi raised for food in China, has also Clinical history resulted in epizootics in more than 10 species of freshwater ornamental fishes (He et al. 2000, A mortality event occurred in March 2010 among a Paperna et al. 2001, Sudthongkong et al. 2002, group of 10 orbiculate batfish quarantined at a public Yanong & Waltzek 2010). A second ISKNV geno- aquarium in Belgium. These wild-caught juvenile Sriwanayos et al.: Orbiculate batfish iridovirus 3 orbiculate batfish (average of 12 cm in total length) Transmission electron microscopy from Indonesia had been purchased by an orna - mental fish import facility in the UK and sent to a One paraffin block was selected by evaluating an quarantine facility in the UK, where they were accli- H&E-stained slide for features consistent with mega- matized and quarantined prior to delivery to the locytivirus pathology. Heart tissue was selected from aquarium in Belgium in February 2010. At the aquar- this block for TEM evaluation and sent to the Elec- ium, the batfish were maintained in a quarantine sys- tron Microscopy Laboratory (EML), Department of tem equipped with an external power filter. Water Medical Pathology and Laboratory Medicine, School quality parameters were maintained at a tempera- of Medicine, University of California at Davis. An ture of 24°C (75°F), pH 7.8, nitrite <0.3 mg l−1, nitrate area with characteristic megalocytivirus pathology in 0 to 12.5 mg l−1, salinity 32, 96% oxygen saturation, the heart was removed from the paraffin block and and undetectable total ammonia nitrogen. The orbic- placed in 100% xylene; after clearing
Recommended publications
  • Field Guide to the Nonindigenous Marine Fishes of Florida
    Field Guide to the Nonindigenous Marine Fishes of Florida Schofield, P. J., J. A. Morris, Jr. and L. Akins Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States goverment. Pamela J. Schofield, Ph.D. U.S. Geological Survey Florida Integrated Science Center 7920 NW 71st Street Gainesville, FL 32653 [email protected] James A. Morris, Jr., Ph.D. National Oceanic and Atmospheric Administration National Ocean Service National Centers for Coastal Ocean Science Center for Coastal Fisheries and Habitat Research 101 Pivers Island Road Beaufort, NC 28516 [email protected] Lad Akins Reef Environmental Education Foundation (REEF) 98300 Overseas Highway Key Largo, FL 33037 [email protected] Suggested Citation: Schofield, P. J., J. A. Morris, Jr. and L. Akins. 2009. Field Guide to Nonindigenous Marine Fishes of Florida. NOAA Technical Memorandum NOS NCCOS 92. Field Guide to Nonindigenous Marine Fishes of Florida Pamela J. Schofield, Ph.D. James A. Morris, Jr., Ph.D. Lad Akins NOAA, National Ocean Service National Centers for Coastal Ocean Science NOAA Technical Memorandum NOS NCCOS 92. September 2009 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Gary F. Locke Jane Lubchenco John H. Dunnigan Secretary Administrator Assistant Administrator Table of Contents Introduction ................................................................................................ i Methods .....................................................................................................ii
    [Show full text]
  • The DNA Virus Invertebrate Iridescent Virus 6 Is a Target of the Drosophila Rnai Machinery
    The DNA virus Invertebrate iridescent virus 6 is a target of the Drosophila RNAi machinery Alfred W. Bronkhorsta,1, Koen W. R. van Cleefa,1, Nicolas Vodovarb,2, Ikbal_ Agah Ince_ c,d,e, Hervé Blancb, Just M. Vlakc, Maria-Carla Salehb,3, and Ronald P. van Rija,3 aDepartment of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences, Nijmegen Institute for Infection, Inflammation, and Immunity, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands; bViruses and RNA Interference Group, Institut Pasteur, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3015, 75015 Paris, France; cLaboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands; dDepartment of Genetics and Bioengineering, Yeditepe University, Istanbul 34755, Turkey; and eDepartment of Biosystems Engineering, Faculty of Engineering, Giresun University, Giresun 28100, Turkey Edited by Peter Palese, Mount Sinai School of Medicine, New York, NY, and approved October 19, 2012 (received for review April 28, 2012) RNA viruses in insects are targets of an RNA interference (RNAi)- sequently, are hypersensitive to virus infection and succumb more based antiviral immune response, in which viral replication inter- rapidly than their wild-type (WT) controls (11–14). mediates or viral dsRNA genomes are processed by Dicer-2 (Dcr-2) Small RNA cloning and next-generation sequencing provide into viral small interfering RNAs (vsiRNAs). Whether dsDNA virus detailed insights into vsiRNA biogenesis. In several studies in infections are controlled by the RNAi pathway remains to be insects, the polarity of the vsiRNA population deviates strongly determined. Here, we analyzed the role of RNAi in DNA virus from the highly skewed distribution of positive strand (+) over infection using Drosophila melanogaster infected with Invertebrate negative (−) viral RNAs that is generally observed in (+) RNA iridescent virus 6 (IIV-6) as a model.
