Micro Satellite Orbital Boost by Electrodynamic Tethers

Total Page:16

File Type:pdf, Size:1020Kb

Micro Satellite Orbital Boost by Electrodynamic Tethers micromachines Article Micro Satellite Orbital Boost by Electrodynamic Tethers Peter Yao and Timothy Sands * Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA; [email protected] * Correspondence: [email protected] Abstract: In this manuscript, a method for maneuvering a spacecraft using electrically charged tethers is explored. The spacecraft’s velocity vector can be modified by interacting with Earth’s magnetic field. Through this method, a spacecraft can maintain an orbit indefinitely by reboosting without the constraint of limited propellant. The spacecraft-tether system dynamics in low Earth orbit are simulated to evaluate the effects of Lorentz force and torques on translational motion. With 500-meter tethers charged with a 1-amp current, a 100-kg spacecraft can gain 250 m of altitude in one orbit. By evaluating the combined effects of Lorenz force and the coupled effects of Lorentz torque propagation through Euler’s moment equation and Newton’s translational motion equations, the simulated spacecraft-tether system can orbit indefinitely at altitudes as low as 275 km. Through a rare evaluation of the nonlinear coupling of the six differential equations of motion, the one finding is that an electrodynamic tether can be used to maintain a spacecraft’s orbit height indefinitely for very low Earth orbits. However, the reboost maneuver is inefficient for high inclination orbits and has high electrical power requirement. To overcome greater aerodynamic drag at lower altitudes, longer tethers with higher power draw are required. Keywords: actuators; guidance; navigation; and control; cubesats; mini/micro satellites; spacecraft Citation: Yao, P.; Sands, T. Micro maneuvering; dynamics; magnetic field; tether; orbital dynamics; aerodynamic drag Satellite Orbital Boost by Electrodynamic Tethers. Micromachines 2021, 12, 916. https://doi.org/10.3390/mi12080916 1. Introduction Space, particularly in low-earth orbits, is littered with dangerous debris monitored by Academic Editors: Marco Ciarcia and the National Aeronautics and Space Administration (NASA) who together with the United Ruiqi Shen States Space Force issues warnings of impending space collisions [1]. Ecuador’s first and only satellite in orbit, Pegasus, collided with a Soviet-era rocket still in orbit [2]. In 2019 Received: 6 June 2021 the European Space Agency spacecraft dodged potential collision with Starlink satellite Accepted: 28 July 2021 when it maneuvered to avoid collision [3]. Collision avoidance is very challenging when Published: 31 July 2021 the spacecraft at risk has no remaining fuel to perform maneuver, so this manuscript inves- tigates the effectiveness of maneuvering spacecraft in low Earth orbit using electrodynamic Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in tethers. published maps and institutional affil- Spacecraft in low Earth orbit have a limited lifetime due to deceleration from aero- iations. dynamic drag that eventually cause low-earth orbiting satellites to re-enter (but on on- command). Reboost maneuvers can be conducted to keep them on station, however once the propellant is expended the spacecraft loses its maneuvering capability. Spacecraft equipped with electrodynamic tethers are able to take advantage of Earth’s magnetic field and maneuver to avoid collision by generating miss-distance, or alterna- Copyright: © 2021 by the authors. tively, reboost using electrical power, which can be generated from solar arrays. Such Licensee MDPI, Basel, Switzerland. This article is an open access article propellant-less maneuvers could extend spacecraft lifetime significantly; however, the distributed under the terms and effectiveness of maneuvering using electrodynamic tethers depends on several variables, conditions of the Creative Commons including orbit eccentricity, inclination, altitude, and the charge and length of the tether. Attribution (CC BY) license (https:// Various trajectories and tether configurations are illustrated via computer simulation in- creativecommons.org/licenses/by/ vestigating the functional limits of electrodynamic maneuvers in low Earth orbits. The 4.0/). proposed developments should prove especially useful for CubeSat whose extensive use of Micromachines 2021, 12, 916. https://doi.org/10.3390/mi12080916 