Archaea and Bacteria Chapter 27

Total Page:16

File Type:pdf, Size:1020Kb

Archaea and Bacteria Chapter 27 Archaea and Bacteria Chapter 27 DOMAINS AND KINGDOMS Archaea, Bacteria, and Eukarya Carl Woese based on studies of r-RNA of smaller ribosomal subunit in various groups of living things suggested 3-Domain classification of living things. The arrangement of nucleotides is highly conserved because the mutation rate in r-RNA is very slow. # BACTERIA ARCHAEA EUKARYA 1 Prokaryotic cells Prokaryotic cells Eukaryotic cells 2 Circular chromosome present Present Absent. Linear DNA in chromosomes 3 Peptidoglycan in cell wall present absent absent 4 No Histones associate with DNA Histones + DNA Histones + DNA 5 RNA polymerases: 1 type several types several types 6 Introns (non-coding part of gene) rare Sometimes present present 7 Membrane bound organelles absent absent Present Table 27.2 First organisms were most probably prokaryotes. Bacteria and Archaea domains have prokaryotic cells. BACTERIA: multiple kingdoms Cell Wall: contains Peptidoglycan. It can get stained with crystal violet-Iodine. If the bacteria retain the stain on washing-these are called Gram+. If the stain is washed, the bacteria are stained with Safranin. These are called Gram- bacteria and have a second membrane outside cell wall. Forms: 3 main forms exist. 1. Bacillus - rod shaped bacteria, Hay bacteria - Bacillus subtilis, Anthrax 2. Coccus - spherical bacteria, Diplococcus pneumoni, Streptococcus and Staphylococcus 3. Spiral or Curved bacteria, Treponema pallidum – causes Syphilis, Heliobacter pylori – causes peptic ulcers, and Vibrio cholera causes cholera. Cell Structure: 1. DNA lies in cytoplasm. No nucleus. 2. Cell membrane surrounded by cell wall of peptidoglycan. 3. Bacteria lack all membrane bound organelles including nucleus. 4. There are no histones associated with DNA. 5. Ribosomes are smaller than ribosomes of eukaryotes. 6. Flagella lack 9+2 arrangement. Fimbriae, Pili and Flagella 1. Fimbriae: Some prokaryotes have fimbriae, which allow them to stick to their substrate or other individuals in a colony. 1 2. Pili (or sex pili) are longer than fimbriae and allow prokaryotes to exchange DNA 3. Flagella help to locomote bacteria. Bacterial flagellum is hollow cylinder of spirally arranged Flagellin proteins. Each flagellum has a motor at base , a hook and a filament. Motor rotates clockwise or anticlockwise. Metabolism: Bacteria are both autotrophs and heterotrophs. Most require organic molecules for source of energy and carbon source (chemoheterotrophs). These are saprobes and release enzymes to absorb food from outside. Besides fungi these are the main decomposers. Cyanobacteria have Chlorophyll a for photosynthesis like algae and plants (photoautotrophs). Cyanobacteria use water as source of Hydrogen to reduce CO2 and release O2. Some cyanobacteria have specialized cells heterocysts to fix N2 into ammonia and produce amino acids from it. Others use hydrogen sulfide instead of water and release sulfur instead of oxygen. Still others can gain electrons from inorganic chemicals to reduce CO2 (Chemoautotrophs). Role of Oxygen in metabolism 1. Prokaryotic metabolism varies with respect to O2 2. Obligate aerobes require O2 for cellular respiration 3. Obligate anaerobes are poisoned by O2 and use fermentation or anaerobic respiration 4. Facultative anaerobes can survive with or without O2 Reproduction: All prokaryotes reproduce by Fission. DNA is replicated and 2 daughter chromosomes move apart followed by division of cell by plate method. Some bacteria produce Endospores which can tolerate extreme harsh conditions. Examples are Anthrax and Tetanus bacteria. Five Groups in Bacteria 1. Prtoeobacteria is large diverse clade of gram negative bacteria and has 5 subgroups: a. Alpha Prtoeobacteria includes many