COMMISSION G : IONOSPHERIC RADIO and PROPAGATION (Nov

Total Page:16

File Type:pdf, Size:1020Kb

COMMISSION G : IONOSPHERIC RADIO and PROPAGATION (Nov COMMISSION G : IONOSPHERIC RADIO AND PROPAGATION (Nov. '89 - Oct. '92) Edited by Nobuo Matuura G1. Ionospheric Techniques A computer-aided automatic ionogram processing system capable for digitization, scaling and archives of the ionograms from five Japanese ionosonde stations has been developed. The system consists of both a pre-processor connected to each ionosonde in order to archive digitized-ionograms and a data collection processor annexed to the central computer for automatic scaling [Nozaki et al., 1992]. The automatic scaling procedure and the results of a comparison between automatic and manual scalings were described [Igi et al., 1992]. A new method for extracting some ionospheric parameters from digital ionograms was presented [Igi, 1992]. The 46.5-MHz MU (middle and upper atmosphere) radar is a very unique radar capable of measuring the lower atmosphere and the ionosphere with an active phased-array system. The newly implemented capabilities and antenna pattern calibrations of this radar were given [Fukao et al., 1990]. An HF coherent radar experiment for exploring the Antarctic high-latitude ionosphere was proposed [Ogawa et al., 1990]. The experiment will start in early 1995. A plan of constructing an incoherent scatter radar at Spitsbergen was presented [Matuura and Oguti, 1991]. This radar aims at snap-shot observations of the transient structure and dynamics in the dayside cusp or polar cap ionosphere with time resolution less than a minute. A METS (microwave energy transmission in space) experiemnt was proposed [Matsumoto et al., 1990]. Two fundamental areas are addressed: one is the development of a control system for the microwave beam; the other concerns the study of nonlinear propagation effects of the beam as it passes through space plasmas. Computer experiments using a two-dimensional electromagnetic particle code were made to study the nonlinear plasma dynamics associated with electrodynamic tether system [Usui et al., 1991, 1993]. Spatial pattern and movement of the 30-MHz cosmic noise absorptions were observed by a two- dimensional multi-beam (8x8 beams) riometer in the northern polar cap [Nishino et al., 1990]. A method of analysis for the monochromatic aurora stereo TV observations was examined [Aso et al., 1990]. In this method, first, a camera model is obtained by using calibration data for the background stars, and then, an inverse problem is solved which reconstructs three-dimensional luminosity structures of photoemission from two-dimensional auroral images. This method was applied for the stereoscopic observation of a stable auroral arc. A new type of auroral imaging spectrometer was developed [Okamura and Ejiri, 1992]. This can measure spectral apparent emission rate of aurora in coordinates of wavelength and spatial field of view of 72.6 degrees with a maxium time resolution of 0.2 s. A balloon observation of auroral X-rays was carried out in Norway by using X-ray imagers [Yamagami et al., 1990]. The X-ray images were obtained by a two-dimensional 5x5 matrix array of Si(Li) semiconductor detectors with 3-s time intervals. Feasibility studies of the long- term circumpolar balloon experiment, called the Polar Patrol Balloon (PPB) project, aiming at establishing a station network in the stratosphere over the Antarctica for geophysical and astrophysical observations were reported [Hirasawa et al., 1990; Ejiri et al.,1993]. Three test flights in 1987 and 1990 at Syowa Station convinced us that PPB would come back to the launching site. The PPBs carrying auroral X-ray, electric and magnetic field detectors were launched during 1991-1993. (T. Ogawa) References