Boatman's Quarterly Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction
INTRODUCTION 1 Using this book 2 Visiting the SouthWestern United States 3 Equipment and special hazards GRAND CANYON NATIONAL PARK 4 Visiting Grand Canyon National Park 5 Walking in Grand Canyon National Park 6 Grand Canyon National Park: South Rim, rim-to-river trails Table of Trails South Bass Trail Hermit Trail Bright Angel Trail South Kaibab Trail Grandview Trail New Hance Trail Tanner Trail 7 Grand Canyon National Park: North Rim, rim-to-river trails Table of Trails Thunder River and Bill Hall Trails, with Deer Creek Extension North Bass Trail North Kaibab Trail Nankoweap Trail 8 Grand Canyon National Park: trans-canyon trails, North and South Rim Table of Trails Escalante Route: Tanner Canyon to New Hance Trail at Red Canyon Tonto Trail: New Hance Trail at Red Canyon to Hance Creek Tonto Trail: Hance Creek to Cottonwood Creek Tonto Trail: Cottonwood Creek to South Kaibab Trail Tonto Trail: South Kaibab Trail to Indian Garden Tonto Trail: Indian Garden to Hermit Creek Tonto Trail: Hermit Creek to Boucher Creek Tonto Trail: Boucher Creek to Bass Canyon Clear Creek Trail 9 Grand Canyon National Park: South and North Rim trails South Rim Trails Rim Trail Shoshone Point Trail North Rim Trails Cape Royal Trail Cliff Springs Trail Cape Final Trail Ken Patrick Trail Bright Angel Point Trail Transept Trail Widforss Trail Uncle Jim Trail 10 Grand Canyon National Park: long-distance routes Table of Routes Boucher Trail to Hermit Trail Loop Hermit Trail to Bright Angel Trail Loop Cross-canyon: North Kaibab Trail to Bright Angel Trail South -
Grand Canyon National Park U.S
National Park Service Grand Canyon National Park U.S. Department of the Interior The official newspaper North Rim 2015 Season The Guide North Rim Information and Maps Roosevelt Point, named for President Theodore Roosevelt who in 1908, declared Grand Canyon a national monument. Grand Canyon was later established as a national park in 1919 by President Woodrow Wilson. Welcome to Grand Canyon S ITTING ATOP THE K AIBAB a meadow, a mother turkey leading her thunderstorms, comes and goes all too flies from the South Rim, the North Plateau, 8,000 to 9,000 feet (2,400– young across the road, or a mountain quickly, only to give way to the colors Rim offers a very different visitor 2,750 m) above sea level with lush lion slinking off into the cover of the of fall. With the yellows and oranges of experience. Solitude, awe-inspiring green meadows surrounded by a mixed forest. Visitors in the spring may see quaking aspen and the reds of Rocky views, a slower pace, and the feeling of conifer forest sprinkled with white- remnants of winter in disappearing Mountain maple, the forest seems to going back in time are only a few of the barked aspen, the North Rim is an oasis snowdrifts or temporary mountain glow. Crispness in the air warns of winter many attributes the North Rim has in the desert. Here you may observe lakes of melted snow. The summer, snowstorms soon to come. Although to offer. Discover the uniqueness of deer feeding, a coyote chasing mice in with colorful wildflowers and intense only 10 miles (16 km) as the raven Grand Canyon’s North Rim. -
Quaternary Geology and Geomorphology of the Nankoweap Rapids Area, Marble Canyon, Arizona
U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP 1-2608 U.S. GEOLOGICAL SURVEY QUATERNARY GEOLOGY AND GEOMORPHOLOGY OF THE NANKOWEAP RAPIDS AREA, MARBLE CANYON, ARIZONA By Richard Hereford, Kelly J. Burke, and Kathryn S. Thompson INTRODUCTION sion elsewhere in Grand Canyon {Hereford and oth ers, 1993; Fairley and others, 1994, p. 147-150). The Nankoweap Rapids area along the Colorado River {fig. 1) is near River Mile 52 {that is 52 mi or 83 km downstream of Lees Ferry, Arizona) in Grand Canyon National Park {west bank) and the Navajo METHODS Indian Reservation {east bank). Geologic mapping and [See map sheet for Description of Map Units] related field investigations of the late Quaternary geo morphology of the Colorado River and tributary A variety of methods were used to date the de streams were undertaken to provide information about posits. Radiocarbon dates were obtained from char the age, distribution, and origin of surficial deposits. coal and wood recovered from several of the mapped These deposits, particularly sandy alluvium and closely units (table 1). Several of these dates are not defini related debris-flow sediment, are the substrate for tive as they are affected by extensive animal bur riparian vegetation, which in turn supports the eco rowing in the alluvial deposits that redistributed burnt system of the Colorado River (Carothers and Brown, roots of mesquite trees, giving anomalous dates. The 1991, p. 111-167). late Pleistocene breccia (units be and bf) and re Closure of Glen Canyon Dam {109 km or 68 lated terraces were dated by Machette and Rosholt mi upstream of the study area) in 1963 and subse (1989; 1991) using the uranium-trend method. -
