Final Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RANDY SCHEKMAN Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, USA
GENES AND PROTEINS THAT CONTROL THE SECRETORY PATHWAY Nobel Lecture, 7 December 2013 by RANDY SCHEKMAN Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, USA. Introduction George Palade shared the 1974 Nobel Prize with Albert Claude and Christian de Duve for their pioneering work in the characterization of organelles interrelated by the process of secretion in mammalian cells and tissues. These three scholars established the modern field of cell biology and the tools of cell fractionation and thin section transmission electron microscopy. It was Palade’s genius in particular that revealed the organization of the secretory pathway. He discovered the ribosome and showed that it was poised on the surface of the endoplasmic reticulum (ER) where it engaged in the vectorial translocation of newly synthesized secretory polypeptides (1). And in a most elegant and technically challenging investigation, his group employed radioactive amino acids in a pulse-chase regimen to show by autoradiograpic exposure of thin sections on a photographic emulsion that secretory proteins progress in sequence from the ER through the Golgi apparatus into secretory granules, which then discharge their cargo by membrane fusion at the cell surface (1). He documented the role of vesicles as carriers of cargo between compartments and he formulated the hypothesis that membranes template their own production rather than form by a process of de novo biogenesis (1). As a university student I was ignorant of the important developments in cell biology; however, I learned of Palade’s work during my first year of graduate school in the Stanford biochemistry department. -
Unrestricted Immigration and the Foreign Dominance Of
Unrestricted Immigration and the Foreign Dominance of United States Nobel Prize Winners in Science: Irrefutable Data and Exemplary Family Narratives—Backup Data and Information Andrew A. Beveridge, Queens and Graduate Center CUNY and Social Explorer, Inc. Lynn Caporale, Strategic Scientific Advisor and Author The following slides were presented at the recent meeting of the American Association for the Advancement of Science. This project and paper is an outgrowth of that session, and will combine qualitative data on Nobel Prize Winners family histories along with analyses of the pattern of Nobel Winners. The first set of slides show some of the patterns so far found, and will be augmented for the formal paper. The second set of slides shows some examples of the Nobel families. The authors a developing a systematic data base of Nobel Winners (mainly US), their careers and their family histories. This turned out to be much more challenging than expected, since many winners do not emphasize their family origins in their own biographies or autobiographies or other commentary. Dr. Caporale has reached out to some laureates or their families to elicit that information. We plan to systematically compare the laureates to the population in the US at large, including immigrants and non‐immigrants at various periods. Outline of Presentation • A preliminary examination of the 609 Nobel Prize Winners, 291 of whom were at an American Institution when they received the Nobel in physics, chemistry or physiology and medicine • Will look at patterns of -
Spirin a S. Spektrofotometrichesloe Opredelenie Summarnogo Kolichestva
CC/NUMBER 21 This Week’s Citation Classic MAY26,1986 ~ Spirin A S. Spektrofotometrichesloe opredelenie summarnogo kolichestva . nukleinovykh kislot (Spectrophotometric determination of total nucleic acids). Biokhimiya (USSR) 23:656-62. 