Consensus Clustering and Functional Interpretation of Gene-Expression Data

Total Page:16

File Type:pdf, Size:1020Kb

Consensus Clustering and Functional Interpretation of Gene-Expression Data Open Access Method2004SwiftetVolume al. 5, Issue 11, Article R94 Consensus clustering and functional interpretation of comment gene-expression data Stephen Swift*, Allan Tucker*, Veronica Vinciotti*, Nigel Martin†, Christine Orengo‡, Xiaohui Liu* and Paul Kellam§ Addresses: *Department of Information Systems and Computing, Brunel University, Uxbridge UB8 3PH, UK. †School of Computer Science and Information Systems, Birkbeck College, London WC1E 7HX, UK. ‡Department of Biochemistry and Molecular Biology, University College § London, London WC1E 6BT, UK. Virus Genomics and Bioinformatics Group, Department of Infection, Windeyer Institute, 46 Cleveland reviews Street, University College London, London W1T 4JF, UK. Correspondence: Paul Kellam. E-mail: [email protected] Published: 1 November 2004 Received: 4 December 2003 Revised: 15 March 2004 Genome Biology 2004, 5:R94 Accepted: 13 September 2004 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2004/5/11/R94 reports © 2004 Swift et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Consensus<p>Consensusshown to perform clustering clustering, better and than functionala new individual method interpretation methodsfor analyzing alone.</p> of gene-expression microarray data datathat takes a consensus set of clusters from various algorithms, is deposited research Abstract Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introduce consensus clustering, which provides such an advantage. When coupled with a statistically based gene functional analysis, our method allowed the identification of novel genes research refereed regulated by NFκB and the unfolded protein response in certain B-cell lymphomas. Background hierarchical clustering (HC) and partitioning around There are many practical applications that involve the group- medoids (PAM) [1-3]. Most algorithms make use of a starting ing of a set of objects into a number of mutually exclusive sub- allocation of variables based, for example, on random points sets. Methods to achieve the partitioning of objects related by in the data space or on the most correlated variables, and correlation or distance metrics are collectively known as clus- which therefore contain an inherent bias in their search interactions tering algorithms. Any algorithm that applies a global search space. These methods are also prone to becoming stuck in for optimal clusters in a given dataset will run in exponential local maxima during the search. Nevertheless, they have been time to the size of problem space, and therefore heuristics are used for partitioning gene-expression data with notable suc- normally required to cope with most real-world clustering cess [4,5]. Artificial Intelligence (AI) techniques such as problems. This is especially true in microarray analysis, genetic algorithms, neural networks and simulated annealing where gene-expression data can contain many thousands of (SA) [6] have also been used to solve the grouping problem, variables. The ability to divide data into groups of genes shar- resulting in more general partitioning methods that can be ing patterns of coexpression allows more detailed biological applied to clustering [7,8]. In addition, other clustering meth- information insights into global regulation of gene expression and cellular ods developed within the bioinformatics community, such as function. the cluster affinity search technique (CAST), have been applied to gene-expression data analysis [9]. Importantly, all Many different heuristic algorithms are available for cluster- of these methods aim to overcome the biases and local ing. Representative statistical methods include k-means, Genome Biology 2004, 5:R94 R94.2 Genome Biology 2004, Volume 5, Issue 11, Article R94 Swift et al. http://genomebiology.com/2004/5/11/R94 Table 1 The weighted-kappa guideline Weighted-kappa Agreement strength 0.0 ≤ K ≤ 0.2 Poor 0.2 <K ≤ 0.4 Fair 0.4 <K ≤ 0.6 Moderate 0.6 <K ≤ 0.8 Good 0.8 <K ≤ 1.0 Very good maxima involved during a search but to do this requires fine- Despite the formal assessment of clustering