https://www.mdpi.com/journal/micromachines Micromachines 2021, 12, x 2 of 20 Micromachines 2021, 12, 916 2 of 20 The proposed developments should prove especially useful for CubeSat whose extensive use of commercial off-the shelf components for their subsystems makes their cost a small commercialfraction of the off-the cost shelf of traditional components satellites, for their and subsystems thus likely makes ubiquitously their cost lack a small propulsion fraction ofsystems the cost to of maintain traditional low satellites, cost. and thus likely ubiquitously lack propulsion systems to maintainPropellant-free low cost. space maneuvers [4] are currently a hot research topic usually per- formedPropellant-free by angular momentum space maneuvers storage [devices4] are currently such as reaction a hot research wheels or topic control usually moment per- formedgyroscopes by angular [5]. The momentum gyroscopes storage are complicated devices such by assingular reaction mathematics wheels or control [6], which moment was gyroscopesonly recently [5 ].solved The gyroscopes [7]. Further are complicatin complicatedg using by singular momentum mathematics exchange [devices6], which is wastheir onlylimited recently capacity, solved and [7 that]. Further capacity complicating soon becomes using saturated momentum when exchange they are devicesrequired is to their ab- limitedsorb spacecraft capacity, disturbance and that capacity torques soon caused becomes by (aerodynamic saturated when drag they[8], gravity are required gradient to ab-[9], sorbsolar spacecraft wind [9], disturbanceand electro-magnetic torques caused disturba by (aerodynamicnces [10,11]). dragThe prop [8], gravityosals in gradient this manu- [9], solarscript wind reverse [9], the and paradigm electro-magnetic by instead disturbances seeking to [10 utilize,11]). these The proposals external momentum in this manuscript source reverseto intentionally the paradigm modify by spacecraft instead seeking orbits, to particularly utilize these by external orienting momentum an electric sourcetether as to de- in- tentionallypicted in Figure modify 1. spacecraftUtilization orbits, of electric particularly propulsion by orienting was recently an electric proposed tether for as depictedChipSats in[12], Figure and1 the. Utilization dynamics of were electric studied propulsion for CubeSats was recently [13,14], proposed including for electric ChipSats translational [ 12], and thepropulsion dynamics [15–17] were in studied addition for to CubeSats tether-assis [13,ted14], propulsion including electric[18] in the translational inaugural propul-issue of sionAerospace [15–17. ]This in addition manuscript to tether-assisted will study utilization propulsion of [18 electric] in the inauguraltethers to issuegenerate of Aerospace angular. This manuscript will study utilization of electric tethers to generate angular momentum, momentum, which propagates through the six coupled nonlinear equations of motion which propagates through the six coupled nonlinear equations of motion forming the basis forming the basis for modern spacecraft attitude control and guidance proposed in 2007 for modern spacecraft attitude control and guidance proposed in 2007 [19], formulated [19], formulated in 2009 [20], and experimentally validated in 2012 [21]. The method will in 2009 [20], and experimentally validated in 2012 [21]. The method will be evaluated for be evaluated for microsatellites. Electromagnetic tethers were recently proposed for microsatellites. Electromagnetic tethers were recently proposed for spacecraft docking [22], spacecraft docking [22], and many other examples were just articulated in the review by and many other examples were just articulated in the review by O’Reilly et al., 2021 [23], O’Reilly et al., 2021 [23], which was already demonstrated by NASA to produce transla- which was already demonstrated by NASA to produce translational propulsion forces [24]. tional propulsion forces [24]. This manuscript will instead evaluate the resultant transla- This manuscript will instead evaluate the resultant translational effects of coupled motion tional effects of coupled motion due to externally applied forces and torques through teth- due to externally applied forces and torques through tethers. Multisatellite tether systems ers. Multisatellite tether systems are not addressed. are not addressed. (a) (b) FigureFigure 1.1. ((aa)) Tether