1958. (A.N. Bakh Institute of Biochemistry, Academy of Sciences of the USSR, Moscow, USSR] The paper describes a simple universal cient of molar extinction ~270= 10,000 in method of determining nucleic acids in bio- hot HCIO extracts of nucleic acids re- logical materials based on the measurement gardless of4 the type (DNA or RNA) and of the difference in optical densities of the base composition of the nucleic acids hot HCIO extract at two wavelengths, 270 under investigation. m~iand 2904 mp. [The SCI® indicates that this Subsequently, a modification had to paper has been cited in over 760 publica- be made to reduce the effect of extract- tions.] ed ultraviolet-absorbing materials of a nonnucleic acid nature; instead of a di- rect measurement of optical density at 270 m~i,I suggested using the difference of optical densities at two close wave- lengths, 270 m~and 290 m~(the differ- ence in optical densities at 270 m~and Alexander Spirin 290 m~idivided by 0.19 gives the number Institute of Protein Research of nucleic acid phosphorus micrograms Academy of Sciences of the USSR per milliliter). The method proved to be 142292 Pushchino, Moscow Region very convenient and yielded precise re- USSR sults at testing on a large number of ob- jects of animal and plant origin. (Howev- er, when applied to bacteria, the meth- od in this differential variant gave some February 20, 1986 under- or overestimation in the cases of extreme GC or AT types of their DNA, respectively.) Under strong pressure from my col- In 1955.1957 I was a postgraduate stu- leagues, I sent a two-page typewritten dent in A.N. -
Towards the Construction of Escherichia Coli Cell-Free Protein Synthesis System Platform
Towards the construction of Escherichia coli cell-free protein synthesis system platform Sara Alexandra Peça de Sousa Rosa Thesis to obtain the Master of Science Degree in Biotechnology Supervisor(s): Professor Luís Joaquim Pina da Fonseca Examination Committee Chairperson: Professor Arsénio do Carmo Sales Mendes Fialho Supervisor: Professor Luís Joaquim Pina da Fonseca Member of the Committee: Professor Gabriel António Amaro Monteiro July 2015 ii Acknowledgments I would like to express my gratitude to professor Lu´ıs Fonseca, for giving me the opportunity to work in a subject that I fell in love with. I would like to thank to all my colleges of 7th and 8th floor, for all the help, advice, and support. Without all of you I would not be able to finish my work. I would also like to thank to Doctor Ana Azevedo and Sofia Duarte, for all the help and tips. I would like to give a special thanks to Ana, Andreia, Catia,´ Elsa, Pedro, Rita and Ricardo, for help and support during the best and worst times. I also want to thank to Claudia,´ for the time spent inside IST walls. Most of all, I would like to thank my mom and dad for all the support. I also want to thank to my grandmother, for all the concern, and to my nieces, Beatriz and Margarida. Finally, I want to thank Davide, for always being there. My words will be never enough to express my gratitude towards you. Thank you all. iii iv Resumo Sistemas produtores de prote´ınas livres de celulas´ sao˜ descritos como a expressao˜ in vitro de prote´ınas recombinantes sem o recurso a celulas´ vivas. -
Agricultural Biotechnologies in Developing Countries: Capacity
Agricultural Biotechnologies in Developing Countries Capacity Building S.K.Sopory March 2, 2010 New Delhi Component The major Challenge: food security for ever increasing population under global climate changes ?? The Crop Agriculture Technology 2,000 BC Domestication and Selection Selective Cross breeding Mutagenesis and selection Tissue culture Technology Cell culture Somaclonal variation Embryo rescue, wild hybridization Polyembryogenesis Anther culture - homozygous lines Recombinant DNA Technology Marker assisted selection Genomics, Bioinformatics Transgenics 2010 Knowledge Revolution: in plant biology ( mostly in the developed world) Knowledge Generation Plant molecular biology: genes and their functions genomics and epigenomics; microRNAs System biology: protein-protein interactions Plant responses to environment Plant –pathogen interactions Identifying QTLs/ markers for complex agricultural traits Knowledege Applications and Management Marker Assisted Breeding Developing safe GM technology: virus/insect resistance Capacity building required for: 1. Preparing the mind for the future: Students : Pre-degree/degree courses Integrated teaching and practical training 2. Researchers: to upgrade their training for new technology for suitable applications in their programs 3. Mid-career Teachers: to spread the education 4. Regulatory bodies and policy makers New Generation Agricultural Biotechnologist: Knowledge of basic biology or Ecosystem and biodiversity genome biology, plant breeding soil , water, energy Biosafety, Bioethics, IPR Translational Research Needs of farmers/consumers Graduate/undergraduate training should ensure that the learner…….. 1. Understand science and research process 2. Ability to read primary literature 3. Understand how knowledge is constructed 4. Ability to analyze data 5. Interpretation of results 6. Readiness for research 7. Learning lab techniques 8. Tolerance for obstacles 9. Work independently 10. Learning ethical conduct 11. -