methods, there tuning of parameters. remains a practical need to extract reliably clustered genes from a given gene-expression matrix. This could be achieved Recently, a number of studies have attempted to compare and by capturing the relative merits of the different clustering validate cluster method consistency. Cluster validation can be algorithms and by providing a usable statistical framework split into two main procedures: internal validation, involving for analyzing such clusters. Recently, methods for gene-func- the use of information contained within the given dataset to tion prediction using similarities in gene-expression profiles assess the validity of the clusters; or external validation, between annotated and uncharacterized genes have been based on assessing cluster results relative to another data described [20]. To circumvent the problems of clustering source, for example, gene function annotation. Internal vali- algorithm discordance, Wu et al. used five different clustering dation methods include comparing a number of clustering algorithms and a variety of parameter settings on a single algorithms based upon a figure of merit (FOM) metric, which gene-expression matrix to construct a database of different rates the predictive power of a clustering arrangement using gene-expression clusters. From these clusters, statistically a leave-one-out technique [10]. This and other metrics for significant functions were assigned using existing biological assessing agreement between two data partitions [11,12] knowledge. readily show the different levels of cluster method disagree- ment. In addition, when the FOM metric was used with an In this paper, we confirm previous work showing gene- external cluster validity measure, similar inconsistencies are expression clustering algorithm discordance using a direct observed [13]. measurement of similarity: the weighted-kappa metric. Because of the observed variation between clustering meth- These method-based differences in cluster partitions have led ods, we have developed techniques for combining the results to a number of studies that produce statistical measures of of different clustering algorithms to produce more reliable cluster reliability either for the gene dimension [14,15] or the clusters. A method for clustering gene-expression data using sample dimension of a gene-expression matrix. For example, resampling techniques on a single clustering method has the confidence in hierarchical clusters can be calculated by been proposed for microarray analysis [19]. In addition, Wu perturbing the data with Gaussian noise and subsequent et al. showed that clusters that are statistically significant reclustering of the noisy data [16]. Resampling methods (bag- with respect to gene function could be identified within a ging) have been used to improve the confidence of a single database of clusters produced from different algorithms [20]. clustering method, namely PAM in [17]. A simple method for Here we describe a fusion of these two approaches using a comparison between two data partitions, the weighted- 'consensus' strategy to produce both robust and consensus kappa metric [18], can also be used to assess gene-expression clustering (CC) of gene-expression data and assign statistical cluster consistency. This metric rates agreement between the significance to these clusters from known gene functions. Our classification decisions made by two or more observers. In method is different from the approach of Monti et al., in that this case the two observers are the clustering methods. The different clustering algorithms are used rather than perturb- weighted-kappa compares clusters to generate the score ing the gene-expression data for a single algorithm [19]. Our within the range -1 (no concordance) to +1 (complete con- method is also distinct from the cluster database approach of cordance) (Table 1). A high weighted-kappa indicates that Wu et al [20]. There, clusters from different algorithms were the two arrangements are similar, while a low value indicates in effect fused if the consensus view of all algorithms that they are dissimilar. In essence, the weighted-kappa met- indicated that the gene-expression profiles clustered inde- ric is analogous to