Jeremy Szymczak Poster for ICHA 2018 21-26 OCTOBER NANTES

Total Page:16

File Type:pdf, Size:1020Kb

Jeremy Szymczak Poster for ICHA 2018 21-26 OCTOBER NANTES ICHA 2018 21-26 OCTOBER NANTES FRANCE Evolution of the Oxidative phosphorylation pathway in Dinoflagellates and sister taxa The importance of the use of metadata and manual curation Jeremy Szymczak *1 , Erwan Corre 2 , Laure Guillou 1, Ehsan Kayal 1 1: UMR-7144, 2: ABiMS-FR2424, Station Biologique de Roscoff, Roscoff, France, *: Presenting author Introduction The organisms The OXPHOS pathway A B C The mitochondrion is one of the main sites of chemical energy production in the form of adenosine triphosphate (ATP) through the highly conserved oxidative phosphorylation pathway (OXPHOS). In recent years, variations of the OXPHOS pathway has been documented in a variety of organisms. Thanks to recent micro-eukaryotic transcriptomic and genomic projects, including the Marine Microbial Eukaryote Transcriptome Sequencing D E F Project (MMETSP), a large amount of data is now available for the analysis of various metabolic pathways in marine protists. The alveolates V represent a major group of protists with a great diversity of lifestyles V (phototrophy, mixotrophy, heterotrophy and symbiosis) and include, among others, ciliates, parasitic apicomplexes and dinoflagellates. Recent studies have suggested the modification or even the loss of key complexes of the OXPHOS pathway in Apicomplexa, and more recently, in Dinozoa. Overview of the alveolate. A: Ciliophoran Myrionecta rubra (scale 50 µm, source: https://www.eoas.ubc.ca) B: Apicomplexan Lankesteria abbotti (scale 60 µm, source: Leander et al,. 2006) C: Chromerid Chromera velia (scale 20 µm, Objective: Reconstruction of the OXPHOS source: Miroslav Oborník) D: Perkinsean Parvilucifera infectans (sclale 3 µm, source: Boo Seong et al,. 2018) E: Syndiniales Amoebophrya sp. (green) pathways from “omics” data through automated infecting a dinoflagellate (blue) (scale 10 µm, source: Aurélie Chambouvet); F : Mitochondrion Alexandrium catenella (scale 25 µm, source: https://www.eoas.ubc.ca) method followed by manual validation. Schematic of the classical oxidative phosphorylation pathway located in + the mitochondria of aerobic eukaryotes. H : proton, O2: dioxygen, CoQ pool: quinones; P : inorganic phosphate; the five complexes are noted Materiel and Methods i from I to V Data source: alveolate transcriptomes from MMETSP; transcriptomes and genomes for four Syndiniales (unpublished) Target subjects: HMM motifs of proteins involved in the electron transport chin (ETC) of OXPHOS from Pfam database Prediction of peptides Alignment per motif Merge per complex Transcriptomes Peptidomes Annotations Phylogenies Curated lists of genes OXPHOS pathway HMM motif search Contaminants filtration (from Pfam) (checked with BLASTp) Manually validated Automatic annotation type Results Complexes phylum gender sp complex1 complex2 complex3 complex4 complex5 ETFs AOX Chromerids Chromera velia Summary of key OXPHOS subunits identified in alveolates. Blue: Core subunits Chromerids Vitrella brassicaformis Ciliophora Aristerostoma sp Ciliophora Blepharisma japonicum complex1 complex2 complex3 Complex4 Complex5 Ciliophora Climacostomum virens presence of protein subunit phylum gender sp NDUFA4 NDUFA12 sdhA sdhB cyc UCR14KD CytochromB qcr6 qcr9 COX1 cox3 COX5B cox10 cox11 cox15 sco ATP5A ATP5B ATPc ATPgamma ETFa ETFb ETFQO AOX AOX_putative Chromerids Chromera velia Ciliophora Euplotes crassus Chromerids Vitrella brassicaformis Ciliophora Euplotes focardii Ciliophora Aristerostoma sp Ciliophora Euplotes harpa Ciliophora Blepharisma japonicum