Aso,T., T.Hashimoto, M.Abe, T.Ono and M.Ejiri, On the analysis of aurora stereo observation, J. Geomag. Geoelectr., 42, 579-595 (1990) Ejiri,M., A.Kadokura, T.Hirasawa, N.Sato, R.Fujii, H.Miyaoka, J.Nishimura, N.Yajima, T.Yamagami, S.Kokubun, H.Fukunishi, M.Yamanaka and M.Kodama, Polar patrol balloon experiment in Antarctica, Adv. Space Res., 13, (2)127-(2)130 (1993) Fukao,S., T.Sato, T.Tsuda, M.Yamamoto, M.D.Yamanaka and S.Kato, MU radar: New capabilities and system calibrations, Radio Sci., 25, 477-485 (1990) Hirasawa,T., M.Ejiri, N.Sato, R.Fujii, H.Miyaoka, A.Kadokura, J.Nishimura, N.Yajima, T.Yamagami, S.Kokubun, H.Fukunishi, M.Yamanaka and M.Kodama, Polar patrol balloon experiment during 1991-1993, Proc. Internat. Symp. on Space Technology and Science, ISAS, Tokyo, 1593-1597 (1990) Igi,S., H.Minakoshi and M.Yoshida, Automatic ionogram processing system 2. Automatic ionogram scaling, J. Commun. Res. Lab., 39, 367-379 (1992) Igi,S., Automatic ionogram processing system 3. A new method of displaying ionospheric characteristics, J. Commun. Res. Lab., 39, 381-402 (1992) Matsumoto,H., N.Kaya and M.Nagatomo, Microwave energy transmission experiment, Space Power, 9, 113-130 (1990) Matuura,N. and T.Oguti, Japanese plans for Spitsbergen radar, Annal. Geophys., 9, 339 (1991) Nishino,M., Y.Tanaka, T.Oguti and A.Egeland, CNA observations by a multibeam riometer at Ny-Alesund in the polar cap, Eos Trans. AGU, 71, 912 (1990) Nozaki,K., N.Nagayama and H.Kato, Automatic ionogram processing system 1. Data reduction and transmission of ionogram, J. Commun. Res. Lab., 39, 357-365 (1992) Ogawa,T., T.Hirasawa, M.Ejiri, N.Sato, H.Yamagishi, R.Fujii and K.Igarashi, HF radar experiment at Syowa Station for the study of high-latitude ionosphere - 2 : A capability, Proc. NIPR Symp. Upper Atmos. Phys., 3, 91-95 (1990) Okamura,H. and M.Ejiri, A new imaging spectrometer for the auroral spectroscopic studies, J. Geomag. Geoelectr., 44, 193-205 (1992) Usui,H., H.Matsumoto and Y.Omura, Electron beam injection and associated LHR wave excitation: Computer experiments of (SHUTTLE) electrodynamic tether system, Geophys. Res. Lett., 18, 821-824 (1991) Usui,H., H.Matsumoto and Y.Omura, Plasma response to high potential satellite in electrodynamic tether system, J. Geophys. Res., 98, 1531-1544 (1993) Yamagami,T., H.Miyaoka, A.Nakamoto, Y.Hirasima, S.Ohta, M.Namiki, H.Murakami, N.Sato, R.Fujii, K.Okudaira, J.Nishimura and M.Kodama, Two-dimensional auroral X-ray image observation at a balloon altitude in the northern auroral zone, J. Geomag. Geoelectr., 42, 1175- 1191 (1990) G2. Ionospheric Structure and Modeling G2.1. Structure of Mid-Latitude F-Region Average structure of the mid-latitude F-region ionosphere were derived from the data with experiments using the MU radar in Shigaraki, Japan. Full-year and seasonal averages of F- region electron density and ion velocity were used to compute the neutral meridional winds [Oliver et al., 1990]. Local time/seasonal/solar cycle averages of F-region electron, ion and neutral temperatures [Oliver et al., 1991a] and local time/ seasonal averages of F-region elctron density and three components of ion velocity vector, parallel, northward perpendicular and eastward perpendicular to the geomagnetic field [Fukao et al., 1991a] were derived. G2.2. Modeling of Planetary Ionospheres The energetics of the daytime conditions in the Venus ionosphere were studied by taking into consideration of influences of heating due to charge exchange between hot oxygen atoms and thermal oxygen ions [Kim et al., 1990]. The MHD models on the interaction between the solar wind and the dayside Venus ionosphere were studied to explain the observed vertical profiles of the magnetic field [Cravens et al., 1990] and the plasma temperature [Shinagawa et al., 1991], and the observed