the adjusted Rand index used by others to pendently of the method. In the absence of a defined rule base compare cluster similarity [16,19]. for selecting clustering algorithms, we have implemented Genome Biology 2004, 5:R94 http://genomebiology.com/2004/5/11/R94 Genome Biology 2004, Volume 5, Issue 11, Article R94 Swift et al. R94.3 clustering methods from the statistical, AI and data-mining 1 communities to prevent 'cluster-method type' biases. When consensus clustering was used with probabilistic measures of 0.8 comment cluster membership derived from external validation with 0.6 gene function annotations, it was possible to accurately and rapidly identify specific transcriptionally co-regulated
Recommended publications
  • Calumenin-15 Facilitates Filopodia Formation by Promoting TGF-Β Superfamily Cytokine GDF-15 Transcription
    Citation: Cell Death and Disease (2013) 4, e870; doi:10.1038/cddis.2013.403 OPEN & 2013 Macmillan Publishers Limited All rights reserved 2041-4889/13 www.nature.com/cddis Calumenin-15 facilitates filopodia formation by promoting TGF-b superfamily cytokine GDF-15 transcription H Feng1,3, L Chen1,3, Q Wang1,3, B Shen1, L Liu1, P Zheng1,SXu1, X Liu1, J Chen1,2 and J Teng*,1 Filopodia, which are actin-rich finger-like membrane protrusions, have an important role in cell migration and tumor metastasis. Here we identify 13 novel calumenin (Calu) isoforms (Calu 3–15) produced by alternative splicing, and find that Calu-15 promotes filopodia formation and cell migration. Calu-15 shuttles between the nucleus and cytoplasm through interacting with importin a, Ran GTPase, and Crm1. The phosphorylation of the threonine at position 73 (Thr-73) by casein kinase 2 (CK2) is essential for the nuclear import of Calu-15, and either Thr-73 mutation or inhibition of CK2 interrupts its nuclear localization. In the nucleus, Calu-15 increases the transcription of growth differentiation factor-15 (GDF-15), a member of the transforming growth factor-b (TGF-b) superfamily, via binding to its promoter region. Furthermore, Calu-15 induces filopodia formation mediated by GDF-15. Together, we identify that Calu-15, a novel isoform of Calu with phosphorylation-dependent nuclear localization, has a critical role in promoting filopodia formation and cell migration by upregulating the GDF-15 transcription. Cell Death and Disease (2013) 4, e870; doi:10.1038/cddis.2013.403; published
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Comparative Genome Mapping in the Sequence-Based Era: Early Experience with Human Chromosome 7
    Downloaded from genome.cshlp.org on May 28, 2019 - Published by Cold Spring Harbor Laboratory Press First Glimpses/Report Comparative Genome Mapping in the Sequence-based Era: Early Experience with Human Chromosome 7 James W. Thomas,1 Tyrone J. Summers,1 Shih-Queen Lee-Lin,1 Valerie V. Braden Maduro,1 Jacquelyn R. Idol,1 Stephen D. Mastrian,1 Joseph F. Ryan,1 D. Curtis Jamison,1 and Eric D. Green1,2 1Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892 USA The success of the ongoing Human Genome Project has resulted in accelerated plans for completing the human genome sequence and the earlier-than-anticipated initiation of efforts to sequence the mouse genome. As a complement to these efforts, we are utilizing the available human sequence to refine human-mouse comparative maps and to assemble sequence-ready mouse physical maps. Here we describe how the first glimpses of genomic sequence from human chromosome 7 are directly facilitating these activities. Specifically, we are actively enhancing the available human-mouse comparative map by analyzing human chromosome 7 sequence for the presence of orthologs of mapped mouse genes. Such orthologs can then be precisely positioned relative to mapped human STSs and other genes. The chromosome 7 sequence generated to date has allowed us to more than double the number of genes that can be placed on the comparative map. The latter effort reveals that human chromosome 7 is represented by at least 20 orthologous segments of DNA in the mouse genome. A second component of our program involves systematically analyzing the evolving human chromosome 7 sequence for the presence of matching mouse genes and expressed-sequence tags (ESTs).