Ciliophora Favella taraikaensis Ciliophora Climacostomum virens Motifs representing key subunits of the OXPHOS pathway Ciliophora Litonotus pictus Ciliophora Euplotes crassus Ciliophora Euplotes focardii Ciliophora Mesodinium pulex Ciliophora Euplotes harpa Ciliophora Platyophrya macrostoma NDUFA4 NDUFA5 NDUFA12 Sdh5 sdhA sdhafs sdhB Sdh_cyt risp cyc Cytochrom_Bqcr6 QCR9 UCR_14kD cob UcrQ cox1 cox2 cox3 COX4 COX5 COX6 cox10 Cox11 COX15 COX16 cox17 cox19 ATP5A ATP5B ATPa ATPb ATPc Mt_ATP-synt_DATPdelta ATPepsilon ATPgamma ATP-synt_10DHODHD-LDH2 ETFa ETF ETFb ETFQO G14LDH L-LDH NDH AOX Ciliophora Favella taraikaensis Chromera_velia Ciliophora Protocruzia adherens Vitrella_brassicaformis Ciliophora Litonotus pictus Anophryoides_haemophila Aristerostoma_sp Ciliophora Pseudokeronopsis sp Blepharisma_japonicum Ciliophora Mesodinium pulex Climacostomum_virens Ciliophora Strombidinopsis acuminatum Condylostoma_magnum Ciliophora Platyophrya macrostoma Euplotes_crassus Euplotes_focardii Ciliophora Protocruzia adherens Ciliophora Strombidinopsis sp Euplotes_harpa Fabrea_salina Favella_taraikaensis Ciliophora Pseudokeronopsis sp Ciliophora Strombidium inclinatum Litonotus_pictus Mesodinium_pulex Ciliophora Strombidinopsis acuminatum Myrionecta_rubra Ciliophora Strombidium rassoulzadegani Platyophrya_macrostoma Protocruzia_adherens Ciliophora Strombidinopsis sp Pseudokeronopsis_sp Dinophyceae Alexandrium andersonii Strombidinopsis_acuminatum Ciliophora Strombidium inclinatum Strombidinopsis_sp Strombidium_inclinatum Ciliophora Strombidium rassoulzadegani Dinophyceae Alexandrium catenella Strombidium_rassoulzadegani Tiarina_fusus Uronema_sp Dinophyceae Alexandrium andersonii Dinophyceae Alexandrium margalefi Akashiwo_sanguinea Alexandrium_andersonii Dinophyceae Alexandrium catenella Alexandrium_catenella Dinophyceae Alexandrium minutum Alexandrium_fundyense Alexandrium_margalefi Dinophyceae Alexandrium fundyense Alexandrium_minutum Dinophyceae Alexandrium monilatum Alexandrium_monilatum Dinophyceae Alexandrium margalefi Alexandrium_temarense Amphidinium_carterae Dinophyceae Alexandrium minutum Dinophyceae Alexandrium temarense Amphidinium_massartii Azadinium_spinosum Brandtodinium_nutriculum Dinophyceae Alexandrium monilatum Dinophyceae Amphidinium massartii Ceratium_fusus Crypthecodinium_cohnii Dinophyceae Alexandrium temarense Dinophysis_acuminata Dinophyceae Azadinium spinosum Durinskia_baltica Gambierdiscus_australes Dinophyceae Amphidinium carterae Gonyaulax_spinifera Dinophyceae Brandtodinium nutriculum Gymnodinium_catenatum Dinophyceae Amphidinium massartii Gyrodinium_dominans Heterocapsa_arctica Dinophyceae Azadinium spinosum Dinophyceae Crypthecodinium cohnii Heterocapsa_rotundata Heterocapsa_triquetra Karenia_brevis Dinophyceae Brandtodinium nutriculum Dinophyceae Dinophysis acuminata Karlodinium_micrum Kryptoperidinium_foliaceum Dinophyceae Ceratium fusus Lessardia_elongata Dinophyceae Durinskia baltica Lingulodinium_polyedra Dinophyceae Crypthecodinium cohnii Noctiluca_scintillans Oxyrrhis_marina Dinophyceae Gambierdiscus australes Pelagodinium_beii Dinophyceae Dinophysis acuminata Peridinium_aciculiferum Organisms Dinophyceae Heterocapsa arctica Polarella_glacialis Dinophyceae Durinskia baltica Prorocentrum_lima Prorocentrum_micans Dinophyceae Heterocapsa rotundata Prorocentrum_minimum Dinophyceae Gambierdiscus australes Prorocentrum_reticulatum Pyrocystis_lunula Dinophyceae Gonyaulax spinifera Dinophyceae Heterocapsa triquetra Pyrodinium_bahamense Scrippsiella_acuminata Dinophyceae Gymnodinium catenatum Scrippsiella_hangoei-like Dinophyceae Karenia brevis Scrippsiella_hangoei Scrippsiella_trochoidea Dinophyceae