species of bacteria living inside eukaryotic organisms. Rhizobium is N-fixing bacteria in root nodules of legumes. Agrobacterium makes tumors in plant cells. Scientists use it to deliver foreign genes in cells of crop plants. Mitochondria evolved from alpha Prtoeobacteria. + - b. Beta proteobacteria is diverse group. Nitrosomonas lives in soil and converts NH4 to NO3 c. Gamma proteobacteria is another diverse group. Autotrophic sulfur bacteria Thiomargaria namibiensis, Salmonella causes food poisoning, Vibrio cholerae causes cholera and Escherichia coli lives in colon. d. Delta proteobacteria includes slime secreting myxobacteria. When soil gets dry these bacteria aggregate into fruiting body and release myxospores. Bdellobacteria attack other bacteria and bore into at great speed. e. Epsilon proteobacteria include pathogenic bacteria. Campylobacter causes blood poisoning and intestinal inflammation. Heliobacter pylori causes stomach ulcers. 2. Chlamydias are parasites and can only survive in animal cells. Chlamydia trachomatis is most common cause of blindness in world and also causes STD, nongonococcal urethritis. 2 3. Spirochetes are helical heterotrophs. These use internal flagellum to rotate and locomote. Many are free living but others cause serious diseases; Treponema pallidum causes syphilis and Borrelia sps causes Lyme disease spread by ticks. 4. Cyanobacteria are unicellular or multicellular photoautotrophs. Cyanobacteria have Chlorophyll a for photosynthesis like algae and plants. Oscillatoria has a trichome of photosynthetic cells. Nostoc has mostly photosynthetic cells but also Heterocysts, swollen cells that fix atmospheric N2 to NH3. In Anabena photosynthetic cells and Heterocysts undergo metabolic cooperation by exchanging materials produced by them. Cyanobacteria are among most nutritionally independent organisms and are pioneers (first colonizers) to colonize bare places like rocks. 5. Gram Positive Bacteria rival the proteobacteria in diversity. a. Actinomycetes form colonies having branched fungus like bodies and like them form chains of spores. Most of them are free living decomposers in soil and are responsible for earthy odor of rich soil. Pharmaceutical companies cultivate Streptomycetes to procure many antibiotics (bactericidal drugs). Two species of actinomycetes cause tuberculosis and leprosy. b. Gram positive bacteria include solitary species like Bacillus anthracis which causes Anthrax and Clostridium botulinum which causes food poisoning. Streptococcus and Staphylococcus are gram +. c. Mycoplasmas have the smallest cells (0.1μm diameter). Mycoplasmas are only known bacteria without cell walls. These have very small genomes (517 genes in Mycoplasma genitalium). Many are free living soil bacteria but others are pathogens. ARCHAEA: multiple kingdoms a. These prokaryotic organisms of ancient origin discovered first living in extreme environments. b. Archaea lack peptidoglycan in cell wall. c. Like bacteria archaea are prokaryotes, divide by fission and have circular DNA. d. Like Eukarya, some Archaea have histones associated with DNA e. Introns in genes and many kinds of RNA polymerases f. Their growth is not slowed by antibiotics like streptomycin or chloramphenicol. These include: Extremophiles: Many archaea can tolerate extreme conditions. Picrophilus oshimae can live at pH 0.03 enough to dissolve metals. Dienococcus radiodurans can tolerate 3x106 rads (3000x fatal dose for humans). Other example are: Halophiles – these can tolerate very high concentrations of salts (Greek halo means salt) and live in places like the Great Salt Lake and the Dead Sea. Halobacterium a unicellular archaea turns the color of Lake Owen in CA to pink/red color. Salt content reaches 32% in summer (9X sea water). Single Celled Halobacterium has red membrane pigment Bacteriorhodopsin. It enables to produce ATP by using sunlight. 