1992 Doug Murphy in 1978, Doug Murphy's Lab at the Johns
1992 Doug Murphy In 1978, Doug Murphy's lab at the Johns Hopkins Department of Cell Biology and Anatomy invited a Russian postdoc from Alexander Spirin's group to join them. The 1979 invasion of Afghanistan and the 1980 boycott of the Olympics, however, heightened the Cold War and prevented the exchange. Since Russians could not leave the Soviet Union, the only alternative for scientific exchange was for US scientists to go to the USSR. Armed with a deep interest in foreign languages—he speaks three, including Russian—Murphy felt this was a good time to extend his life beyond the bench and do something on a human scale, so he went to Russia himself. Under the auspices of the National Academy of Sciences, he spent one month in the USSR. Amid bugged rooms and tight security, Murphy discovered that the official animosity toward US scientists was not shared by Soviet scientists. The Russian scientists were starved for US scientific news. Generally six months behind in scientific developments, nothing was trivial to them. "They wanted to know everything," says Murphy, "how the cultures differed, what the everyday life of a scientist was like— everything." Although life in Russia is far different from life in the US, Murphy discovered that Americans can easily identify with Russians because both are "warm and generous." That first visit led to six more visits in the following years, including one in 1985 where Murphy gave a lecture series entitled "The Molecular Biology of the Cytoskeleton". With the beginning of glasnost, more Russian scientists were allowed to leave the USSR. -
Randy W. Schekman, Phd
Randy W. Schekman, PhD Current Position Professor of molecular and cell biology at the University of California, Berkeley Investigator at the Howard Hughes Medical Institute Editor-in-Chief, eLIFE Journal Education BA, molecular biology, University of California, Los Angeles PhD, biochemistry, Stanford University Awards Nobel Prize in Physiology or Medicine 2013 (shared with James E. Rothman and Thomas C. Südhof ) Albert Lasker Award for Basic Medical Research Eli Lilly Research Award in Microbiology and Immunology Lewis S. Rosenstiel Award in Basic Biomedical Science, Brandeis University Gairdner Foundation International Award Louisa Gross Horwitz Prize, Columbia University 2008 Dickson Prize in Medicine, University of Pittsburgh E.B. Wilson Medal, American Society for Cell Biology Memberships US National Academy of Sciences American Academy of Arts and Sciences American Society of Cell Biology American Association for the Advancement of Science American Philosophical Society Biography Traffic inside a cell is as complicated as rush hour near any metropolitan area. But drivers know how to follow the signs and roadways to reach their destinations. How do different cellular proteins "read" molecular signposts to find their way inside or outside of a cell? For the past three decades, Randy Schekman has been characterizing the traffic drivers that shuttle cellular proteins as they move in membrane-bound sacs, or vesicles, within a cell. His detailed elucidation of cellular travel patterns has provided fundamental knowledge about cells and has enhanced understanding of diseases that arise when bottlenecks impede some of the protein flow. His work earned him one of the most prestigious prizes in science, the 2002 Albert Lasker Award for Basic Medical Research, which he shared with James Rothman. -
The Participants of the Study Week and Their Scientific Competence Are Given Below in Alphabetic Order, with Email Address of the Contributors