Heterocapsa arctica Symbiodinium_kawagutii Dinophyceae Karlodinium micrum Symbiodinium_sp Dinophyceae Heterocapsa rotundata Thoracosphaera_heimii Togula_jolla Dinophyceae Kryptoperidinium foliaceum Parvilucifera_infectans Dinophyceae Heterocapsa triquetra Parvilucifera_rostrata Perkinsus_chesapeaki Dinophyceae Karenia brevis Dinophyceae Lingulodinium polyedra Perkinsus_marinus GSA120 Dinophyceae Karlodinium micrum GSA25 Dinophyceae Noctiluca scintillans Amoebophrya_sp Dinophyceae Kryptoperidinium foliaceum Dinophyceae Oxyrrhis marina Dinophyceae Lingulodinium polyedra Dinophyceae Noctiluca scintillans Dinophyceae Pelagodinium beii Dinophyceae Oxyrrhis marina Dinophyceae Peridinium aciculiferum At this point, the results contain “false positives” which render interpretation difficult Dinophyceae Pelagodinium beii Dinophyceae Polarella glacialis Dinophyceae Peridinium aciculiferum Dinophyceae Prorocentrum minimum Dinophyceae Polarella glacialis Dinophyceae Prorocentrum minimum Dinophyceae Scrippsiella hangoei-like Dinophyceae Scrippsiella hangoei-like Dinophyceae Scrippsiella hangoei Dinophyceae Scrippsiella hangoei Dinophyceae Scrippsiella trochoidea Dinophyceae Scrippsiella trochoidea Dinophyceae Symbiodinium sp Dinophyceae Symbiodinium sp Dinophyceae Togula jolla Dinophyceae Togula jolla Perkinsea Perkinsus chesapeaki Perkinsea Perkinsus chesapeaki Perkinsea Perkinsus marinus Perkinsea Perkinsus marinus Discussion Syndiniales Amoebophrya 120 Syndiniales Amoebophrya 120 Syndiniales Amoebophrya 25 Syndiniales Amoebophrya 25 Syndiniales Amoebophrya sp Our results confirm and extend the diversity of the OXPHOS pathway in Strengths: Alveolata, including a novel organization in Syndiniales. The loss of the • A strong phylogeny-based filtration method to validate “true positives” complex I is likely a synapomorphy of MYzozoa (apicomplexans, • A quick and adaptable approach for the identification of metabolic pathways dinoflagellates and related taxa). Secondary and independent loss of Weaknesses: the complex III in syndiniales and the chromerid Chomeara velia. • Absence of genes does not necessarily mean absence of pathway due to the incomplete nature of transcriptomes Ciliophora Alveolata • Difficulties in separating sequences from closely-related co-occurring organisms (meta-”omics” data) Apicomplexa Perspectives: Loss of complex I • Need to complement with genome data
Recommended publications
  • An Aerobic Eukaryotic Parasite with Functional Mitochondria That Likely
    An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome Uwe John, Yameng Lu, Sylke Wohlrab, Marco Groth, Jan Janouškovec, Gurjeet Kohli, Felix Mark, Ulf Bickmeyer, Sarah Farhat, Marius Felder, et al. To cite this version: Uwe John, Yameng Lu, Sylke Wohlrab, Marco Groth, Jan Janouškovec, et al.. An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Science Advances , American Association for the Advancement of Science (AAAS), 2019, 5 (4), pp.eaav1110. 10.1126/sci- adv.aav1110. hal-02372304 HAL Id: hal-02372304 https://hal.archives-ouvertes.fr/hal-02372304 Submitted on 25 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SCIENCE ADVANCES | RESEARCH ARTICLE EVOLUTIONARY BIOLOGY Copyright © 2019 The Authors, some rights reserved; An aerobic eukaryotic parasite with functional exclusive licensee American Association mitochondria that likely lacks a mitochondrial genome for the Advancement Uwe John1,2*, Yameng Lu1,3, Sylke Wohlrab1,2, Marco Groth4, Jan Janouškovec5, Gurjeet S. Kohli1,6, of Science. No claim to 1 1 7 4 1,8 original U.S. Government Felix C. Mark , Ulf Bickmeyer , Sarah Farhat , Marius Felder , Stephan Frickenhaus , Works.