    [Show full text]
  • A Model for Profiling the Emolecular Effects of Alcohol
    The Pharmacogenomics Journal (2015) 15, 177–188 © 2015 Macmillan Publishers Limited All rights reserved 1470-269X/15 www.nature.com/tpj ORIGINAL ARTICLE The synaptoneurosome transcriptome: a model for profiling the emolecular effects of alcohol D Most1,2, L Ferguson1,2, Y Blednov1, RD Mayfield1 and RA Harris1 Chronic alcohol consumption changes gene expression, likely causing persistent remodeling of synaptic structures via altered translation of mRNAs within synaptic compartments of the cell. We profiled the transcriptome from synaptoneurosomes (SNs) and paired total homogenates (THs) from mouse amygdala following chronic voluntary alcohol consumption. In SN, both the number of alcohol-responsive mRNAs and the magnitude of fold-change were greater than in THs, including many GABA-related mRNAs upregulated in SNs. Furthermore, SN gene co-expression analysis revealed a highly connected network, demonstrating coordinated patterns of gene expression and highlighting alcohol-responsive biological pathways, such as long-term potentiation, long-term depression, glutamate signaling, RNA processing and upregulation of alcohol-responsive genes within neuroimmune modules. Alterations in these pathways have also been observed in the amygdala of human alcoholics. SNs offer an ideal model for detecting intricate networks of coordinated synaptic gene expression and may provide a unique system for investigating therapeutic targets for the treatment of alcoholism. The Pharmacogenomics Journal (2015) 15, 177–188; doi:10.1038/tpj.2014.43; published online 19 August 2014 INTRODUCTION mRNAs from SN15,16,18,19 and TH samples from mouse amygdala, a Alcohol dependence is a severe and widespread disease. Over 17 brain region known to be involved with the negative reinforce- 20 million Americans suffer from alcohol-related problems; total cost ment of alcohol and other drugs of abuse.
    [Show full text]
  • Comparative Biochemistry and Physiology, Part D, Vol. 5, Pp. 45-54 (2010)
    Comparative genomics and proteomics of vertebrate diacylglycerol acyltransferase (DGAT), acyl CoA wax alcohol acyltransferase (AWAT) and monoacylglycerol acyltransferase (MGAT) Author Holmes, Roger S Published 2010 Journal Title Comparative Biochemistry and Physiology, Part D DOI https://doi.org/10.1016/j.cbd.2009.09.004 Copyright Statement © 2010 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/36786 Griffith Research Online https://research-repository.griffith.edu.au Comparative Biochemistry and Physiology, Part D, Vol. 5, pp. 45-54 (2010) COMPARATIVE GENOMICS AND PROTEOMICS OF VERTEBRATE DIACYLGLYCEROL ACYLTRANSFERASE (DGAT), ACYL CoA WAX ALCOHOL ACYLTRANSFERASE (AWAT) AND MONOACYLGLYCEROL ACYLTRANSFERASE (MGAT) Roger S Holmes School of Biomolecular and Physical Sciences, Griffith University, Nathan 4111 Brisbane Queensland Australia Email: [email protected] Keywords: Diacylglycerol acyltransferase-Monoacylglycerol transferase-Human- Mouse-Opossum-Zebrafish-Genetics-Evolution-X chromosome Running Head: Genomics and proteomics of vertebrate acylglycerol acyltransferases ABSTRACT BLAT (BLAST-Like Alignment Tool) analyses of the opossum (Monodelphis domestica) and zebrafish (Danio rerio) genomes were undertaken using amino acid sequences of the acylglycerol acyltransferase (AGAT) superfamily. Evidence is reported for 8 opossum monoacylglycerol acyltransferase-like (MGAT) (E.C. 2.3.1.22) and diacylglycerol acyltransferase-like (DGAT) (E.C. 2.3.1.20) genes and proteins, including DGAT1, DGAT2, DGAT2L6 (DGAT2-like protein 6), AWAT1 (acyl-CoA wax alcohol acyltransferase 1), AWAT2, MGAT1, MGAT2 and MGAT3. Three of these genes (AWAT1, AWAT2 and DGAT2L6) are closely localized on the opossum X chromosome.