    [Show full text]
  • The Malay Archipelago
    BOOKS & ARTS COMMENT The Malay Archipelago: the land of the orang-utan, and the bird of paradise; a IN RETROSPECT narrative of travel, with studies of man and nature ALFRED RUSSEL WALLACE The Malay Macmillan/Harper Brothers: first published 1869. lfred Russel Wallace was arguably the greatest field biologist of the nine- Archipelago teenth century. He played a leading Apart in the founding of both evolutionary theory and biogeography (see page 162). David Quammen re-enters the ‘Milky Way of He was also, at times, a fine writer. The best land masses’ evoked by Alfred Russel Wallace’s of his literary side is on show in his 1869 classic, The Malay Archipelago, a wondrous masterpiece of biogeography. book of travel and adventure that wears its deeper significance lightly. The Malay Archipelago is the vast chain of islands stretching eastward from Sumatra for more than 6,000 kilometres. Most of it now falls within the sovereignties of Malaysia and Indonesia. In Wallace’s time, it was a world apart, a great Milky Way of land masses and seas and straits, little explored by Europeans, sparsely populated by peoples of diverse cul- tures, and harbouring countless species of unknown plant and animal in dense tropical forests. Some parts, such as the Aru group “Wallace paid of islands, just off the his expenses coast of New Guinea, by selling ERNST MAYR LIB., MUS. COMPARATIVE ZOOLOGY, HARVARD UNIV. HARVARD ZOOLOGY, LIB., MUS. COMPARATIVE MAYR ERNST were almost legend- specimens. So ary for their remote- he collected ness and biological series, not just riches. Wallace’s jour- samples.” neys throughout this region, sometimes by mail packet ship, some- times in a trading vessel or a small outrigger canoe, were driven by a purpose: to collect animal specimens that might help to answer a scientific question.
    [Show full text]
  • Platax Teira (Forsskål, 1775)
    Platax teira (Forsskål, 1775) Rema Madhu and K. Madhu IDENTIFICATION Order : Perciformes Family : Ephippidae Common/FAO Name (English) : Longfin batfish Local names:names Not available MORPHOLOGICAL DESCRIPTION Body is deep and compressed; body depth is 0.9-1.2 times standard length of fish. Juveniles are also deep bodied with very long pelvic fins and long anal and dorsal fins (which shorten on becoming adults). Fins are elevated in both adults and juveniles. The fish is covered with small, ctenoid scales. It has a terminal mouth with bands of tricuspid teeth. Adults are silver-grey in colour, with a dark band through the eye extending to origin of pelvic fin and from base of dorsal fin origin to belly. A black blotch may be present at the terminus of the second band. A small black vertical streak is often present at origin of anal fin. Median fins are with black margins posteriorly. Five pores are on each side of lower jaw. Preopercle is smooth and opercle is without spines. Dorsal spines (total): 5-6; dorsal soft rays (total): 28-37; anal spines: 3 and anal soft rays: 22-28. Source of image : CMFRI, Kochi 349 PROFILE GEOGRAPHICAL DISTRIBUTION Platax teira is distributed in tropical and subtropical waters of the Indo-West Pacific region from the Red Sea to South Africa, Japan (Hokkaido), Taiwan Province of China, Philippines, Indonesia, New Guinea, northern Australia and Melanesia. It is also reported from Bay of Islands, New Zealand and Persian Gulf. HABITAT AND BIOLOGY Adults are found in sheltered bays, offshore areas, lagoons and seaward reefs.