The participants of the Study Week and their scientific competence are given below in alphabetic order, with email address of the contributors Members of the Pontifical Academy of Sciences: Prof. em. Werner Arber • Switzerland, University of Basel: Microbiology, Evolution, [email protected] Prof. Nicola Cabibbo † • Italy, Rome, President Pontifical Academy of Sciences: Physics. H.Em. Georges Cardinal Cottier, Vatican City: Theology Prof. em. Ingo Potrykus • Switzerland, Zurich, Swiss Federal Institute of Technology: Plant Biology, Agricultural Biotechnology, [email protected] Prof. em. Peter H. Raven • USA, St. Louis, President Missouri Botanical Garden: Botany, Ecology [email protected] H.Em. Msgr. Marcelo Sánchez Sorondo • Vatican City: Chancellor Pontifical Academy of Sciences: Philosophy. Prof. Rafael Vicuña • Chile, Santiago, Pontifical Catholic University of Chile: Microbiology, Molecular Genetics. Outside Experts: Prof. em. Klaus Ammann • Switzerland, University of Berne, Botany, Vegetation Ecology, [email protected] Prof. Kym Anderson • Australia, The University of Adelaide, CEPR and World Bank: Agricultural Development Economics, International Economics, [email protected] Dr. iur. Andrew Apel • USA, Raymond, Editor in Chief of GMObelus: Law, [email protected] Prof. Roger Beachy • USA, St. Louis, Donald Danforth Plant Science Center, now NIVA, National Institute of Food and Agriculture, Washington DC.,: Plant Pathology, Agricultural Biotechnology, [email protected] Prof. Peter Beyer • Germany, Freiburg, Albert-Ludwig University, Biochemistry, Metabolic Pathways, [email protected] Prof. Joachim von Braun • USA, Washington, Director General, International Food Policy Research Institute, now University of Bonn, Center for Development Research (ZEF): Agricultural and Development Economics, [email protected] Prof. Moisés Burachik • Argentina, Buenos Aires, General Coordinator of the Biotechnology Department: Agricultural Biotechnology, Biosafety, [email protected] Prof. -
Russia's Knowledge Economy Decline
Russia’s Knowledge Economy Decline: Views From Inside Harley Balzer Summary This paper begins with an overview of Russian assessments of knowledge economy challenges. It then focuses more specifically on problems in science and education. Special attention is devoted to bureaucratic competition, funding, personnel and the limited role of business in the knowledge economy. This is followed by examining several issues that merit particular attention in the aftermath of Crimea: potential partners for development; whether military R&D is an exception to prevailing difficulties; and the impact of sanctions. The concluding section focuses on consequences of decline and considers potential tipping points that could change the trajectory in positive or negative directions. * * * The two questions that have consumed the Russian intelligentsia since the 18th Century are kto vinovat’ (who is to blame) and chto delat’ (what is to be done). I have often joked that most Russians devote so much time and energy to the first question that they barely touch on the more crucial second question. In the case of Russia’s declining capacity in the knowledge economy, this is hardly a joke. The Russian discourse is focused overwhelmingly on how bad things are and who caused the problems. Those who disagree that the current trajectory means long-term decline invoke Russia’s great tradition in the natural sciences or Soviet successes in space and atomic energy, and they argue that the government simply needs to restore funding to an appropriate level in order for Russia’s vast pool of talent to restore the nation’s proper place in global science. -
Download Ps Nobel Prizes for Site BEE 11.18.16 Revised 11.30.17.Pdf
Nobel Laureates at the College of Physicians and Surgeons For years, College of Physicians and Surgeons alumni, faculty, and researchers have led groundbreaking clinical and basic scientific studies that have transformed our understanding of human biology and advanced the practice of medicine. On many occasions, this work has been honored with the Nobel Prize. The scope of research led by P&S Nobel laureates is tremendous. Although most of our prizewinners were honored for work in physiology or medicine, a few also received the prize for chemistry. Their research has fundamentally shaped the course of numerous fields, including cardiology, neuroscience, genetics, pharmaceutical development, and more. Our Nobel laureates include: André Cournand and Dickinson Richards (P&S’23), whose work at P&S on cardiac catheterization—a method of inserting a tiny tube into the