Tether orientation orientation for for reboost. reboost. (b ()b Les) Les Johnson, Johnson, a scie a scientistntist at Marshall at Marshall Space Space Flight Flight Cen- Centerter inspects inspects nonconducting nonconducting part part of a of tether a tether [25]. [25 ]. DevelopmentsDevelopments presentedpresented inin thisthis manuscriptmanuscript followfollow thethe naturenature ofof thethe 19981998 NASANASA studystudy [[10],10], whichwhich focusedfocused onon translationaltranslational thrustthrust generationgeneration usingusing LorentzLorentz forceforce combinedcombined withwith thethe recentrecent augmentationaugmentation byby WeisWeis andand PeckPeck[ [12],12], which whichevaluated evaluated attitudeattitude controlcontrol byby LorentzLorentz torquestorques determined determined by
Recommended publications
  • Modular Spacecraft with Integrated Structural Electrodynamic Propulsion
    NAS5-03110-07605-003-050 Modular Spacecraft with Integrated Structural Electrodynamic Propulsion Nestor R. Voronka, Robert P. Hoyt, Jeff Slostad, Brian E. Gilchrist (UMich/EDA), Keith Fuhrhop (UMich) Tethers Unlimited, Inc. 11807 N. Creek Pkwy S., Suite B-102 Bothell, WA 98011 Period of Performance: 1 September 2005 through 30 April 2006 Report Date: 1 May 2006 Phase I Final Report Contract: NAS5-03110 Subaward: 07605-003-050 Prepared for: NASA Institute for Advanced Concepts Universities Space Research Association Atlanta, GA 30308 NAS5-03110-07605-003-050 TABLE OF CONTENTS TABLE OF CONTENTS.............................................................................................................................................1 TABLE OF FIGURES.................................................................................................................................................2 I. PHASE I SUMMARY ........................................................................................................................................4 I.A. INTRODUCTION .............................................................................................................................................4 I.B. MOTIVATION .................................................................................................................................................4 I.C. ELECTRODYNAMIC PROPULSION...................................................................................................................5 I.D. INTEGRATED STRUCTURAL
    [Show full text]
  • W, A. Pavj-.:S VA -R,&2. ~L
    W, A. PaVJ-.:s VA -r,&2._~L NATIONAL ACADEMIES OF SCIENCE AND ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES OF AMERICA UNITED STATES NATIONAL COMMITTEE International Union of Radio Science, National Radio Science Meeting 5-8 January 1993 Sponsored by USNC/URSI in cooperation with Institute of Electrical and Electronics Engineers University of Colorado Boulder, Colorado U.S.A. National Radio Science Meeting 5-8 January 1993 Condensed Technical Program Monday, 4 January 2000-2400 USNC-URSI Meeting Broker Inn Tuesday, 5 January 0835-1200 B-1 ANTENNAS CRZ-28 0855-1200 A-1 MICROWAVE MEASUREMENTS CRl-46 D-1 MICROWAVE, QUASisOPTICAL, AND ELECTROOPTICAL DEVICES CRl-9 G-1 COORDINATED CAMPAIGNS AND ACTIVE EXPERIMENTS CR0-30 J/H-1 RADIO AND RADAR ASTRONOMY OF THE SOLAR SYSTEM CRZ-26 1335-1700 B-2 SCATIERING CR2-28 F-1 SENSING OF ATMOSPHERE AND OCEAN CRZ-6 G-2 IONOSPHERIC PROPAGATION CHANNEL CR0-30 J/H-2 RADIO AND RADAR ASTRONOMY OF THE SOLAR SYSTEM CR2-26 1355-1700 A-2 EM FIELD MEASUREMENTS CRl-46 D-2 OPTOELECTRONICS DEVICES AND APPLICATION CRl-9 1700-1800 Commission A Business Meeting CRl-46 Commission C Business Meeting CRl-40 Commission D Business Meeting CRl-9 Commission G Business Meeting CR0-30 Wednesday, 6 January 0815-1200 PLENARY SESSION MATH 100 1335-1700 B-3 EM THEORY CRZ-28 D-3 MICROWAVE AND MILLIMETER AND RELATED DEVICES CRl-9 F-2 PROPAGATION MODELING AND SCATTERING CRZ-6 H-1 PLASMA WAYES IN THE IONOSPHERE AND THE MAGNETOSPHERE CRl-42 J-1 FIBER OPTICS IN RADIO ASTRONOMY CR2-26 1355-1700 E-1 HIGH POWER ELECTROMAGNETICS (HPE) AND INTERFERENCE PROBLEMS CRl-40 United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE PROGRAM AND ABSTRACTS National Radio Science Meeting 5-8 January 1993 Sponsored by USNC/URSI in cooperation with IEEE groups and societies: Antennas and Propagation Circuits and Systems Communications Electromagnetic Compatibility Geoscience Electronics Information Theory ,.