Geologic Map and Upper Paleozoic Stratigraphy of the Marble Canyon Area, Cottonwood Canyon Quadrangle, Death Valley National Park, Inyo County, California
Geologic Map and Upper Paleozoic Stratigraphy of the Marble Canyon Area, Cottonwood Canyon Quadrangle, Death Valley National Park, Inyo County, California By Paul Stone, Calvin H. Stevens, Paul Belasky, Isabel P. Montañez, Lauren G. Martin, Bruce R. Wardlaw, Charles A. Sandberg, Elmira Wan, Holly A. Olson, and Susan S. Priest Pamphlet to accompany Scientific Investigations Map 3298 2014 U.S. Department of the Interior U.S. Geological Survey Cover View of Marble Canyon area, California, showing dark rocks of Mississippian Indian Springs Formation and Pennsylvanian Bird Spring Formation overlying light rocks of Mississippian Santa Rosa Hills Limestone in middle distance. View is southeast toward Emigrant Wash and Tucki Mountain in distance. U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Stone, P., Stevens, C.H., Belasky, P., Montanez, I.P., Martin, L.G., Wardlaw, B.R., Sandberg, C.A., Wan, E., Olson, H.A., and Priest, S.S., 2014, Geologic map and upper Paleozoic stratigraphy of the Marble Canyon area, Cottonwood Canyon quadrangle, Death Valley National Park, Inyo County, California: U.S. Geological Survey Scientific Investigations Map 3298, scale 1:24,000, 59 p., http://dx.doi.org/10.3133/sim3298. -
Quantifying the Base Flow of the Colorado River: Its Importance in Sustaining Perennial Flow in Northern Arizona And
1 * This paper is under review for publication in Hydrogeology Journal as well as a chapter in my soon to be published 2 master’s thesis. 3 4 Quantifying the base flow of the Colorado River: its importance in sustaining perennial flow in northern Arizona and 5 southern Utah 6 7 Riley K. Swanson1* 8 Abraham E. Springer1 9 David K. Kreamer2 10 Benjamin W. Tobin3 11 Denielle M. Perry1 12 13 1. School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ 86011, US 14 email: [email protected] 15 2. Department of Geoscience, University of Nevada, Las Vegas, NV 89154, US 16 3. Kentucky Geological Survey, University of Kentucky, Lexington, KY 40506, US 17 *corresponding author 18 19 Abstract 20 Water in the Colorado River is known to be a highly over-allocated resource, yet decision makers fail to consider, in 21 their management efforts, one of the most important contributions to the existing water in the river, groundwater. This 22 failure may result from the contrasting results of base flow studies conducted on the amount of streamflow into the 23 Colorado River sourced from groundwater. Some studies rule out the significance of groundwater contribution, while 24 other studies show groundwater contributing the majority flow to the river. This study uses new and extant 1 25 instrumented data (not indirect methods) to quantify the base flow contribution to surface flow and highlight the 26 overlooked, substantial portion of groundwater. Ten remote sub-basins of the Colorado Plateau in southern Utah and 27 northern Arizona were examined in detail. -
Cogjm.Pre Film 1963-09-24.Pdf (216.9Kb)
UNITED STATES DEPARTMENT of the INTERIOR * * * * * * * * * * * * * ********news release BUREAU OF RECLPJ.AATION Peterson - Interior 4662 WATE For Release SEPTEMBER 24, 1963 BUREAU OF RECLAMATION TO PREMIERE NEW~~IN NEVADA DURING PRESIDENT'S VISIT The world premiere of the Bureau ~lamation's new documentary motion held in- Las-Vegas, Nev .. -,--durin President Kennedy's visit there September 28, the Department of the Interior announced today. The 13!-minute 16 mm. color-and-sound film will be shown on a large screen in the Las Vegas Convention Center rotunda immediately preceding the President's address. On his way to Las Vegas during his conservation tour, the President will fly over nearby Hoover Dam, pioneer Reclamation multipurpose structure, and its reservoir, Lake Mead, for an aerial inspection. The dam and reservoir, along with Glen Canyon Dam and Lake Powell, 370 miles upstream, are featured in the film. "Clear Water on the Colorado 11 presents spectacular scenes of the once-muddy and almost inaccessible Colorado River in the canyons of Arizona and southern Utah, now desilted and cleared by Glen Canyon Dam which began storing water March 13, 1963. The film portrays the miracle of a silt-free Colorado River between the headwaters of Lake Mead and the headwaters of Lake Powell. The film points out that Glen Canyon Dam--topped out September 13, 1963, has desilted and cleared the Colorado River just as did Hoover Dam downstream 28 years ago. A tremendous load of sediment, varying from 24 to 270 million tons in different years, has been deposited at the head of Lake Mead since Hoover Dam was closed in 1935. -
Grand Canyon National Park to America’S Considered in This Evaluation