    [Show full text]
  • Acanthuroidei: Siganidae)
    •».«L"WHB' vn«74MV /ir, ^/j" -w irjur- Relationships of the Fossil and Recent Genera of Rabbitfishes (Acanthuroidei: Siganidae) R • - 5Vf^> ES C. TYLt and fDREF.BAN ->: m ^ 1 •"- . *6$B O PALEO * i SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Platax Teira (Forsskål, 1775) Frequent Synonyms / Misidentifications: None / Platax Orbicularis (Non Forsskål, 1775)
    click for previous page Perciformes: Acanthuroidei: Ephippidae 3619 Platax teira (Forsskål, 1775) Frequent synonyms / misidentifications: None / Platax orbicularis (non Forsskål, 1775). FAO names: En - Spotbelly batfish. 34 cm standard length 25 cm standard length Diagnostic characters: Body orbicular and strongly compressed, its depth more than twice length of head and 0.9 to 1.2 times in standard length. Head length 2.7 to 3.5 times in standard length. Large adults (above 35 cm standard length) with bony hump from top of head to interorbital region, the front head profile almost vertical; interorbital width 42 to 50% head length. Jaws with bands of slender, flattened, tricuspid teeth, the middle cusp slightly longer than lateral cusps; vomer with a few teeth, but none on palatines. Five pores on each side of lower jaw. Preopercle smooth; opercle without 20 cm 12 cm 9.4 cm spines. Dorsal fin single, with V or VI spines standard length standard length standard length and 29 to 34 soft rays, the spines hidden in front margin of fin, the last spine longest; anal fin with III spines and 21 to 26 soft rays; juveniles with pelvic fins and anterior soft rays of dorsal and anal fins elongated, but pelvic fins not reaching much past vertical at rear end of anal-fin base; pectoral fins shorter than head, with 16 to 18 rays; caudal fin truncate. Scales small and rough. Lateral line complete, with 56 to 66 scales. Colour: yellowish silvery or dusky, with a black (or dusky) bar through eye and another dark bar from dorsal-fin origin across rear edge of operculum and pectoral-fin base to belly, where it usually encloses a black blotch, with another smaller black vertical streak often present at origin of anal fin; median fins dusky yellow, with black margins posteriorly; pelvic fins yellow, dusky yellow or blackish.
    [Show full text]
  • Monogenea: Capsalidae Baird, 1853: Trochopodinae) Parasite of Platax Teira, from Iraqi Marine Water, Arab Gulf Majid Abdul Aziz Bannai and Essa T
    quac d A ul n tu a r e s e J i o r u e r h Bannai and Muhammad, Fish Aquac J 2015, 6:2 n s i a F l Fisheries and Aquaculture Journal DOI: 10.4172/2150-3508.1000127 ISSN: 2150-3508 ResearchResearch Article Article OpenOpen Access Access Sprostoniella teria Sp. Nov. (Monogenea: Capsalidae Baird, 1853: Trochopodinae) Parasite of Platax teira, from Iraqi Marine Water, Arab Gulf Majid Abdul Aziz Bannai and Essa T. Muhammad Aquaculture and Marine Fisheries, Marine Science Center, University of Basra, Iraq Abstract During the investigation of five species of Platax teira where collecting from Arabian Gulf. One parasite was detected Sprostoniella sp. Capsalidae Baird, 1853 from gill filaments. Results give an indication that the parasite are consider as new species in Iraqi marine and Platax teira fishes as anew host in words and new geographical distribution. Keywords: Monogenea; Sprostoniella teria; Monogenea; Capsalidae spp. (Capsalidae) including Capsala naffari n. sp. infecting mackerel Baird; Trochopodinae; Platax teira tuna Euthynnus affinis from coasts of Emirates. Three species of the genus Capsala including Capsala naffari n. sp., C. neothunni [2] and Introduction C. nozawae (Goto, 1894) are recorded and described from the buccal The Monogenea is a class of Platyhelminthes parasitic mostly cavity of mackerel tuna Euthynnus affinis caught from Emirate coasts. Capsala naffari can be differentiated by its lateral spiniform teeth, on external surfaces and gills of freshwater and marine fishes. The which extend posteriorly, small measurements compared with the Capsalidae are monogeneans parasitizing ‘skin’, fins and gills of closely resembled C. gotoi and relatively large testes.