    [Show full text]
  • 11991 Calumenin (4C6) Mouse Mab
    Revision 1 C 0 2 - t Calumenin (4C6) Mouse mAb a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 1 9 9 Web: [email protected] 1 www.cellsignal.com 1 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source/Isotype: UniProt ID: Entrez-Gene Id: WB, IF-IC H M R Mk Endogenous 47 Mouse IgG1 O43852 813 Product Usage Information Application Dilution Western Blotting 1:1000 Immunofluorescence (Immunocytochemistry) 1:50 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity Calumenin (4C6) Mouse mAb recognizes endogenous levels of total calumenin protein. Species Reactivity: Human, Mouse, Rat, Monkey Source / Purification Monoclonal antibody is produced by immunizing animals with a recombinant protein specific to the carboxy terminus of human calumenin protein. Background Calumenin belongs to the CREC family of proteins that also contains reticulocalbin, ERC- 55/TCBP-49/E6BP, Cab45, and crocalbin/CBP-50. These EF-hand proteins localize to the endoplasmic reticulum (ER) and are involved in the secretory pathway in mammalian cells (1). Calumenin exists as two isoforms corresponding to alternativly spliced variants of the CALU gene (2). Calumenin has been shown to localize to the ER via a carboxy terminal HDEF ER retention signal (3), and undergoes secretion after trafficking through the secretory pathway (4). Secreted calumenin plays a role in amyloidosis by interacting with serum amyloid P component (5).
    [Show full text]
  • The Intracellular Transport and Secretion of Calumenin- 1/2 in Living Cells
    The Intracellular Transport and Secretion of Calumenin- 1/2 in Living Cells Qiao Wang1., Hui Feng1., Pengli Zheng1., Birong Shen1, Liang Chen1, Lin Liu1, Xiao Liu1, Qingsong Hao1, Shunchang Wang1, Jianguo Chen1,2, Junlin Teng1* 1 State Key Laboratory of Bio-membrane and Membrane Bio-engineering and Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China, 2 Center for Theoretical Biology, Peking University, Beijing, China Abstract Calumenin isoforms 1 and 2 (calu-1/2), encoded by the CALU gene, belong to the CREC protein family. Calu-1/2 proteins are secreted into the extracellular space, but the secretory process and regulatory mechanism are largely unknown. Here, using a time-lapse imaging system, we visualized the intracellular transport and secretory process of calu-1/2-EGFP after their translocation into the ER lumen. Interestingly, we observed that an abundance of calu-1/2-EGFP accumulated in cellular processes before being released into the extracellular space, while only part of calu-1/2-EGFP proteins were secreted directly after attaching to the cell periphery. Moreover, we found the secretion of calu-1/2-EGFP required microtubule integrity, and that calu-1/2-EGFP-containing vesicles were transported by the motor proteins Kif5b and cytoplasmic dynein. Finally, we determined the export signal of calu-1/2-EGFP (amino acid positions 20–46) and provided evidence that the asparagine at site 131 was indispensable for calu-1/2-EGFP stabilization. Taken together, we provide a detailed picture of the intracellular transport of calu-1/2-EGFP, which facilitates our understanding of the secretory mechanism of calu-1/2.
    [Show full text]
  • Language Impairment Resulting from a De Novo Deletion of 7Q32.1-Q33: a Case
    bioRxiv preprint doi: https://doi.org/10.1101/047241; this version posted April 6, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Language impairment resulting from a de novo deletion of 7q32.1-q33: a case report Mª Salud Jiménez-Romero, Montserrat Barcos-Martínez, Isabel Espejo-Portero, Antonio Benítez-Burraco Corresponding author: Antonio Benítez-Burraco, PhD. Department of Spanish Philology and its Didactics, University of Huelva, Huelva, Spain e-mail: [email protected] Affiliations for the other authors: Mª Salud Jiménez-Romero: Department of Psychology, University of Córdoba, Córdoba, Spain & Maimónides Institute of Biomedical Research, Córdoba, Spain Montserrat Barcos-Martínez: Laboratory of Molecular Genetics, University Hospital “Reina Sofía”, Córdoba, Spain &Maimónides Institute of Biomedical Research, Córdoba, Spain Isabel Espejo-Portero: Laboratory of Molecular Genetics, University Hospital “Reina Sofía”, Córdoba, Spain & Maimónides Institute of Biomedical Research, Córdoba, Spain bioRxiv preprint doi: https://doi.org/10.1101/047241; this version posted April 6, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 2 ABSTRACT Chromosome 7 is a hot spot for cognitive disorders involving language deficits. We report on a girl who presents with a cognitive and speech delay, motor problems, hearing loss, and behavioral disturbances, and a de novo deletion within 7q32.1-q33 (chromosome position: chr7:127109685-132492196, hg 18). Several genes involved in brain development and function are located within the deleted region.