structure of the ionopause [Cravens and Shinagawa, 1991]. A model of the interaction between the solar wind and the dayside Mars ionosphere under a weak intrinsic magnetic field were discussed [Shinagawa and Cravens, 1992]. G2.3. Ionospheric Disturbances at Mid-Latitude Anomalous enhancements of f-min on ionograms from Japanese ionosonde stations, as well as phase shifts in the Omega signals were observed on January 1990 during the DYANA campaign, and it has been suggested that the winter anomaly extended down to the latitudes of about 31deg N [Ogawa et al., 1992a]. Variations in the E-region electron density during the period of a partial solar eclipse on September 23, 1987 were observed using the MU radar at Shigaraki, Japan [Zhang et al., 1991]. A remarkable increase in the height of maximum electron density with duration of about two hours was observed with the MU radar experiments made around midnight on January 20-21, 1989, and it has been suggested that the disturbance was caused by unusually large eastward electric field at mid-latitudes associated with the onset of a substorm in the polar region [Reddy et al., 1990; Reddy et al., 1991]. Studies on spatial and temporal variations in the F-region electron density profiles during disturbed periods were made by four-beam measurements with the MU radar, and it has been found that ionospheric disturbances travel in the direction predominantly equatorward during the disturbed conditions [Takami et al., 1991]. With the four- beam experiments carried out during the geomagnetic storm of 20-23 October 1989, when the auroral display was seen in Japan, a strongly structured ionosphere with large spatial gradients in the electron density profiles was observed to stream over the radar site [Oliver et al., 1991b]. The F-region ionospheric disturbances during the two events of auroral display seen in Japan on 21 October and 17 November, 1989, were investigated with the ionograms obtained from the chain of Japanese ionosondes, and it has been suggested that the ionospheric disturbances generated at around 60deg N in the north of Japan traveled
Recommended publications
  • Modular Spacecraft with Integrated Structural Electrodynamic Propulsion
    NAS5-03110-07605-003-050 Modular Spacecraft with Integrated Structural Electrodynamic Propulsion Nestor R. Voronka, Robert P. Hoyt, Jeff Slostad, Brian E. Gilchrist (UMich/EDA), Keith Fuhrhop (UMich) Tethers Unlimited, Inc. 11807 N. Creek Pkwy S., Suite B-102 Bothell, WA 98011 Period of Performance: 1 September 2005 through 30 April 2006 Report Date: 1 May 2006 Phase I Final Report Contract: NAS5-03110 Subaward: 07605-003-050 Prepared for: NASA Institute for Advanced Concepts Universities Space Research Association Atlanta, GA 30308 NAS5-03110-07605-003-050 TABLE OF CONTENTS TABLE OF CONTENTS.............................................................................................................................................1 TABLE OF FIGURES.................................................................................................................................................2 I. PHASE I SUMMARY ........................................................................................................................................4 I.A. INTRODUCTION .............................................................................................................................................4 I.B. MOTIVATION .................................................................................................................................................4 I.C. ELECTRODYNAMIC PROPULSION...................................................................................................................5 I.D. INTEGRATED STRUCTURAL
    [Show full text]