® GRAND CANYON NATIONAL PARK CANYON GRAND R esource ChallengesandFutureDirections August 2010 ® Center for State of the Parks ® More than a century ago, Congress established Yellowstone as the CONTENTS world’s first national park. That single act was the beginning of a remarkable and ongoing effort to protect this nation’s natural, historical, and cultural heritage. Today, Americans are learning that national park designation EXECUTIVE SUMMARY 1 alone cannot provide full resource protection. Many parks are INTRODUCTION 8 compromised by development of adjacent lands, air and water pollu- tion, invasive plants and animals, and rapid increases in motorized COLORADO RIVER recreation. Park officials often lack adequate information on the MANAGEMENT 19 status of and trends in conditions of critical resources. The National Parks Conservation Association initiated the State of SOUNDSCAPE the Parks program in 2000 to assess the condition of natural and MANAGEMENT 29 cultural resources in the parks, and determine how well equipped the National Park Service is to protect the parks—its stewardship capac- URANIUM MINING 35 ity. The Center for State of the Parks also authors reports detailing threats to park resources and contributes technical information to AIR QUALITY 40 inform NPCA’s work. EXTERNAL THREATS 46 For more information about the Center for State of the Parks, visit www.npca.org/stateoftheparks or contact: NPCA, Center for State of BACKCOUNTRY the Parks, P.O. Box 737, Fort Collins, CO 80522; phone: MANAGEMENT 53 970.493.2545; email: [email protected]. FRONTCOUNTRY Since 1919, the National Parks Conservation Association has been MANAGEMENT 60 the leading voice of the American people in protecting and enhanc- ing our National Park System. -
A Sand Budget for Marble Canyon, Arizona—Implications for Long-Term Monitoring of Sand Storage Change
A Sand Budget for Marble Canyon, Arizona—Implications for Long-Term Monitoring of Sand Storage Change ecent U.S. Geological Survey Rresearch is providing important insights into how best to monitor changes in the amount of tributary- derived sand stored on the bed of the Colorado River and in eddies in Marble Canyon, Arizona. Before the construction of Glen Canyon Dam and other dams upstream, sandbars in Glen, Marble, and Grand Canyons were replenished each year by sediment- rich floods. Sand input into the Colorado River is crucial to protecting endangered native fish, animals, and plants and cultural and recreational resources along the river in Glen Canyon National Recreation Area and Grand Canyon National Park. View of the Colorado River in Grand Canyon, Arizona, showing sandbars that form downstream from There is longstanding interest in tributary debris fans, which constrict the flow of the river and cause eddies. The view is looking upstream the condition and trend of river-related at a point approximately 217 miles downstream from Glen Canyon Dam. (Photo by Sam Jansen.) resources in and along the Colorado River in Glen Canyon National Recreation Area and Grand Canyons are maintained by occurred because releases of water from and Grand Canyon National Park, Arizona. replenishment of sand that is supplied by Lake Powell are virtually free of sediment. These resources include endangered native tributaries and redistributed by occasional The tributaries that enter the Colorado River fish, native riparian flora and fauna (plants controlled floods released from Lake downstream from the dam supply only a and animals that live along streams), Powell. -
Glen Canyon Unit, CRSP, Arizona and Utah
Contents Glen Canyon Unit ............................................................................................................................2 Project Location...................................................................................................................3 Historic Setting ....................................................................................................................4 Project Authorization .........................................................................................................8 Pre-Construction ................................................................................................................14 Construction.......................................................................................................................21 Project Benefits and Uses of Project Water.......................................................................31 Conclusion .........................................................................................................................36 Notes ..................................................................................................................................39 Bibliography ......................................................................................................................46 Index ..................................................................................................................................52 Glen Canyon Unit The Glen Canyon Unit, located along the Colorado River in north central -