    [Show full text]
  • Analysis and Design of Integrated Magnetorquer Coils for Attitude Control of Nanosatellites
    Analysis and Design of Integrated Magnetorquer Coils for Attitude Control of Nanosatellites Hassan Ali*, M. Rizwan Mughal*†, Jaan Praks †, Leonardo M. Reyneri+, Qamar ul Islam* * †Department of Electrical Engineering, Institute of Space Technology, Islamabad, Pakistan, †Department of Electronic and Nano Engineering, Aalto University, Espoo, Finland +Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy Abstract—The nanosatellites typically use either magnetic rods or become a challenge. In order to stabilize the tumbling satellite, coil to generate magnetic moment which consequently interacts the attitude control system is very necessary. There are two with the earth magnetic field to generate torque. In this research, types of attitude control systems i.e. passive and active [1-6]. we present a novel design which integrates printed embedded The permanent magnetics and the gravity gradients are passive coils, compact coils and magnetic rods in a single package which type. They being cost effective, consume no power but no is also complaint with 1U CubeSat. These options provide maximum flexibility, redundancy and scalability in the design. pointing accuracy is achieved using these types of actuators. The printed coils consume no extra space because the copper The majority of the missions these days require better pointing traces are printed in the internal layers of the printed circuit accuracies. The active control systems are typically used for in board (PCB). Moreover, they can be made reconfigurable by missions where better pointing accuracy is desired. The printing them into certain layers of the PCB, allowing the user to magnetorquer is a good option to control the attitude of select any combination of series and parallel coils for optimized nanosatellite.
    [Show full text]
  • Research and Educational Space Activities at AAU
    Research and Educational Space Activities at AAU Jens Dalsgaard Nielsen Axel Michelsen Martin Kragelund August 08 1 O 1997 Champ ACS study Danish Satellite Program (cont.) - Intelligent Autonomous O 2000 Rømer Detailed Design Systems (IAS) specialization CubeSat Def. Phase - TEAM AAU CubeSat 2001 O BEST summer school (25 sts.) 2002 O Advanced ACS+GPS -AAU CubeSat launched (75 sts. 2003 O - AAUSAT-II (+45 sts.) SSETI-Express (ESA) 2004 O Baumanetz (Russia) Baumanetz Launch STEC05 Conference 2005 O SSETI-Express Launch AAUSAT-II 2008 AAUSAT3 2 Ørsted – the first danish satellite 3 Satellites at Aalborg University – Ørsted •Danish National Satellite Project • •Started: 1993 •Launch: February 1999 •Dimension: 34 cm x 45 cm x 68 cm •Mass: 62 kg •Payload: Magnetometers •AAU main delivery: ACS 4 Ørsted purpose High precision measurement of earth magnetic field over place and time Coil based attitude Control 100% danish project 20 millionUS$ Launched 1999 Still in full operation • AAU ADCS – attitude determination and control 5 ACS control structure 6 AAU achievement Responsibility for analysis, design, implementation, verification of the ACDS system First proven control algorithm design based on use of only magnetorquer concept. Use of modular and hierarchical approach to facilitate easy verification and test. Several related Ph.D. work was conducted (ACS , ADS, Fault Diagnosis, Supervisory control) Has been complete success, In operation more than 7 years IT WAS HER IT ALL STARTED ! 7 ! 8 The Aalborg way of making Engineers • Problem and Project Based Learning: • Solve a engineering problem within semester theme • Receive lectures for learning new theory and technology • Mantra: Best Learning is by “Just Doing” • Math, Theory etc lectures them selves dont give anything • Same goes for Control, Realtime Systems, Power Eng,..