  • W, A. Pavj-.:S VA -R,&2. ~L
    W, A. PaVJ-.:s VA -r,&2._~L NATIONAL ACADEMIES OF SCIENCE AND ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES OF AMERICA UNITED STATES NATIONAL COMMITTEE International Union of Radio Science, National Radio Science Meeting 5-8 January 1993 Sponsored by USNC/URSI in cooperation with Institute of Electrical and Electronics Engineers University of Colorado Boulder, Colorado U.S.A. National Radio Science Meeting 5-8 January 1993 Condensed Technical Program Monday, 4 January 2000-2400 USNC-URSI Meeting Broker Inn Tuesday, 5 January 0835-1200 B-1 ANTENNAS CRZ-28 0855-1200 A-1 MICROWAVE MEASUREMENTS CRl-46 D-1 MICROWAVE, QUASisOPTICAL, AND ELECTROOPTICAL DEVICES CRl-9 G-1 COORDINATED CAMPAIGNS AND ACTIVE EXPERIMENTS CR0-30 J/H-1 RADIO AND RADAR ASTRONOMY OF THE SOLAR SYSTEM CRZ-26 1335-1700 B-2 SCATIERING CR2-28 F-1 SENSING OF ATMOSPHERE AND OCEAN CRZ-6 G-2 IONOSPHERIC PROPAGATION CHANNEL CR0-30 J/H-2 RADIO AND RADAR ASTRONOMY OF THE SOLAR SYSTEM CR2-26 1355-1700 A-2 EM FIELD MEASUREMENTS CRl-46 D-2 OPTOELECTRONICS DEVICES AND APPLICATION CRl-9 1700-1800 Commission A Business Meeting CRl-46 Commission C Business Meeting CRl-40 Commission D Business Meeting CRl-9 Commission G Business Meeting CR0-30 Wednesday, 6 January 0815-1200 PLENARY SESSION MATH 100 1335-1700 B-3 EM THEORY CRZ-28 D-3 MICROWAVE AND MILLIMETER AND RELATED DEVICES CRl-9 F-2 PROPAGATION MODELING AND SCATTERING CRZ-6 H-1 PLASMA WAYES IN THE IONOSPHERE AND THE MAGNETOSPHERE CRl-42 J-1 FIBER OPTICS IN RADIO ASTRONOMY CR2-26 1355-1700 E-1 HIGH POWER ELECTROMAGNETICS (HPE) AND INTERFERENCE PROBLEMS CRl-40 United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE PROGRAM AND ABSTRACTS National Radio Science Meeting 5-8 January 1993 Sponsored by USNC/URSI in cooperation with IEEE groups and societies: Antennas and Propagation Circuits and Systems Communications Electromagnetic Compatibility Geoscience Electronics Information Theory ,.
    [Show full text]
  • 1 Using Eletrodynamic Tethers to Perform Station
    USING ELETRODYNAMIC TETHERS TO PERFORM STATION-KEEPING MANEUVERS IN LEO SATELLITES Thais Carneiro Oliveira(1), and Antonio Fernando Bertachini de Almeida Prado(2) (1)(2) National Institute for Space Research (INPE), Av. dos Astronautas 1758 São José dos Campos – SP – Brazil ZIP code 12227-010,+55 12 32086000, [email protected] and [email protected] Abstract: This paper analyses the concept of using an electrodynamic tether to provide propulsion to a space system with an electric power supply and no fuel consumption. The present work is focused on orbit maintenance and on re-boost maneuvers for tethered satellite systems. The analyses of the results will be performed with the help of a practical tool called “Perturbation Integrals” and an orbit integrator that can include many external perturbations, like atmospheric drag, solar radiation pressure and luni-solar perturbation. Keywords: Electromagnetic Tether, Station-Keeping Maneuver, Orbital Maneuver, Tether Systems, Disturbing Forces. 1. Introduction Space tether is a promising and innovating field of study, and many articles, technical reports, books and even missions have used this concept through the recent decades. An overview of the space tethered flight tests missions includes the Gemini tether experiments, the OEDIPUS flights, the TSS-1 experiments, the SEDS flights, the PMG, TiPs, ATEx missions, etc [1-6]. This paper analyses the potential of using an electrodynamic tether to provide propulsion to a space system with an electric power supply and no fuel consumption. The present work is focused on orbit maintenance and re-boosts maneuvers for tethered satellite systems (TSS). This type of system consists of two or more satellites orbiting around a planet linked by a cable or a tether [7].