heart—provided the basis for open-heart surgery and interventional cardiology Baruch Blumberg (P&S’51), who discovered the hepatitis B virus and helped develop a test and a vaccine for the virus Joshua Lederberg, a Columbia College and P&S graduate student who showed that bacteria can exchange genes when they reproduce, creating a way to model and study genetics in higher organisms Harold Varmus (P&S’66), who demonstrated how genes in normal human and animal cells can mutate to cause cancer, leading to a new generation of research on the genetic origins of cancer Eric Kandel, current University Professor, who showed how memories are stored in nerve cells, greatly enhancing -
Global University Summit-2014 «Managing Global Risks, Managing the Future
j With informational support by Global University Summit-2014 «Managing global risks, managing the future. The prognostic role of universities» Moscow, April 23-25th 2014 Global University Summit will be held within 2 days, on April 24-25th. The first day embraces the opening ceremony and 3 plenary sessions (all participants invited) while the second day will be devoted to section activities on the venues of 4 universities – MGIMO, Lomonosov Moscow State University, People’s Friendship University, National University of Science and Technology "MISiS". Russian and English are the working languages of the Summit. Wednesday, April 23th During Participants’ arrival in Moscow. Accomodation in Radisson Blu Belorusskaya and Novotel the day Moscow City Exhibition “Countries, cities, journeys” (MGIMO Chess club, MGIMO Conference Hall lobby) Exhibitions/presentation of Russian and foreign universities in MGIMO (MGIMO, New Building) 19:00 Transfer from Hotels to The Pashkov House 20:00 – Official reception on behalf of S. Sobyanin, the Mayor of Moscow 22:00 Presentation of a Report to Global University Summit-2014 participants: “Universities on the future. The future of universities”. Cultural and Exhibition Center “The Pashkov House”, Vozdvizhenka str. 3/5 - 1 22:00 Transfer to Hotels Thursday, April 24th All session are held at MGIMO Conference Hall, 76, Prospect Vernadskogo During Exhibition “Countries, cities, journeys” (MGIMO Chess club, MGIMO Conference Hall lobby) the day Exhibitions/presentation of Russian and foreign universities in MGIMO -
041-2011-Abstracts-BOE-III-Crete.Pdf
Boreskov Institute of Catalysis of the Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia Institute of Cytology and Genetics of the Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia Borissiak Paleontological Institute of Russian Academy of Sciences, Moscow, Russia III International Conference “Biosphere Origin and Evolution” RETHYMNO, CRETE, GREECE OCTOBER 16-20, 2011 ABSTRACTS Novosibirsk, 2011 © Boreskov Institute of Catalysis, 2011 INTERNATIONAL SCIENTIFIC COMMITTEE Alexei Rozanov, Borissiak Paleontological Institute RAS, Moscow, Russia Co‐Chairman Georgii Zavarzin, Institute of Microbiology RAS, Moscow, Russia Co‐Chairman Vadim Agol Moscow State University, Russia Yury Chernov Severtsov Institute of Ecology and Evolution, Moscow, Russia Institute of Protein Research RAS, Pushchino, Moscow region, Alexander Chetverin Russia David Deamer Biomolecular Engineering, School of Engineering, Santa Cruz, USA V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Nikolay Dobretsov Novosibirsk, Russia Mikhail Fedonkin Geological Institute RAS, Moscow, Russia Siegfried Franck Potsdam Institute for Climate Impact Research, Germany V.I. Vernadskii Institute of Geochemistry and Analytical Chemistry Eric Galimov RAS, Moscow, Russia Mikhail Grachev Limnological Institute SB RAS, Irkutsk, Russia Richard Hoover Nasa Marshall Space Flight Ctr., Huntsville, USA North‐Western Scientific Center RAS, St. Petersburg State Sergey Inge‐Vechtomov University, Russia Trofimuk Institute of Petroleum‐Gas Geology and Geophysics Alexander Kanygin SB RAS, Novosibirsk, Russia Astrospace Centre of Lebedev Physical Institute RAS, Moscow, Nikolay Kardashev Russia Józef Kaźmierczak Institute of Paleobiology PAN, Warsaw, Poland Nikolay Kolchanov Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Trofimuk Institute of Petroleum‐Gas Geology and Geophysics Alexei Kontorovich SB RAS, Novosibirsk, Russia National Center for Biotechnology Information, National Library Eugene V.