    [Show full text]
  • Comparison of Magnetorquer Performance
    Comparison of Magnetorquer Performance Max Pastena, James Barrington-Brown Presentation to CubeSat Workshop 8th August 2010 Background • Focused on the development and marketing of products for the Space Segment • Focus is on satellite sub-system design and manufacture • Growing number of license agreements with small satellite and sub-system manufactures • Worldwide customer base Magnetorquer Function Magnetorquers produce a torque on the spacecraft by interacting with the Earth’s Magnetic field: T=MxB Advantages: Disadvantages: •Low power consumption •Low Torque •Low volume •No Torque along Earth’s magnetic field •Simplicity and reliability •Difficult beyond LEO •Simple operation Suitable for: •Initial De tumbling due to the low power consumption and very low power availability during the phase •Reaction Wheel (if any) unloading •Two axes control of momentum stabilized satellites (Momentum wheel) But also............ •Three axis control when low power and volume is available on board the spacecraft •High efficiency manoeuvres Attitude Manoeuvres Necessary Dipole Moment to perform a 90deg manoeuvre @400km vs requested time in the best case i.e. Earth’s magnetic field perpendicular to the rotation axis •0.2 Am2 Dipole Moment Magnetic Torquer is a good compromise to have good agility for 1U, 2U and 3U cubesat •Magnetic Torquer with dipole moment <0.06Am2 are not suitable for attitude maneuvers De-tumbling Necessary Dipole Moment to perform the detumbling @ 400km vs requested time •0.2 Am2 Dipole Moment Magnetic Torquer is a good compromise
    [Show full text]
  • 1 Using Eletrodynamic Tethers to Perform Station
    USING ELETRODYNAMIC TETHERS TO PERFORM STATION-KEEPING MANEUVERS IN LEO SATELLITES Thais Carneiro Oliveira(1), and Antonio Fernando Bertachini de Almeida Prado(2) (1)(2) National Institute for Space Research (INPE), Av. dos Astronautas 1758 São José dos Campos – SP – Brazil ZIP code 12227-010,+55 12 32086000, [email protected] and [email protected] Abstract: This paper analyses the concept of using an electrodynamic tether to provide propulsion to a space system with an electric power supply and no fuel consumption. The present work is focused on orbit maintenance and on re-boost maneuvers for tethered satellite systems. The analyses of the results will be performed with the help of a practical tool called “Perturbation Integrals” and an orbit integrator that can include many external perturbations, like atmospheric drag, solar radiation pressure and luni-solar perturbation. Keywords: Electromagnetic Tether, Station-Keeping Maneuver, Orbital Maneuver, Tether Systems, Disturbing Forces. 1. Introduction Space tether is a promising and innovating field of study, and many articles, technical reports, books and even missions have used this concept through the recent decades. An overview of the space tethered flight tests missions includes the Gemini tether experiments, the OEDIPUS flights, the TSS-1 experiments, the SEDS flights, the PMG, TiPs, ATEx missions, etc [1-6]. This paper analyses the potential of using an electrodynamic tether to provide propulsion to a space system with an electric power supply and no fuel consumption. The present work is focused on orbit maintenance and re-boosts maneuvers for tethered satellite systems (TSS). This type of system consists of two or more satellites orbiting around a planet linked by a cable or a tether [7].