    [Show full text]
  • Arxiv:2003.07985V1
    Tether Capture of spacecraft at Neptune a,b b, J. R. Sanmart´ın , J. Pel´aez ∗ aReal Academia de Ingenier´ıa of Spain bUniversidad Polit´ecnica de Madrid, Pz. C.Cisneros 3, Madrid 28040, Spain Abstract Past planetary missions have been broad and detailed for Gas Giants, compared to flyby missions for Ice Giants. Presently, a mission to Neptune using electrodynamic tethers is under consideration due to the ability of tethers to provide free propulsion and power for orbital insertion as well as additional exploratory maneuvering — providing more mission capability than a standard orbiter mission. Tether operation depends on plasma density and magnetic field B, though tethers can deal with ill-defined density profiles, with the anodic segment self-adjusting to accommodate densities. Planetary magnetic fields are due to currents in some small volume inside the planet, magnetic-moment vector, and typically a dipole law approximation — which describes the field outside. When compared with Saturn and Jupiter, the Neptunian magnetic structure is significantly more complex: the dipole is located below the equatorial plane, is highly offset from the planet center, and at large tilt with its rotation axis. Lorentz-drag work decreases quickly with distance, thus requiring spacecraft periapsis at capture close to the planet and allowing the large offset to make capture efficiency (spacecraft-to-tether mass ratio) well above a no-offset case. The S/C might optimally reach periapsis when crossing the meridian plane of the dipole, with the S/C facing it; this convenient synchronism is eased by Neptune rotating little during capture. Calculations yield maximum efficiency of approximately 12, whereas a 10◦ meridian error would reduce efficiency by about 6%.
    [Show full text]
  • Optimal Control of Electrodynamic Tethers
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 6-1-2008 Optimal Control of Electrodynamic Tethers Robert E. Stevens Follow this and additional works at: https://scholar.afit.edu/etd Part of the Aerospace Engineering Commons Recommended Citation Stevens, Robert E., "Optimal Control of Electrodynamic Tethers" (2008). Theses and Dissertations. 2656. https://scholar.afit.edu/etd/2656 This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. OPTIMAL CONTROL OF ELECTRODYNAMIC TETHER SATELLITES DISSERTATION Robert E. Stevens, Commander, USN AFIT/DS/ENY/08-13 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this dissertation are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. AFIT/DS/ENY/08-13 OPTIMAL CONTROL OF ELECTRODYNAMIC TETHER SATELLITES DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Robert E. Stevens, BS, MS Commander, USN June 2008 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/DS/ENY/08-13 OPTIMAL CONTROL OF ELECTRODYNAMIC TETHER SATELLITES Robert E. Stevens, BS, MS Commander, USN Approved: Date ____________________________________ William E.
    [Show full text]
  • Electrodynamic Tethers in Space
    Electrodynamic Tethersin Space By Enrico Lorenzini and Juan Sanmartín 50 SCIENTIFIC AMERICAN AUGUST 2004 COPYRIGHT 2004 SCIENTIFIC AMERICAN, INC. ARTIST’S CONCEPTION depicts how a tether system might operate on an exploratory mission to Jupiter and its moons. As the apparatus and its attached research instruments glide through space between Europa and Callisto, the tether would harvest power from its interaction with the vast magnetic field generated by Jupiter, which looms in the background. By manipulating current flow along the kilometers-long tether, mission controllers could change the tether system’s altitude and direction of flight. By exploiting fundamental physical laws, tethers may provide low-cost electrical power, drag, thrust, and artificial gravity for spaceflight www.sciam.com SCIENTIFIC AMERICAN 51 COPYRIGHT 2004 SCIENTIFIC AMERICAN, INC. There are no filling stations in space. Every spacecraft on every mission has to carry all the energy Tethers are systems in which a flexible cable connects two sources required to get its job done, typically in the form of masses. When the cable is electrically conductive, the ensemble chemical propellants, photovoltaic arrays or nuclear reactors. becomes an electrodynamic tether, or EDT. Unlike convention- The sole alternative—delivery service—can be formidably al arrangements, in which chemical or electrical thrusters ex- expensive. The International Space Station, for example, will change momentum between the spacecraft and propellant, an need an estimated 77 metric tons of booster propellant over its EDT exchanges momentum with the rotating planet through the anticipated 10-year life span just to keep itself from gradually mediation of the magnetic field [see illustration on opposite falling out of orbit.