6. Halobacterium dies below 9% salinity. These have special proteins and cell wall to tolerate high salinity. 7. Thermophiles – these can tolerate very high temperatures >90⁰C. These have branched hydrocarbons in cell membrane. Sulfolobus archaea live in sulfur rich volcanic springs at 90⁰C. Geogemma barossi lives at 121⁰C around hydrothermal vents. Ordinary organisms die at high 3 temperatures because their DNA loses its double helical structure and proteins get denatured and lose their important functions. DNA polymerase from archaea is used in PCR technology to magnify concentration of desired DNA. Moderate Archaea: are archaea living at normal conditions of temperature or salinity. Methanogens – These use CO2 as source of oxygen to oxidize H2 and produce methane, CH4, the marsh gas as bye-product in marshes. Other species live in gut of cattle, termites or other herbivores. Methanogens are strict anaerobes and very little amount of O2 kills them. 8. Euryarchaeota (Eury = wide range) include most extreme halophiles and methanogens and also some extreme thermophiles. 9. Crenarchaeota (Cren = spring) include most extreme thermophiles. 10. Recently many species of both euryarchaeota and crenarchaeota have been discovered in ordinary habitats like farm soil, lake sediments or surface waters in open seas. 11. New clades discovered recently include Nanoarchaeota, very tiny archaea in hydrothermal vents and other habitats. Korarchaeota discovered in hot springs in yellow stone national park do not seem to belong to either euryarchaeota or crenarchaeota. Important questions: 12. Study the wall structure of gram positive and gram negative bacteria. 13. Understand the functions and differences between fimbrae, pili and flagella in bacteria. 14. Study the structure and action of bacterial flagellum. 15. Study the organization of DNA in chromosome (nucleoid) and plasmid. 16. Describe role of endospore and binary fission in bacteria. 17. Study the phylogenetic tree of 3 domains and table registering characters of 3 domains. Table 27.1 18. Study the table registering Major Nutritional Modes. Table 27.2 4 .
Recommended publications
  • Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide
    antioxidants Review Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide Ivan Kushkevych 1,* , Veronika Bosáková 1,2 , Monika Vítˇezová 1 and Simon K.-M. R. Rittmann 3,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] (V.B.); [email protected] (M.V.) 2 Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic 3 Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Vienna, Austria * Correspondence: [email protected] (I.K.); [email protected] (S.K.-M.R.R.); Tel.: +420-549-495-315 (I.K.); +431-427-776-513 (S.K.-M.R.R.) Abstract: Hydrogen sulfide is a toxic compound that can affect various groups of water microorgan- isms. Photolithotrophic sulfur bacteria including Chromatiaceae and Chlorobiaceae are able to convert inorganic substrate (hydrogen sulfide and carbon dioxide) into organic matter deriving energy from photosynthesis. This process takes place in the absence of molecular oxygen and is referred to as anoxygenic photosynthesis, in which exogenous electron donors are needed. These donors may be reduced sulfur compounds such as hydrogen sulfide. This paper deals with the description of this metabolic process, representatives of the above-mentioned families, and discusses the possibility using anoxygenic phototrophic microorganisms for the detoxification of toxic hydrogen sulfide. Moreover, their general characteristics, morphology, metabolism, and taxonomy are described as Citation: Kushkevych, I.; Bosáková, well as the conditions for isolation and cultivation of these microorganisms will be presented. V.; Vítˇezová,M.; Rittmann, S.K.-M.R.