    [Show full text]
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Unfolding the Secrets of Coral–Algal Symbiosis
    The ISME Journal (2015) 9, 844–856 & 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE Unfolding the secrets of coral–algal symbiosis Nedeljka Rosic1, Edmund Yew Siang Ling2, Chon-Kit Kenneth Chan3, Hong Ching Lee4, Paulina Kaniewska1,5,DavidEdwards3,6,7,SophieDove1,8 and Ove Hoegh-Guldberg1,8,9 1School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia; 2University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia; 3School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia; 4The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia; 5Australian Institute of Marine Science, Townsville, Queensland, Australia; 6School of Plant Biology, University of Western Australia, Perth, Western Australia, Australia; 7Australian Centre for Plant Functional Genomics, The University of Queensland, St Lucia, Queensland, Australia; 8ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia and 9Global Change Institute and ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia Dinoflagellates from the genus Symbiodinium form a mutualistic symbiotic relationship with reef- building corals. Here we applied massively parallel Illumina sequencing to assess genetic similarity and diversity among four phylogenetically diverse dinoflagellate clades (A, B, C and D) that are commonly associated with corals. We obtained more than 30 000 predicted genes for each Symbiodinium clade, with a majority of the aligned transcripts corresponding to sequence data sets of symbiotic dinoflagellates and o2% of sequences having bacterial or other foreign origin.
    [Show full text]
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Wrc Research Report No. 131 Effects of Feedlot Runoff
    WRC RESEARCH REPORT NO. 131 EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA BY Kenneth S. Todd, Jr. College of Veterinary Medicine Department of Veterinary Pathology and Hygiene University of Illinois Urbana, Illinois 61801 FINAL REPORT PROJECT NO. A-074-ILL This project was partially supported by the U. S. ~epartmentof the Interior in accordance with the Water Resources Research Act of 1964, P .L. 88-379, Agreement No. 14-31-0001-7030. UNIVERSITY OF ILLINOIS WATER RESOURCES CENTER 2535 Hydrosystems Laboratory Urbana, Illinois 61801 AUGUST 1977 ABSTRACT Water samples and free-living and sessite ciliated protozoa were col- lected at various distances above and below a stream that received runoff from a feedlot. No correlation was found between the species of protozoa recovered, water chemistry, location in the stream, or time of collection. Kenneth S. Todd, Jr'. EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA Final Report Project A-074-ILL, Office of Water Resources Research, Department of the Interior, August 1977, Washington, D.C., 13 p. KEYWORDS--*ciliated protozoa/feed lots runoff/*water pollution/water chemistry/Illinois/surface water INTRODUCTION The current trend for feeding livestock in the United States is toward large confinement types of operation. Most of these large commercial feedlots have some means of manure disposal and programs to prevent runoff from feed- lots from reaching streams. However, there are still large numbers of smaller feedlots, many of which do not have adequate facilities for disposal of manure or preventing runoff from reaching waterways. The production of wastes by domestic animals was often not considered in the past, but management of wastes is currently one of the largest problems facing the livestock industry.