    [Show full text]
  • Normal Mammalian Sexual Maturation And
    UC San Diego UC San Diego Electronic Theses and Dissertations Title GnRH induces miR-132 and miR-212 and reduces p250RhoGAP and SirT-1 in pituitary LbetaT2 gonadotropes Permalink https://escholarship.org/uc/item/1bf5x6hx Author Godoy, Joseph Christopher Publication Date 2009 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California i UNIVERSITY OF CALIFORNIA, SAN DIEGO GnRH induces miR-132 and miR-212 and reduces p250RhoGAP and SirT-1 in pituitary LbetaT2 Gonadotropes A Thesis Submitted in partial satisfaction of the requirements for the degree of Master of Science in Biology by Joseph Christopher Godoy Committee in charge: Professor Nicholas Webster, Chair Professor Shelley Halpain, Co-Chair Professor Chris Armour 2009 ii Copyright Joseph Christopher Godoy, 2009 All rights reserved. ii iii The Thesis of Joseph Christopher Godoy is approved and it is acceptable in quality and form for publication on microfilm and electronically: _____________________________________________________ _____________________________________________________ Co-chair _____________________________________________________ Chair UNIVERSITY OF CALIFORNIA, SAN DIEGO 2009 iii iv DEDICATION I would like to acknowledge the following past and present Webster lab members and thank them for their technical and moral support and guidance… Lin Bo Hao Zhang Rie Tsutsumi Shweta Sharma Debin Lan Devendra Mistry Indrani Talukdar Supriya Sen Marine Nishimura and Nicholas Webster iv v EPIGRAPH Basic Research is what I’m doing when I don’t know what I’m doing Werner von Braun v vi TABLE OF CONTENTS Signature Page……………………………………..…………….......................... iii Dedication………………………………..…………………………....................... iv Epigraph……………………………………………………………………………... v Table of Contents…………………………………………………………………... vi List of Abbreviations…………………………………...…………………………... vii List of Symbols……………………………………………..………………………. viii List of Figures and Tables ….……………………………………………...........
    [Show full text]
  • Calumenin (20-315, His-Tag) Human Protein – AR09196PU-N
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for AR09196PU-N Calumenin (20-315, His-tag) Human Protein Product data: Product Type: Recombinant Proteins Description: Calumenin (20-315, His-tag) human recombinant protein, 0.1 mg Species: Human Expression Host: E. coli Tag: His-tag Predicted MW: 37.2 kDa Concentration: lot specific Purity: >90% by SDS - PAGE Buffer: Presentation State: Purified State: Liquid purified protein Buffer System: 20 mM Tris-HCl buffer (pH 8.0) containing 10% glycerol Preparation: Liquid purified protein Protein Description: Recombinant human Calumenin protein, fused to His-tag at N-terminus, was expressed in E.coli and purified by using conventional chromatography. Storage: Store undiluted at 2-8°C for up to two weeks or (in aliquots) at -20°C or -70°C for longer. Avoid repeated freezing and thawing. Stability: Shelf life: one year from despatch. RefSeq: NP_001124146 Locus ID: 813 UniProt ID: O43852, A0A024R755 Cytogenetics: 7q32.1 Summary: The product of this gene is a calcium-binding protein localized in the endoplasmic reticulum (ER) and it is involved in such ER functions as protein folding and sorting. This protein belongs to a family of multiple EF-hand proteins (CERC) that include reticulocalbin, ERC-55, and Cab45 and the product of this gene. Alternatively spliced transcript variants encoding different isoforms have been identified. [provided by RefSeq, Oct 2008] Protein Families: Secreted Protein This product is to be used for laboratory only.