    [Show full text]
  • Limits of Life on Earth Some Archaea and Bacteria
    Limits of life on Earth Thermophiles Temperatures up to ~55C are common, but T > 55C is Some archaea and bacteria (extremophiles) can live in associated usually with geothermal features (hot springs, environments that we would consider inhospitable to volcanic activity etc) life (heat, cold, acidity, high pressure etc) Thermophiles are organisms that can successfully live Distinguish between growth and survival: many organisms can survive intervals of harsh conditions but could not at high temperatures live permanently in such conditions (e.g. seeds, spores) Best studied extremophiles: may be relevant to the Interest: origin of life. Very hot environments tolerable for life do not seem to exist elsewhere in the Solar System • analogs for extraterrestrial environments • `extreme’ conditions may have been more common on the early Earth - origin of life? • some unusual environments (e.g. subterranean) are very widespread Extraterrestrial Life: Spring 2008 Extraterrestrial Life: Spring 2008 Grand Prismatic Spring, Yellowstone National Park Hydrothermal vents: high pressure in the deep ocean allows liquid water Colors on the edge of the at T >> 100C spring are caused by different colonies of thermophilic Vents emit superheated water (300C or cyanobacteria and algae more) that is rich in minerals Hottest water is lifeless, but `cooler’ ~50 species of such thermophiles - mostly archae with some margins support array of thermophiles: cyanobacteria and anaerobic photosynthetic bacteria oxidize sulphur, manganese, grow on methane + carbon monoxide etc… Sulfolobus: optimum T ~ 80C, minimum 60C, maximum 90C, also prefer a moderately acidic pH. Live by oxidizing sulfur Known examples can grow (i.e. multiply) at temperatures which is abundant near hot springs.
    [Show full text]
  • The Fine Structure of Diplococcus Pneumoniae
    THE FINE STRUCTURE OF DIPLOCOCCUS PNEUMONIAE ALEXANDER TOMASZ, Ph.D., JAMES D. JAMIESON, M.D., and ELENA OTTOLENGtII, M.D. From The Rockefeller Institute and the New York University School of Medicine, New York ABSTRACT The fine structure of an unencapsulated strain of Diplococcus pneumoniae is described. A strik- ing feature of thcsc bacteria is an intracytoplasmic membrane system which appears to be an extension of septa of dividing bactcria. The possible function of these structures and their relationship to the plasma membrane and other types of intracytoplasmic membranes found in pncumococcus is discussed. INTRODUCTION Our main interest in the fine structure of Diplo- walls. Throughout this paper, such preparations will coccus pneumoniae stems from the fact that these be referred to as "spheroplasts." bacteria readily undergo genetic transformation. The bacteria were fixed and stained according to the method of Ryter and Kellenberger (4), embedded Prior to undertaking electron microscope studies in cross-linked methacrylate, and sectioned with a on this process, the fine structure of pneumococcal Porter-Blum mlcrotome using a diamond knife. The cells in thin sections was examined. During the sections were stained with lead according to the preliminary stage of these studies on a transform- method of Karnovsky (5) (method B) and were able strain, we observed some unique membranous examined in the RCA electron microscopes models structures which, to the best of our knowledge, 2B, 3F, or in the Siemens Elmiskop I. have not previously been described in bacteria. RESULTS MATERIALS AND METHODS The nuclear region of pneumococcus resembles that Unencapsulated strains of Diplocoecus pneumoniae R6, of other bacteria prepared by the method of R1, and some nutritional mutants derived from R6 Ryter and Kellenberger (4).
    [Show full text]
  • THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
    s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost.
    [Show full text]
  • Geomicrobiological Processes in Extreme Environments: a Review
    202 Articles by Hailiang Dong1, 2 and Bingsong Yu1,3 Geomicrobiological processes in extreme environments: A review 1 Geomicrobiology Laboratory, China University of Geosciences, Beijing, 100083, China. 2 Department of Geology, Miami University, Oxford, OH, 45056, USA. Email: [email protected] 3 School of Earth Sciences, China University of Geosciences, Beijing, 100083, China. The last decade has seen an extraordinary growth of and Mancinelli, 2001). These unique conditions have selected Geomicrobiology. Microorganisms have been studied in unique microorganisms and novel metabolic functions. Readers are directed to recent review papers (Kieft and Phelps, 1997; Pedersen, numerous extreme environments on Earth, ranging from 1997; Krumholz, 2000; Pedersen, 2000; Rothschild and crystalline rocks from the deep subsurface, ancient Mancinelli, 2001; Amend and Teske, 2005; Fredrickson and Balk- sedimentary rocks and hypersaline lakes, to dry deserts will, 2006). A recent study suggests the importance of pressure in the origination of life and biomolecules (Sharma et al., 2002). In and deep-ocean hydrothermal vent systems. In light of this short review and in light of some most recent developments, this recent progress, we review several currently active we focus on two specific aspects: novel metabolic functions and research frontiers: deep continental subsurface micro- energy sources. biology, microbial ecology in saline lakes, microbial Some metabolic functions of continental subsurface formation of dolomite, geomicrobiology in dry deserts, microorganisms fossil DNA and its use in recovery of paleoenviron- Because of the unique geochemical, hydrological, and geological mental conditions, and geomicrobiology of oceans. conditions of the deep subsurface, microorganisms from these envi- Throughout this article we emphasize geomicrobiological ronments are different from surface organisms in their metabolic processes in these extreme environments.