    [Show full text]
  • Symbiodinium Genomes Reveal Adaptive Evolution of Functions Related to Symbiosis
    bioRxiv preprint doi: https://doi.org/10.1101/198762; this version posted October 5, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Article 2 Symbiodinium genomes reveal adaptive evolution of 3 functions related to symbiosis 4 Huanle Liu1, Timothy G. Stephens1, Raúl A. González-Pech1, Victor H. Beltran2, Bruno 5 Lapeyre3,4, Pim Bongaerts5, Ira Cooke3, David G. Bourne2,6, Sylvain Forêt7,*, David J. 6 Miller3, Madeleine J. H. van Oppen2,8, Christian R. Voolstra9, Mark A. Ragan1 and Cheong 7 Xin Chan1,10,† 8 1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, 9 Australia 10 2Australian Institute of Marine Science, Townsville, QLD 4810, Australia 11 3ARC Centre of Excellence for Coral Reef Studies and Department of Molecular and Cell 12 Biology, James Cook University, Townsville, QLD 4811, Australia 13 4Laboratoire d’excellence CORAIL, Centre de Recherches Insulaires et Observatoire de 14 l’Environnement, Moorea 98729, French Polynesia 15 5Global Change Institute, The University of Queensland, Brisbane, QLD 4072, Australia 16 6College of Science and Engineering, James Cook University, Townsville, QLD 4811, 17 Australia 18 7Research School of Biology, Australian National University, Canberra, ACT 2601, Australia 19 8School of BioSciences, The University of Melbourne, VIC 3010, Australia 1 bioRxiv preprint doi: https://doi.org/10.1101/198762; this version posted October 5, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • A Parasite of Marine Rotifers: a New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae)
    Hindawi Publishing Corporation Journal of Marine Biology Volume 2015, Article ID 614609, 5 pages http://dx.doi.org/10.1155/2015/614609 Research Article A Parasite of Marine Rotifers: A New Lineage of Dinokaryotic Dinoflagellates (Dinophyceae) Fernando Gómez1 and Alf Skovgaard2 1 Laboratory of Plankton Systems, Oceanographic Institute, University of Sao˜ Paulo, Prac¸a do Oceanografico´ 191, Cidade Universitaria,´ 05508-900 Butanta,˜ SP, Brazil 2Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 7, 1870 Frederiksberg C, Denmark Correspondence should be addressed to Fernando Gomez;´ [email protected] Received 11 July 2015; Accepted 27 August 2015 Academic Editor: Gerardo R. Vasta Copyright © 2015 F. Gomez´ and A. Skovgaard. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Dinoflagellate infections have been reported for different protistan and animal hosts. We report, for the first time, the association between a dinoflagellate parasite and a rotifer host, tentatively Synchaeta sp. (Rotifera), collected from the port of Valencia, NW Mediterranean Sea. The rotifer contained a sporangium with 100–200 thecate dinospores that develop synchronically through palintomic sporogenesis. This undescribed dinoflagellate forms a new and divergent fast-evolved lineage that branches amongthe dinokaryotic dinoflagellates. 1. Introduction form independent lineages with no evident relation to other dinoflagellates [12]. In this study, we describe a new lineage of The alveolates (or Alveolata) are a major lineage of protists an undescribed parasitic dinoflagellate that largely diverged divided into three main phyla: ciliates, apicomplexans, and from other known dinoflagellates.
    [Show full text]
  • Chromera Velia Is Endosymbiotic in Larvae of the Reef Corals Acropora
    Protist, Vol. 164, 237–244, March 2013 http://www.elsevier.de/protis Published online date 12 October 2012 ORIGINAL PAPER Chromera velia is Endosymbiotic in Larvae of the Reef Corals Acropora digitifera and A. tenuis a,b,1 b c,d e Vivian R. Cumbo , Andrew H. Baird , Robert B. Moore , Andrew P. Negri , c f e c Brett A. Neilan , Anya Salih , Madeleine J.H. van Oppen , Yan Wang , and c Christopher P. Marquis a School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, 4811, Australia b ARC Centre of Excellence for Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia c School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia d School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001, Australia e Australian Institute of Marine Science PMB 3, Townsville, Queensland, 4810, Australia f Confocal Bio-Imaging Facility, School of Science and Health, University of Western Sydney, NSW 2006, Australia Submitted May 8, 2012; Accepted August 30, 2012 Monitoring Editor: Bland J. Finlay Scleractinian corals occur in symbiosis with a range of organisms including the dinoflagellate alga, Symbiodinium, an association that is mutualistic. However, not all symbionts benefit the host. In par- ticular, many organisms within the microbial mucus layer that covers the coral epithelium can cause disease and death. Other organisms in symbiosis with corals include the recently described Chromera velia, a photosynthetic relative of the apicomplexan parasites that shares a common ancestor with Symbiodinium. To explore the nature of the association between C. velia and corals we first isolated C.