    [Show full text]
  • Applications of the Electrodynamic Tether to Interstellar Travel
    s .I 1 7 Matloff/Johnson “Tether Applications paper,” for JBIS Applications of the Electrodynamic Tether to Interstellar Travel GREGORY L. MATLOFF Dept. of Physical & Biological Sciences, New York City College of Technology, CUNU, 300 Jay Street, Brooklyn, NY 11201, USA Gray Research Inc., 675 Discovery Drive, Suite 302, Huntsville, AL, 35806, USA Email: [email protected] and LES JOHNSON In-Space Propulsion Technology Project, NASA Marshall Space Flight Center, NP40, AL, 35812, USA Emai 1: C. Les.Johnson @ nasa. gov ABSTRACI’: After considering relevant properties of the local interstellar medium and defining a sample interstellar mission, this paper considers possible interstellar applications of the electrodynamic tether, or EDT. These include use of the EDT to provide on-board power and affect trajectory modifications and direct application of the EDT to starship acceleration. It is demonstrated that comparatively modest EDTs can provide substantial quantities of on-board power, if combined with a large-area electron- collection device such as the Cassenti toroidal-field ramscoop. More substantial tethers can be used to accomplish large-radius thrustless turns. Direct application of the EDT to starship acceleration is apparently infeasible. Keywords: interstellar travel, tethers, world ships, ramscoops, thrustless turning, on- board power sources 1. Introduction: The Electrodynamic Tether, or EDT, is conceptually one of the simplest in-space propulsion concepts. The tether consists of a long, conducting strand. Electrons are collected from the ambient plasma at one end, flow along the tether, and are emitted at the other end of the tether. In certain cases, the tether itself collects electrons from the local plasma, and a dedicated electron-collection device is not required.
    [Show full text]
  • Electrodynamic Tether Reboost Study
    NASA/TM-1998-208538 ~or. International Space Station Electrodynamic Tether Reboost Study L. Johnson and M. Herrmann Marshall Space Flight Center, Marshall Space Flight Center, Alabama July 1998 The NASA STI Program Office .. .in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical conferences, science. The NASA Scientific and Technical symposia, seminars, or other meetings sponsored Information (STI) Program Office plays a key or cosponsored by NASA. part in helping NASA maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, The NASA STI Program Office is operated by projects, and mission, often concerned with Langley Research Center, the lead center for subjects having substantial public interest. NASA's scientific and technical information. The NASA STI Program Office provides access to the • TECHNICAL TRANSLATION. NASA STI Database, the largest collection of English-language translations of foreign scientific aeronautical and space science STI in the world. The and technical material pertinent to NASA's Program Office is also NASA's institutional mission. mechanism for disseminating the results of its research and development activities. These results Specialized services that complement the STI are published by NASA in the NASA STI Report Program Office's diverse offerings include creating Series, which includes the following report types: custom thesauri, building customized databases, organizing and publishing research results ... even • TECHNICAL PUBLICATION. Reports of providing videos. completed research or a major significant phase of research that present the results of NASA For more information about the NASA STI Program programs and include extensive data or Office, see the following: .