    [Show full text]
  • Marine Microplankton Ecology Reading
    Marine Microplankton Ecology Reading Microbes dominate our planet, especially the Earth’s oceans. The distinguishing feature of microorganisms is their small size, usually defined as less than 200 micrometers (µm); they are all invisible to the naked eye. As a group, sea microbes are extremely diverse, and extremely versatile with respect to their abilities to make and eat food. All marine microbes are too small to swim against the current and are therefore classified as plankton. First we will discuss several ways to classify marine microbes. 1. Size Planktonic marine organisms can be divided into the following size categories: Category Size femtoplankton <0.2 µm picoplankton 0.2-2 µm nanoplankton 2-20 µm microplankton 20-200 µm mesoplankton 200-2000 µm In this laboratory we are concerned with the microscopic portion of the plankton, less than 200 µm. These organisms are not visible to the naked eye (Figure 1). Figure 1. Size classes of marine plankton 2. Type A. Viruses Viruses are the smallest and simplest microplankton. They range from 0.01 to 0.3 um in diameter. Externally, viruses have a capsid, or protein coat. Viruses can also have simple or complex external morphologies with tail fibers and structures that are used to inject DNA or RNA into their host. Viruses have little internal morphology. They do not have a nucleus or organelles. They do not have chlorophyll. Inside a virus there is only nucleic acid, either DNA or RNA. Viruses do not grow and have no metabolism. Marine viruses are highly abundant. There are up to 10 billion in one liter of seawater! B.
    [Show full text]
  • Human Microbiome: Your Body Is an Ecosystem
    Human Microbiome: Your Body Is an Ecosystem This StepRead is based on an article provided by the American Museum of Natural History. What Is an Ecosystem? An ecosystem is a community of living things. The living things in an ecosystem interact with each other and with the non-living things around them. One example of an ecosystem is a forest. Every forest has a mix of living things, like plants and animals, and non-living things, like air, sunlight, rocks, and water. The mix of living and non-living things in each forest is unique. It is different from the mix of living and non-living things in any other ecosystem. You Are an Ecosystem The human body is also an ecosystem. There are trillions tiny organisms living in and on it. These organisms are known as microbes and include bacteria, viruses, and fungi. There are more of them living on just your skin right now than there are people on Earth. And there are a thousand times more than that in your gut! All the microbes in and on the human body form communities. The human body is an ecosystem. It is home to trillions of microbes. These communities are part of the ecosystem of the human Photo Credit: Gaby D’Alessandro/AMNH body. Together, all of these communities are known as the human microbiome. No two human microbiomes are the same. Because of this, you are a unique ecosystem. There is no other ecosystem like your body. Humans & Microbes Microbes have been around for more than 3.5 billion years.