    [Show full text]
  • Evolutionary History of the Butterflyfishes (F: Chaetodontidae
    doi:10.1111/j.1420-9101.2009.01904.x Evolutionary history of the butterflyfishes (f: Chaetodontidae) and the rise of coral feeding fishes D. R. BELLWOOD* ,S.KLANTEN*à,P.F.COWMAN* ,M.S.PRATCHETT ,N.KONOW*§ &L.VAN HERWERDEN*à *School of Marine and Tropical Biology, James Cook University, Townsville, Qld, Australia Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia àMolecular Evolution and Ecology Laboratory, James Cook University, Townsville, Qld, Australia §Ecology and Evolutionary Biology, Brown University, Providence, RI, USA Keywords: Abstract biogeography; Of the 5000 fish species on coral reefs, corals dominate the diet of just 41 chronogram; species. Most (61%) belong to a single family, the butterflyfishes (Chae- coral reef; todontidae). We examine the evolutionary origins of chaetodontid corallivory innovation; using a new molecular phylogeny incorporating all 11 genera. A 1759-bp molecular phylogeny; sequence of nuclear (S7I1 and ETS2) and mitochondrial (cytochrome b) data trophic novelty. yielded a fully resolved tree with strong support for all major nodes. A chronogram, constructed using Bayesian inference with multiple parametric priors, and recent ecological data reveal that corallivory has arisen at least five times over a period of 12 Ma, from 15.7 to 3 Ma. A move onto coral reefs in the Miocene foreshadowed rapid cladogenesis within Chaetodon and the origins of corallivory, coinciding with a global reorganization of coral reefs and the expansion of fast-growing corals. This historical association underpins the sensitivity of specific butterflyfish clades to global coral decline. butterflyfishes (f. Chaetodontidae); of the remainder Introduction most (eight) are in the Labridae.
    [Show full text]
  • Sanganeb Atoll, Sudan a Marine National Park with Scientific Criteria for Ecologically Significant Marine Areas Abstract
    Sanganeb Atoll, Sudan A Marine National Park with Scientific Criteria for Ecologically Significant Marine Areas Abstract Sanganeb Marine National Park (SMNP) is one of the most unique reef structures in the Sudanese Red Sea whose steep slopes rise from a sea floor more than 800 m deep. It is located at approximately 30km north-east of Port Sudan city at 19° 42 N, 37° 26 E. The Atoll is characterized by steep slopes on all sides. The dominated coral reef ecosystem harbors significant populations of fauna and flora in a stable equilibrium with numerous endemic and endangered species. The reefs are distinctive of their high number of species, diverse number of habitats, and high endemism. The atoll has a diverse coral fauna with a total of 86 coral species being recorded. The total number of species of algae, polychaetes, fish, and Cnidaria has been confirmed as occurring at Sanganeb Atoll. Research activities are currently being conducted; yet several legislative decisions are needed at the national level in addition to monitoring. Introduction (To include: feature type(s) presented, geographic description, depth range, oceanography, general information data reported, availability of models) Sanganeb Atoll was declared a marine nation park in 1990. Sanganeb Marine National Park (SMNP) is one of the most unique reef structures in the Sudanese Red Sea whose steep slopes rise from a sea floor more than 800 m deep (Krupp, 1990). With the exception of the man-made structures built on the reef flat in the south, there is no dry land at SMNP (Figure 1). The Atoll is characterized by steep slopes on all sides with terraces in their upper parts and occasional spurs and pillars (Sheppard and Wells, 1988).
    [Show full text]
  • (Lepocreadiidae) from Platax Pinnatus on the Great Barrier Reef
    diversity Article An Anomalous Phylogenetic Position for Deraiotrema platacis Machida, 1982 (Lepocreadiidae) from Platax pinnatus on the Great Barrier Reef Rodney A. Bray 1,*, Scott C. Cutmore 2 and Thomas H. Cribb 2 1 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK 2 School of Biological Sciences, The University of Queensland, St Lucia 4072, Australia * Correspondence: [email protected]; Tel.: +44-137-651-2266 Received: 16 May 2019; Accepted: 15 June 2019; Published: 4 July 2019 Abstract: The monotypic genus Deraiotrema Machida, 1982 has only been reported once, from the orbicular batfish Platax orbicularis (Forsskål) in the waters around Palau in Micronesia (Machida, 1982). It has a body-shape similar to other lepocreadiids from batfishes, such as species of Bianium Stunkard, 1930 and Diploproctodaeum La Rue, 1926, but differs in having multiple testes in ventral and dorsal layers. Here we report Deraiotrema platacis Machida, 1982 for just the second time, infecting the dusky batfish Platax pinnatus (Linnaeus) from the waters off Lizard Island on the northern Great Barrier Reef. We present a molecular phylogenetic analysis of the position of this genus inferred from 28S rDNA sequences. Surprisingly, we find the species most closely related to Echeneidocoelium indicum despite the infection of completely unrelated hosts and the presence of two characters (lateral fold in the forebody and multiple testes) that are found elsewhere in the Lepocreadiidae. We conclude that homoplasy within the Lepocreadiidae is extensive and that morphology-based prediction of relationships has little prospect of success. Keywords: Digenea; Lepocreadiidae; Deraiotrema; Platax; Great Barrier Reef; phylogeny; homoplasy 1.