    [Show full text]
  • Tethers in Space Handbook
    Tethers In Space Handbook rampantly.Compensatory Chancy and Jeremiasmustached flamed, Casey his denationalises loon stapling herconned role plumingdebauchedly. or james retrorsely. Aleck brush-off Some cases where they conserve energy gap is especially useful to tethers in space handbook is made Upper atmosphere after which exploit the space handbook provides good agreement to! Scientists expect the see tethers doing real authority in orbit in copper not reach distant. This paper introduces history of space tethers including tether concepts and tether. Feedback eligible for Retrieving an Electro IEEE Xplore. The handbook is moving plasma grounding techniques in tethers space handbook: a unique and are examined in general innovative space has separated from the performance of the tether part is. Tethers in this Handbook NASA Marshall Space service Center Huntsville Ala. A NUCLEAR SPACE door system the SP-100 is being developed for. Tethers In that Handbook Cosmo M L Lorenzini E C Administration National Aeronautics and Amazoncomau Books. 1 ML Cosmo EC Lorenzini Tethers in this Handbook Smithsonian. Space tether technologies in working space missions 3 7. Phase which includes tether picks up to space handbook: terms of the handbook, advanced tether will require at large counterweight, there are taken along with. Mechanisms and lubrication of electrodynamic tether system. Applications for space handbook has developed controller proved effective effort has focused definition of tethers in space handbook is the figure gives the connection is the grapple would quickly be transported up. Tethers In adventure Handbook Amazonde Cosmo M L Lorenzini. The handbook is increased tensile mode allows to space handbook: this magnetic field.
    [Show full text]
  • Sru Tzm 11·1\) 4-6 January 1989
    Sru TZm 11·1\) NATIONAL ACADEMIES OF SCIENCE AND ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES OF AMERICA UNITED STATES NATIONAL COMMITTEE International Union of Radio Science National Radio Science Meeting 4-6 January 1989 Sponsored by USNC/URSI in cooperation with Institute of Electrical and Electronics Engineers University of Colorado Boulder, Colorado U.S.A. Nationa1 Radio Science Meeting 4-6 January 1989 Condensed Technica1 Program Tuesday, 3 January 2000-2400 USNC-URSI Meeting Broker Inn Wednesday, 4 January 0835-1200 B-1 SCATTERING I CRO-30 0855-1200 D-1 HIGH FREQUENCY DEVICES CRO-36 F-1 EARTH AND OCEAN SENSING, AND TERRAIN EFFECTS CRl-9 G-1 THE EARLY DAYS OF RADIOSCIENCE CR2-28 A Commission G Memorial honoring the memory and celebrating the lives of Henry G. Booker, J.A. Ratcliffe, and Newbern Smith J-1 VERY LONG BASELINE INTERFEROMETRY AND ASTRONOMY I CR2-26 1335-1700 B-2 NUMERICAL METHODS CRO-30 DB-1 MICROWAVE COMPONENTS CRO-36 G-2 IONOSPHERIC EFFECTS ON RADAR AND SATELLITE SYSTEMS CR2-6 1355-1535 J-2 VERY LONG BASELINE INTERFEROMETRY AND ASTROMETRY II CR2-26 1355-1520 H-1 SPACEBORNE ELECTRODYNAMIC TETHERS AND THEIR EM EMISSIONS INTO NEAR-EARTH PLASMA CRl-46 1355-1700 A-1 ANTENNA AND FIELD MEASUREMENTS CRl-42 C-1 ANALYSIS OF UNEQUALLY SAMPLED EXPERIMENTAL DATA CRl-40 F-2 RAIN, RADIOMETRY, AND RADAR MEASUREMENTS CRl-9 1535-1700 J-3 INTERSTELLAR AND INTERPLANETARY SCATTERING CR2-26 1555-1700 H-2 ACTIVE EXPERIMENTS WITH ELECTRON AND NEUTRAL BEAM INJECTION INTO SPACE CRl-46 1700-1800 Commission B Business Meeting CRO-30
    [Show full text]
  • The Role of Tethers on Space Station 6