    [Show full text]
  • Arxiv:2003.07985V1
    Tether Capture of spacecraft at Neptune a,b b, J. R. Sanmart´ın , J. Pel´aez ∗ aReal Academia de Ingenier´ıa of Spain bUniversidad Polit´ecnica de Madrid, Pz. C.Cisneros 3, Madrid 28040, Spain Abstract Past planetary missions have been broad and detailed for Gas Giants, compared to flyby missions for Ice Giants. Presently, a mission to Neptune using electrodynamic tethers is under consideration due to the ability of tethers to provide free propulsion and power for orbital insertion as well as additional exploratory maneuvering — providing more mission capability than a standard orbiter mission. Tether operation depends on plasma density and magnetic field B, though tethers can deal with ill-defined density profiles, with the anodic segment self-adjusting to accommodate densities. Planetary magnetic fields are due to currents in some small volume inside the planet, magnetic-moment vector, and typically a dipole law approximation — which describes the field outside. When compared with Saturn and Jupiter, the Neptunian magnetic structure is significantly more complex: the dipole is located below the equatorial plane, is highly offset from the planet center, and at large tilt with its rotation axis. Lorentz-drag work decreases quickly with distance, thus requiring spacecraft periapsis at capture close to the planet and allowing the large offset to make capture efficiency (spacecraft-to-tether mass ratio) well above a no-offset case. The S/C might optimally reach periapsis when crossing the meridian plane of the dipole, with the S/C facing it; this convenient synchronism is eased by Neptune rotating little during capture. Calculations yield maximum efficiency of approximately 12, whereas a 10◦ meridian error would reduce efficiency by about 6%.
    [Show full text]
  • Optimal Control of Electrodynamic Tethers
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 6-1-2008 Optimal Control of Electrodynamic Tethers Robert E. Stevens Follow this and additional works at: https://scholar.afit.edu/etd Part of the Aerospace Engineering Commons Recommended Citation Stevens, Robert E., "Optimal Control of Electrodynamic Tethers" (2008). Theses and Dissertations. 2656. https://scholar.afit.edu/etd/2656 This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. OPTIMAL CONTROL OF ELECTRODYNAMIC TETHER SATELLITES DISSERTATION Robert E. Stevens, Commander, USN AFIT/DS/ENY/08-13 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this dissertation are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. AFIT/DS/ENY/08-13 OPTIMAL CONTROL OF ELECTRODYNAMIC TETHER SATELLITES DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Robert E. Stevens, BS, MS Commander, USN June 2008 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/DS/ENY/08-13 OPTIMAL CONTROL OF ELECTRODYNAMIC TETHER SATELLITES Robert E. Stevens, BS, MS Commander, USN Approved: Date ____________________________________ William E.
    [Show full text]
  • Electrodynamic Tethers in Space
    Electrodynamic Tethersin Space By Enrico Lorenzini and Juan Sanmartín 50 SCIENTIFIC AMERICAN AUGUST 2004 COPYRIGHT 2004 SCIENTIFIC AMERICAN, INC. ARTIST’S CONCEPTION depicts how a tether system might operate on an exploratory mission to Jupiter and its moons. As the apparatus and its attached research instruments glide through space between Europa and Callisto, the tether would harvest power from its interaction with the vast magnetic field generated by Jupiter, which looms in the background. By manipulating current flow along the kilometers-long tether, mission controllers could change the tether system’s altitude and direction of flight. By exploiting fundamental physical laws, tethers may provide low-cost electrical power, drag, thrust, and artificial gravity for spaceflight www.sciam.com SCIENTIFIC AMERICAN 51 COPYRIGHT 2004 SCIENTIFIC AMERICAN, INC. There are no filling stations in space. Every spacecraft on every mission has to carry all the energy Tethers are systems in which a flexible cable connects two sources required to get its job done, typically in the form of masses. When the cable is electrically conductive, the ensemble chemical propellants, photovoltaic arrays or nuclear reactors. becomes an electrodynamic tether, or EDT. Unlike convention- The sole alternative—delivery service—can be formidably al arrangements, in which chemical or electrical thrusters ex- expensive. The International Space Station, for example, will change momentum between the spacecraft and propellant, an need an estimated 77 metric tons of booster propellant over its EDT exchanges momentum with the rotating planet through the anticipated 10-year life span just to keep itself from gradually mediation of the magnetic field [see illustration on opposite falling out of orbit.