Monitoring the Effects of the Spring 2000 Habitat Maintenance Flow on Colorado River Ecosystem Sand Bars
Monitoring the Effects of the Spring AMDOR 2000 Habitat Maintenance Flow on N Colorado River Ecosystem Sand Bars Department of Geology Sand Bar Studies Fact Sheet January 2001 1200 The magnitude and timing of controlled floods required to ) s / distribute large amounts of sand into eddies and rebuild eroded sand 3 1000 m bars is a critical objective of research and monitoring in the Colorado ( Powerplant Capacity (940 m3/s) e g River ecosystem, downstream from Glen Canyon Dam. Aggradation r 800 a h Pre-LSSF Spike Flow Post-LSSF Spike Flow of sand bars at higher elevations is dependent on the size and abundance c Measurements Measurements s i 600 of sand temporarily stored on the channel bottom and the duration D s and stage of the high release. New and existing deposits are valued u o 400 components of the riverine ecosystem. They provide habitat for native e n a and non-native fish, the substrate for riparian vegetation, erosion- t n 200 a t protection for archeological sites, and are used for camping by river s n runners. The 1995 Glen Canyon Dam Environmental Impact Statement I 0 March April May June recommends scheduled high releases of short duration be implemented 2000 for environmental purposes (U.S. Department of Interior, 1995). Habitat maintenance flows (HMF) are within powerplant capacity Figure 1. Instantaneous discharge at USGS streamflow gaging station 3 Colorado River at Lees Ferry, Arizona, March-June, 2000. The timing of (~940 m /s), whereas those above this discharge are beach/habitat- measurements made before and after the spring 2000 HMF are shown. -
Glen Canyon Report
The Degraded Reach: Rate and Pattern of Bed and Bank Adjustment of the Colorado River in the 25 km Immediately Downstream from Glen Canyon Dam Paul E. Grams1, John C. Schmidt1, David J. Topping2, and Sara Goeking1 1 Department of Aquatic, Watershed, and Earth Resources, Utah State University 2Water Resources Division, U. S. Geological Survey July 2004 in partial fulfillment of cooperative agreement 1425-98-FC-40-22640 and modifications, between Utah State University and the Grand Canyon Monitoring and Research Center CONTENTS CONTENTS........................................................................................................................ 2 ABSTRACT........................................................................................................................ 4 INTRODUCTION .............................................................................................................. 6 STUDY AREA ................................................................................................................... 7 Physiographic Setting ..................................................................................................... 7 Streamflow Regulation ................................................................................................... 9 Sediment Supply ............................................................................................................. 9 Previous Geomorphic Investigations in Glen Canyon.................................................. 11 METHODS ...................................................................................................................... -
1988 Backcountry Management Plan
Backcountry Management Plan September 1988 Grand Canyon National Park Arizona National Park Service U.S. Department of the Interior (this version of the Backcountry Management Plan was reformatted in April 2000) Recommended by: Richard Marks, Superintendent, Grand Canyon National Park, 8/8/88 Approved by: Stanley T Albright, Regional Director Western Region, 8/9/88 2 GRAND CANYON NATIONAL PARK 1988 BACKCOUNTRY MANAGEMENT PLAN Table of Contents A. Introduction __________________________________________________________________ 4 B. Goals ________________________________________________________________________ 4 C. Legislation and NPS Policy ______________________________________________________ 5 D. Backcountry Zoning and Use Areas _______________________________________________ 6 E. Reservation and Permit System __________________________________________________ 6 F. Visitor Use Limits ______________________________________________________________7 G.Use Limit Explanations for Selected Use Areas _____________________________________ 8 H.Visitor Activity Restrictions _____________________________________________________ 9 I. Information, Education and Enforcement_________________________________________ 13 J. Resource Protection, Monitoring, and Research ___________________________________ 14 K. Plan Review and Update _______________________________________________________15 Appendix A Backcountry Zoning and Use Limits __________________________________ 16 Appendix B Backcountry Reservation and Permit System __________________________ 20