    [Show full text]
  • ID AKI Vs Control Fold Change P Value Symbol Entrez Gene Name *In
    ID AKI vs control P value Symbol Entrez Gene Name *In case of multiple probesets per gene, one with the highest fold change was selected. Fold Change 208083_s_at 7.88 0.000932 ITGB6 integrin, beta 6 202376_at 6.12 0.000518 SERPINA3 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 1553575_at 5.62 0.0033 MT-ND6 NADH dehydrogenase, subunit 6 (complex I) 212768_s_at 5.50 0.000896 OLFM4 olfactomedin 4 206157_at 5.26 0.00177 PTX3 pentraxin 3, long 212531_at 4.26 0.00405 LCN2 lipocalin 2 215646_s_at 4.13 0.00408 VCAN versican 202018_s_at 4.12 0.0318 LTF lactotransferrin 203021_at 4.05 0.0129 SLPI secretory leukocyte peptidase inhibitor 222486_s_at 4.03 0.000329 ADAMTS1 ADAM metallopeptidase with thrombospondin type 1 motif, 1 1552439_s_at 3.82 0.000714 MEGF11 multiple EGF-like-domains 11 210602_s_at 3.74 0.000408 CDH6 cadherin 6, type 2, K-cadherin (fetal kidney) 229947_at 3.62 0.00843 PI15 peptidase inhibitor 15 204006_s_at 3.39 0.00241 FCGR3A Fc fragment of IgG, low affinity IIIa, receptor (CD16a) 202238_s_at 3.29 0.00492 NNMT nicotinamide N-methyltransferase 202917_s_at 3.20 0.00369 S100A8 S100 calcium binding protein A8 215223_s_at 3.17 0.000516 SOD2 superoxide dismutase 2, mitochondrial 204627_s_at 3.04 0.00619 ITGB3 integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61) 223217_s_at 2.99 0.00397 NFKBIZ nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta 231067_s_at 2.97 0.00681 AKAP12 A kinase (PRKA) anchor protein 12 224917_at 2.94 0.00256 VMP1/ mir-21likely ortholog
    [Show full text]
  • Calumenin (4C6) Mouse Mab - 20ºC Store at Support: 877-678-TECH (8324) [email protected]
    www.cellsignal.com 20ºC Calumenin (4C6) Mouse mAb - Store at Support: 877-678-TECH (8324) [email protected] 100 µl (10 western blots) Orders: 877-616-CELL (2355) [email protected] Entrez-Gene ID #813 #11991 rev. 01/05/15 UniProt ID #O43852 For Research Use Only. Not For Use In Diagnostic Procedures. Applications Species Cross-Reactivity* Molecular Wt. Isotype Storage: Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% W, IF-IC H, M, R, Mk 47 kDa Mouse IgG1** Endogenous sodium azide. Store at –20°C. Do not aliquot the antibody. *Species cross-reactivity is determined by western blot. ** Anti-mouse secondary antibodies must be used to Background: Calumenin belongs to the CREC family of detect this antibody. proteins that also contains reticulocalbin, ERC-55/TCBP-49/ kDa Huh7 COS-7 C6 NIH/3T3 Recommended Antibody Dilutions: E6BP, Cab45, and crocalbin/CBP-50. These EF-hand proteins Western blotting 1:1000 localize to the endoplasmic reticulum (ER) and are involved in 200 140 Immunofluorescence (IF-IC) 1:50 the secretory pathway in mammalian cells (1). Calumenin exists 100 as two isoforms corresponding to alternativly spliced variants of 80 For product specific protocols and a complete listing the CALU gene (2). Calumenin has been shown to localize to the of recommended companion products please see the 60 ER via a carboxy terminal HDEF ER retention signal (3), and un- product web page at www.cellsignal.com 50 Calumenin dergoes secretion after trafficking through the secretory pathway 40 (4).
    [Show full text]