    NASA Technical Memorandum NASA-TM-86519 19850025841 NASA TM -86519 ' . .,. THE ROLES OF TETHERS ON SPACE STATION By Georg von Tiesenhausen, Editor, MSFC James K. Harrison, MSFC Kenneth R. Kroll, JSC William O. Nobles, MMC Paul M. Siemers III, LaRC Dr. William J. Webster, GSFC October 1985 !; :; (J .••••_-, •.• ..)),~ t.~ I.. • t ('.- t..,; U.NGLEY RESEARCH GENTEP. LIBRARY, NASA I !'".:.::-lCli. VIRGINIA #.',. NI\SI\ National Aeronautics and Space Administration George C. Marshall Space Flight Center 1111111111111 1111 11111 111/111/111/11/1111/111 NF00627 MSFC· Form 3190 (Rev. Mey 1983) - •• ;wt... TECHNICAL REPORT STANDARD TITLE PAGE" 1. REPORT NO. GOVERNt.£NT ACCESSION NO. 3. RECIPIENT'S CATALOG NO. NASA TM -86519 4. TITLE AND SUBTITLE 5. REPORT DATE October 1985 The Role of Tethers on Space Station 6. PERFORMING ORGANIZATION CODE 7. AUTHOR(s). B. PERFORMING ORGANI ZATION REPOR r Tt Georg- von Tiesenhausen, Editor 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNI~ NO. George C. Marshall Space Flight Center 1 1. CONTRACT OR GRANT NO. Marshall Space Flight Center, Alabama 35812 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~13. TYPE OF REPOR~ & PERIOD COVERED 12. SPONSORING AGENCY NAME AND ADDRESS Technical Memorandum National Aeronautics and Space Administration Washington, D. C • 20546 14. SPONSORING AGENCY CODE 15. SUPPLEMENTARY NOTES Prepared by: Program Development, MSFC; Space Power Technology Div., LeRC; High Speed Aerodynamics Division, LaRC; Solar Systems Exploration Div., JSC; Laboratory for Terrestrial Physics, GSFC; and Tether Project Office, MMC. 15. ABSTRACT This report describes the results of research and development that addressed the usefulness of tether applications in space, particularly for space station. A well organized and structured effort of considerable magnitude involving NASA, industry and academia have defined the engineering and technological requirements of space tethers and their broad range of economic and operational benefits.
    [Show full text]
  • Tethered Picosatellites: a First Step Towards Electrodynamic Orbital Control and Power Generation William A
    Purdue University Purdue e-Pubs ASEE IL-IN Section Conference Tethered Picosatellites: A First Step towards Electrodynamic Orbital Control and Power Generation William A. Bauson Taylor University Follow this and additional works at: https://docs.lib.purdue.edu/aseeil-insectionconference Bauson, William A., "Tethered Picosatellites: A First Step towards Electrodynamic Orbital Control and Power Generation" (2018). ASEE IL-IN Section Conference. 1. https://docs.lib.purdue.edu/aseeil-insectionconference/2018/tech/1 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Tethered Picosatellites: A First Step towards Electrodynamic Orbital Control and Power Generation William A. Bauson Taylor University Abstract—University students routinely design and launch small satellites into space, giving students the opportunity to gain experience in a wide variety of STEM disciplines. This paper describes work in progress on one such project, “MagnITO-Sat,” which consists of two picosatellites connected by a conductive tether. The ultimate aim of the tether is to provide electrodynamic thrust generation and power generation. This project will test three major components of the system: 1) the tether deployment mechanism; 2) the high- voltage biasing to enable current flow through a “phantom loop” formed by the conductive tether and the ionosphere; and 3) an optical (near-infrared) link that provides communication between the two picosatellites. A Globalstar radio transmits data and measurements to the ground. 1.0 Introduction Taylor University’s Senior Engineering Project engages engineering students in learning and applying systems design techniques to real-world projects. Previous projects include the design of three different satellites, one of which flew in Low Earth Orbit in 2014.
    [Show full text]