    [Show full text]
  • Structure of Protistan Parasites Found in Bivalve Molluscs
    W&M ScholarWorks VIMS Books and Book Chapters Virginia Institute of Marine Science 1988 Structure of Protistan Parasites Found in Bivalve Molluscs Frank O. Perkins Follow this and additional works at: https://scholarworks.wm.edu/vimsbooks Part of the Marine Biology Commons, and the Parasitology Commons American Fisheries Society Special Publication 18:93- 111 , 1988 CC> Copyrighl by !he American Fisheries Sociely 1988 PARASITE MORPHOLOGY, STRATEGY, AND EVOLUTION Structure of Protistan Parasites Found in Bivalve Molluscs 1 FRANK 0. PERKINS Virginia In stitute of Marine Science. School of Marine Science, College of William and Mary Gloucester Point, Virginia 23062, USA Abstral'I.-The literature on the structure of protists parasitizing bivalve molluscs is reviewed, and previously unpubli shed observations of species of class Perkinsea, phylum Haplosporidia, and class Paramyxea are presented. Descriptions are given of the flagellar apparatus of Perkin.His marinus zoospores, the ultrastructure of Perkinsus sp. from the Baltic macoma Maconw balthica, and the development of haplosporosome-like bodies in Haplosporidium nelsoni. The possible origin of stem cells of Marreilia sydneyi from the inner two sporoplasms is discussed. New research efforts are suggested which could help elucidate the phylogenetic interrelationships and taxonomic positions of the various taxa and help in efforts to better understand life cycles of selected species. Studies of the structure of protistan parasites terization of the parasite species, to elucidation of found in bivalve moll uscs have been fruitful to the many parasite life cycles, and to knowledge of morphologist interested in comparative morphol- parasite metabolism. The latter, especially, is ogy, evolu tion, and taxonomy.
    [Show full text]
  • Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera Velia
    International Journal of Molecular Sciences Article Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia Jitka Richtová 1,2, Lilach Sheiner 3 , Ansgar Gruber 1 , Shun-Min Yang 1,2 , LudˇekKoˇrený 4, Boris Striepen 5 and Miroslav Oborník 1,2,* 1 Biology Centre CAS, Laboratory of Evolutionary Protistology, Institute of Parasitology, 370 05 Ceskˇ é Budˇejovice,Czech Republic; [email protected] (J.R.); [email protected] (A.G.); [email protected] (S.-M.Y.) 2 Faculty of Science, University of South Bohemia, 370 05 Ceskˇ é Budˇejovice,Czech Republic 3 Welcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK; [email protected] 4 Department of Biochemistry, University of Cambridge, Cambridge CB2 1TN, UK; [email protected] 5 Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; [email protected] * Correspondence: [email protected]; Tel.: +420-387-775-464 Abstract: Heme biosynthesis is essential for almost all living organisms. Despite its conserved function, the pathway’s enzymes can be located in a remarkable diversity of cellular compartments in different organisms. This location does not always reflect their evolutionary origins, as might be expected from the history of their acquisition through endosymbiosis. Instead, the final subcellular localization of the enzyme reflects multiple factors, including evolutionary origin, demand for the product, availability of the substrate, and mechanism of pathway regulation. The biosynthesis of Citation: Richtová, J.; Sheiner, L.; heme in the apicomonad Chromera velia follows a chimeric pathway combining heme elements from Gruber, A.; Yang, S.-M.; Koˇrený,L.; the ancient algal symbiont and the host.
    [Show full text]