    [Show full text]
  • Prototype Design and Mission Analysis for a Small Satellite Exploiting Environmental Disturbances for Attitude Stabilization
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis and Dissertation Collection 2016-03 Prototype design and mission analysis for a small satellite exploiting environmental disturbances for attitude stabilization Polat, Halis C. Monterey, California: Naval Postgraduate School http://hdl.handle.net/10945/48578 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS PROTOTYPE DESIGN AND MISSION ANALYSIS FOR A SMALL SATELLITE EXPLOITING ENVIRONMENTAL DISTURBANCES FOR ATTITUDE STABILIZATION by Halis C. Polat March 2016 Thesis Advisor: Marcello Romano Co-Advisor: Stephen Tackett Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED (Leave blank) March 2016 Master’s thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS PROTOTYPE DESIGN AND MISSION ANALYSIS FOR A SMALL SATELLITE EXPLOITING ENVIRONMENTAL DISTURBANCES FOR ATTITUDE STABILIZATION 6. AUTHOR(S) Halis C. Polat 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING Naval Postgraduate School ORGANIZATION REPORT Monterey, CA 93943-5000 NUMBER 9.
    [Show full text]
  • Applications of the Electrodynamic Tether to Interstellar Travel
    s .I 1 7 Matloff/Johnson “Tether Applications paper,” for JBIS Applications of the Electrodynamic Tether to Interstellar Travel GREGORY L. MATLOFF Dept. of Physical & Biological Sciences, New York City College of Technology, CUNU, 300 Jay Street, Brooklyn, NY 11201, USA Gray Research Inc., 675 Discovery Drive, Suite 302, Huntsville, AL, 35806, USA Email: [email protected] and LES JOHNSON In-Space Propulsion Technology Project, NASA Marshall Space Flight Center, NP40, AL, 35812, USA Emai 1: C. Les.Johnson @ nasa. gov ABSTRACI’: After considering relevant properties of the local interstellar medium and defining a sample interstellar mission, this paper considers possible interstellar applications of the electrodynamic tether, or EDT. These include use of the EDT to provide on-board power and affect trajectory modifications and direct application of the EDT to starship acceleration. It is demonstrated that comparatively modest EDTs can provide substantial quantities of on-board power, if combined with a large-area electron- collection device such as the Cassenti toroidal-field ramscoop. More substantial tethers can be used to accomplish large-radius thrustless turns. Direct application of the EDT to starship acceleration is apparently infeasible. Keywords: interstellar travel, tethers, world ships, ramscoops, thrustless turning, on- board power sources 1. Introduction: The Electrodynamic Tether, or EDT, is conceptually one of the simplest in-space propulsion concepts. The tether consists of a long, conducting strand. Electrons are collected from the ambient plasma at one end, flow along the tether, and are emitted at the other end of the tether. In certain cases, the tether itself collects electrons from the local plasma, and a dedicated electron-collection device is not required.
    [Show full text]
  • Electrodynamic Tether Reboost Study
    NASA/TM-1998-208538 ~or. International Space Station Electrodynamic Tether Reboost Study L. Johnson and M. Herrmann Marshall Space Flight Center, Marshall Space Flight Center, Alabama July 1998 The NASA STI Program Office .. .in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical conferences, science. The NASA Scientific and Technical symposia, seminars, or other meetings sponsored Information (STI) Program Office plays a key or cosponsored by NASA. part in helping NASA maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, The NASA STI Program Office is operated by projects, and mission, often concerned with Langley Research Center, the lead center for subjects having substantial public interest. NASA's scientific and technical information. The NASA STI Program Office provides access to the • TECHNICAL TRANSLATION. NASA STI Database, the largest collection of English-language translations of foreign scientific aeronautical and space science STI in the world. The and technical material pertinent to NASA's Program Office is also NASA's institutional mission. mechanism for disseminating the results of its research and development activities. These results Specialized services that complement the STI are published by NASA in the NASA STI Report Program Office's diverse offerings include creating Series, which includes the following report types: custom thesauri, building customized databases, organizing and publishing research results ... even • TECHNICAL PUBLICATION. Reports of providing videos. completed research or a major significant phase of research that present the results of NASA For more information about the NASA STI Program programs and include extensive data or Office, see the following: .
    [Show full text]