    [Show full text]
  • PROTISTS Shore and the Waves Are Large, Often the Largest of a Storm Event, and with a Long Period
    (seas), and these waves can mobilize boulders. During this phase of the storm the rapid changes in current direction caused by these large, short-period waves generate high accelerative forces, and it is these forces that ultimately can move even large boulders. Traditionally, most rocky-intertidal ecological stud- ies have been conducted on rocky platforms where the substrate is composed of stable basement rock. Projec- tiles tend to be uncommon in these types of habitats, and damage from projectiles is usually light. Perhaps for this reason the role of projectiles in intertidal ecology has received little attention. Boulder-fi eld intertidal zones are as common as, if not more common than, rock plat- forms. In boulder fi elds, projectiles are abundant, and the evidence of damage due to projectiles is obvious. Here projectiles may be one of the most important defi ning physical forces in the habitat. SEE ALSO THE FOLLOWING ARTICLES Geology, Coastal / Habitat Alteration / Hydrodynamic Forces / Wave Exposure FURTHER READING Carstens. T. 1968. Wave forces on boundaries and submerged bodies. Sarsia FIGURE 6 The intertidal zone on the north side of Cape Blanco, 34: 37–60. Oregon. The large, smooth boulders are made of serpentine, while Dayton, P. K. 1971. Competition, disturbance, and community organi- the surrounding rock from which the intertidal platform is formed zation: the provision and subsequent utilization of space in a rocky is sandstone. The smooth boulders are from a source outside the intertidal community. Ecological Monographs 45: 137–159. intertidal zone and were carried into the intertidal zone by waves. Levin, S. A., and R.
    [Show full text]
  • Streptococcus Pneumoniae Capsular Polysaccharide Is Linked to Peptidoglycan Via a Direct Glycosidic Bond to Β-D-N-Acetylglucosamine
    Streptococcus pneumoniae capsular polysaccharide is linked to peptidoglycan via a direct glycosidic bond to β-D-N-acetylglucosamine Thomas R. Larsona and Janet Yothera,1 aDepartment of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170 Edited by Emil C. Gotschlich, The Rockefeller University, New York, NY, and approved April 14, 2017 (received for review December 20, 2016) For many bacteria, including those important in pathogenesis, (Und-P). In S. pneumoniae serotype 2 CPS, Glcp-1-P is trans- expression of a surface-localized capsular polysaccharide (CPS) can ferred from UDP-Glcp (11), and this is followed by addition of be critical for survival in host environments. In Gram-positive the remaining sugars (12, 13) to form the complete repeat unit bacteria, CPS linkage is to either the cytoplasmic membrane or the (Fig. 1). Und-P-P-oligosaccharide repeat units are translocated cell wall. Despite the frequent occurrence and essentiality of these to the outer face of the cytoplasmic membrane by Wzx and po- polymers, the exact nature of the cell wall linkage has not been lymerized into high molecular weight (MW) polysaccharide by described in any bacterial species. Using the Streptococcus pneu- Wzy. Growth occurs at the reducing end, with single or multiple moniae serotype 2 CPS, which is synthesized by the widespread repeat units being transferred en bloc from Und-P-P to an ac- Wzy mechanism, we found that linkage occurs via the reducing ceptor Und-P-P-oligosaccharide repeat unit. Hydrolysis of the β N- end glucose of CPS and the -D- acetylglucosamine (GlcNAc) res- donor Und-P-P that remains after transfer yields Und-P, which is idues of peptidoglycan (PG).