    [Show full text]
  • Marine Biodiversity in India
    MARINEMARINE BIODIVERSITYBIODIVERSITY ININ INDIAINDIA MARINE BIODIVERSITY IN INDIA Venkataraman K, Raghunathan C, Raghuraman R, Sreeraj CR Zoological Survey of India CITATION Venkataraman K, Raghunathan C, Raghuraman R, Sreeraj CR; 2012. Marine Biodiversity : 1-164 (Published by the Director, Zool. Surv. India, Kolkata) Published : May, 2012 ISBN 978-81-8171-307-0 © Govt. of India, 2012 Printing of Publication Supported by NBA Published at the Publication Division by the Director, Zoological Survey of India, M-Block, New Alipore, Kolkata-700 053 Printed at Calcutta Repro Graphics, Kolkata-700 006. ht³[eg siJ rJrJ";t Œtr"fUhK NATIONAL BIODIVERSITY AUTHORITY Cth;Govt. ofmhfUth India ztp. ctÖtf]UíK rvmwvtxe yÆgG Dr. Balakrishna Pisupati Chairman FOREWORD The marine ecosystem is home to the richest and most diverse faunal and floral communities. India has a coastline of 8,118 km, with an exclusive economic zone (EEZ) of 2.02 million sq km and a continental shelf area of 468,000 sq km, spread across 10 coastal States and seven Union Territories, including the islands of Andaman and Nicobar and Lakshadweep. Indian coastal waters are extremely diverse attributing to the geomorphologic and climatic variations along the coast. The coastal and marine habitat includes near shore, gulf waters, creeks, tidal flats, mud flats, coastal dunes, mangroves, marshes, wetlands, seaweed and seagrass beds, deltaic plains, estuaries, lagoons and coral reefs. There are four major coral reef areas in India-along the coasts of the Andaman and Nicobar group of islands, the Lakshadweep group of islands, the Gulf of Mannar and the Gulf of Kachchh . The Andaman and Nicobar group is the richest in terms of diversity.
    [Show full text]
  • Family Iridoviridae
    Iridoviridae FAMILY IRIDOVIRIDAE TAXONOMIC STRUCTURE OF THE FAMILY Family Iridoviridae Genus Iridovirus Genus Chloriridovirus Genus Ranavirus Genus Lymphocystivirus DNA Genus Megalocytivirus DS VIRION PROPERTIES MORPHOLOGY Figure 1: (Top left) Outer shell of Invertebrate iridescent virus 2 (IIV-2) (From Wrigley, et al. (1969). J. Gen. Virol., 5, 123. With permission). (Top right) Schematic diagram of a cross-section of an iridovirus particle, showing capsomers, transmembrane proteins within the lipid bilayer, and an internal filamentous nucleoprotein core (From Darcy-Tripier, F. et al. (1984). Virology, 138, 287. With permission). (Bottom left) Transmission electron micrograph of a fat head minnow cell infected with an isolate of European catfish virus. Nucleus (Nu); virus inclusion body (VIB); paracrystalline array of non-enveloped virus particles (arrows); incomplete nucleocapsids (arrowheads); cytoplasm (cy); mitochondrion (mi). The bar represents 1 µm. (From Hyatt et al. (2000). Arch. Virol. 145, 301, with permission). (insert) Transmission electron micrograph of particles of Frog virus 3 (FV-3), budding from the plasma membrane. Arrows and arrowheads identify the viral envelope (Devauchelle et al. (1985). Curr. Topics Microbiol. Immunol., 116, 1, with permission). The bar represents 200 nm. 145 Part II - The Double Stranded DNA Viruses Virions display icosahedral symmetry and are usually 120-200 nm in diameter, but may be up to 350 nm (e.g. genus Lymphocystivirus). The core is an electron-dense entity consisting of a nucleoprotein filament surrounded by a lipid membrane containing transmembrane proteins of unknown function. The capsid is composed of identical capsomers, the number of which depends on virion size. Capsomers are organized to form trisymmetrons and pentasymmetrons in members of the Iridovirus and Chloriridovirus genera.
    [Show full text]