    [Show full text]
  • Microbial Growth
    7 Microbial Growth 1 7.1 Reproductive strategies 1. Describe binary fission as observed in bacteria and archaea 2. Compare the three reproductive strategies used by bacteria other than binary fission 2 Reproductive Strategies • The reproductive strategies of eukaryotic microbes – asexual and sexual, haploid or diploid • Bacteria and Archaea – haploid only, asexual - binary fission, budding, filamentous – all must replicate and segregate the genome prior to division 3 4 7.2 Bacterial cell cycle 1. Summarize the two major events in a typical bacterial cell cycle 2. State the functions of cytoskeletal proteins in a typical bacterial cell cycle and in determining cell shape 5 Bacterial Cell Cycle • Cell cycle is sequence of events from formation of new cell through the next cell division – most bacteria divide by binary fission • Two pathways function during cycle – DNA replication and partition – cytokinesis 6 Chromosome Replication and Partitioning - 1 • Most bacterial chromosomes are circular • Single origin of replication – site at which replication begins • Terminus – site at which replication is terminated, located opposite of the origin • Replisome – group of proteins needed for DNA synthesis • DNA replication proceeds in both directions from the origin • Origins move to opposite ends of the cell 7 8 Chromosome Partitioning • Replisome pushes, or condensation of, daughter chromosomes to opposite ends • MreB (murein cluster B) – an actin homolog, plays role in determination of cell shape as spiral inside cell periphery, and chromosome
    [Show full text]
  • Chromochloris Zofingiensis (Chlorophyceae) Divides By
    biology Article Chromochloris zofingiensis (Chlorophyceae) Divides by Consecutive Multiple Fission Cell-Cycle under Batch and Continuous Cultivation Idan Koren, Sammy Boussiba , Inna Khozin-Goldberg and Aliza Zarka * Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Midreshet Ben-Gurion 8499000, Israel; [email protected] (I.K.); [email protected] (S.B.); [email protected] (I.K.-G.) * Correspondence: [email protected] Simple Summary: Microalgae are plant-like micro-organisms naturally found in fresh and marine water environments, inhabiting a vast range of ecosystems. They capture light energy through photosynthesis and convert low energy inorganic compounds (carbon dioxide and water) into high energy complex organic compounds, such as carbohydrates and fats. Chromochloris zofingiensis is a unicellular microalga currently under intensive research, due to its ability to produce high value pharmaceutical and nutritional pigments. Understanding its growth characteristics is crucial for the establishment of an efficient commercial production of those pigments from this alga. Thus, we have developed a method to stain the nucleus of the alga which enabled us to follow the division pattern under commonly used cultivation methods. We found that C. zofingiensis cells conduct consecutive Citation: Koren, I.; Boussiba, S.; DNA synthesis and divisions of the nucleus to produce 8 or 16 nuclei before it divides into 8 or Khozin-Goldberg, I.; Zarka, A. 16 daughter cells, respectively. Under high light illumination, the whole process lasts several days, Chromochloris zofingiensis through which cells grow during the light period and divide during the dark period.
    [Show full text]
  • The Unicellular and Colonial Organisms Prokaryotic And
    The Unicellular and Colonial Organisms Prokaryotic and Eukaryotic Cells As you know, the building blocks of life are cells. Prokaryotic cells are those cells that do NOT have a nucleus. They mostly include bacteria and archaea. These cells do not have membrane-bound organelles. Eukaryotic cells are those that have a true nucleus. That would include plant, animal, algae, and fungal cells. As you can see, to the left, eukaryotic cells are typically larger than prokaryotic cells. Today in lab, we will look at examples of both prokaryotic and eukaryotic unicellular organisms that are commonly found in pond water. When examining pond water under a microscope… The unpigmented, moving microbes will usually be protozoans. Greenish or golden-brown organisms will typically be algae. Microorganisms that are blue-green will be cyanobacteria. As you can see below, living things are divided into 3 domains based upon shared characteristics. Domain Eukarya is further divided into 4 Kingdoms. Domain Kingdom Cell type Organization Nutrition Organisms Absorb, Unicellular-small; Prokaryotic Photsyn., Archaeacteria Archaea Archaebacteria Lacking peptidoglycan Chemosyn. Unicellular-small; Absorb, Bacteria, Prokaryotic Peptidoglycan in cell Photsyn., Bacteria Eubacteria Cyanobacteria wall Chemosyn. Ingestion, Eukaryotic Unicellular or colonial Protozoa, Algae Protista Photosynthesis Fungi, yeast, Fungi Eukaryotic Multicellular Absorption Eukarya molds Plantae Eukaryotic Multicellular Photosynthesis Plants Animalia Eukaryotic Multicellular Ingestion Animals Prokaryotic Organisms – the archaea, non-photosynthetic bacteria, and cyanobacteria Archaea - Microorganisms that resemble bacteria, but are different from them in certain aspects. Archaea cell walls do not include the macromolecule peptidoglycan, which is always found in the cell walls of bacteria. Archaea usually live in extreme, often very hot or salty environments, such as hot mineral springs or deep-sea hydrothermal vents.
    [Show full text]