Middle Miocene Decapod Crustacean Assemblage from the Tuzla Basin

Total Page:16

File Type:pdf, Size:1020Kb

Middle Miocene Decapod Crustacean Assemblage from the Tuzla Basin Palaeontologia Electronica palaeo-electronica.org Middle Miocene decapod crustacean assemblage from the Tuzla Basin (Tušanj, Bosnia and Herzegovina), with a description of two new species and comparison with coeval faunas from Slovenia Rok Gašparič, Matúš Hyžný, Gordana Jovanović, Stjepan Ćorić, and Sejfudin Vrabac ABSTRACT A decapod assemblage consisting of three species is described from the upper Langhian (lower Badenian) of the Tuzla Basin in Bosnia and Herzegovina. The assem- blage is dominated by Retropluma minuta sp. nov. (Brachyura, Retroplumidae) and accompanied by Munidopsis salinaria sp. nov. (Anomura, Galatheoidea) and Portunus monspeliensis A. Milne Edwards, 1860 (Brachyura, Portunidae). Based on the calcare- ous nannoplankton, the studied assemblage is assigned to the upper part of the NN5 Zone. The studied assemblage is considered to have inhabited a shallow, near-shore depositional setting, as suggested by the microfossil association. Munidopsis, Por- tunus and Retropluma have previously been reported from Slovenia, the area closest to the Tuzla Basin with known decapod fossils. Contrary to shallow-marine settings of the localities studied herein, Munidopsis and Retropluma from Slovenian localities are reported from deeper-marine settings. The occurrence of near-complete individuals of Retropluma minuta sp. nov. suggests a wider bathymetric range of the genus in its evo- lutionary past than it has today. Rok Gašparič. Oertijdmuseum Boxtel, Bosscheweg 80, 5293 WB Boxtel, the Netherlands. [email protected] Matúš Hyžný. Department of Geology and Palaeontology, Faculty of Natural Sciences, Comenius University, Mlynská dolina G1, Ilkovičova 6, Bratislava 842 15, Slovakia; Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7. A-1010 Vienna, Austria. [email protected] Gordana Jovanović. Natural History Museum Belgrade, Njegoševa 51, 11000 Belgrade, Serbia. [email protected] http://zoobank.org/D4051238-1D9D-4F40-9271-70C05A822967 Gašparič, Rok, Hyžný, Matúš, Jovanović, Gordana, Ćorić, Stjepan, and Vrabac, Sejfudin. 2019. Middle Miocene decapod crustacean assemblage from the Tuzla Basin (Tušanj, Bosnia and Herzegovina), with a description of two new species and comparison with coeval faunas from Slovenia. Palaeontologia Electronica 22.1.9A 1-21. https://doi.org/10.26879/894 palaeo-electronica.org/content/2019/2430-decapods-from-the-tuzla-basin Copyright: February 2019 Paleontological Society. This is an open access article distributed under the terms of Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0), which permits users to copy and redistribute the material in any medium or format, provided it is not used for commercial purposes and the original author and source are credited, with indications if any changes are made. creativecommons.org/licenses/by-nc-sa/4.0/ GAŠPARIČ ET AL.: DECAPODS FROM THE TUZLA BASIN Stjepan Ćorić. Geologische Bundesanstalt, Neulinggasse 38, 1030 Wien, Austria. [email protected] Sejfudin Vrabac. Faculty of Mining, Geology and Civil Engineering Tuzla, Univerzitetska 2, 75000 Tuzla, Bosnia and Herzegovina. [email protected] Keywords: Malacostraca; fossil; new species; taphonomy; bathymetry; palaeoenvironment Submission: 23 May 2018 Acceptance: 4 February 2019 INTRODUCTION graphic age was determined with the microfossil assemblage analysis presented herein and discus- Almost a century has passed since Glaess- sion on palaeoenvironmental and palaeobiogeo- nerʼs (1928) overview of Neogene decapods from graphic implications is also provided. what are now Austria and Slovenia, where he emphasised the need for studying fossil decapod GEOLOGICAL SETTING associations in the neighbouring countries. At about the same time, a monograph on fossil deca- The studied area is located in the Tuzla Basin, pods of the former Austro-Hungarian Empire was in the north-eastern part of Bosnia (Figure 1), published (Lőrenthey and Beurlen, 1929). The which is known for its rock-salt deposits. The Mio- beginning of modern research on fossil decapods cene infill, characterised by various lithologies, from Austria is dated to the second half of the reaches a thickness of approximately 2300 m twentieth century with works of Bachmayer (e.g., (Ćorić et al., 2007). The accessible exposures rep- Bachmayer, 1950, 1953, 1954, 1962; Bachmayer resent both siliciclastic and carbonate shallow- and Tollmann, 1953) and Müller (1984, 1998a, water sediments (Stevanović and Eremija, 1960). 1998b). Since the hallmark monograph on Bade- Middle Miocene (Badenian) sediments in the vicin- nian (= Langhian–early Serravallian) decapods by ity of the rock salt mine in Tuzla are exposed Müller (1984), the area once forming the Para- across a relatively large area with numerous fossil tethys Sea (Rögl, 1998, 1999; Harzhauser et al., sites. Microfossil assemblages are dominated by 2002, 2003) has received renewed attention at the foraminifers (Petrović, 1980; Vrabac and Miha- beginning of the twenty-first century. A number of jlović, 1990) and calcareous nannoplankton (Ćorić papers dedicated to Neogene decapod crusta- et al., 2007). Macrofossils are rare and consist of ceans of the northern part of the Pannonian Basin plant remains, foraminifera, pteropods, gastropods, System include studies on taxonomy, taphonomy, bivalves, decapods, echinoids, and fish (Steva- biodiversity, and distribution (e.g., Hyžný and nović and Eremija, 1960; Vrabac, 1990). Müller, 2010; Hyžný and Schlögl, 2011; Hyžný et Because of salt mine exploration and for al., 2014, 2015, 2016; Hyžný, 2016). However, understanding of its fossil content, the age of the there is only limited information about fossil deca- sedimentary filling of the Tuzla Basin has been dis- pods from the southern part of the Pannonian cussed for a long time. The sediments were Basin System (Mikuž, 2003; Gašparič and Hyžný, assigned to the middle Miocene (Badenian) based 2015; Gašparič and Ossó, 2016). This paper adds on the study of basin lithostratigraphy and foramin- further data on Neogene decapod crustaceans of ifera (Petrović, 1959; Stevanović and Eremija, the latter area. 1960; Jovanović, 1980; Soklić et al., 1980; Vrabac The earliest report of the Miocene fossil et al., 1990). According to the most recent study by assemblage from the site Dolnja Tuzla in Bosnia Vrabac and Ćorić (2008), the salt formation was and Herzegovina is that by Fuchs (1890), whereas deposited during the middle Miocene (early Bade- Bittner (1892) reported briefly on a ‘small unidenti- nian) in a gulf of the Central Paratethys Sea. fied crab’ from the same locality. Later, Stevanović Exploratory drilling in the roof of the salt formation and Eremija (1960) reported several ‘well-pre- in the Tuzla Basin indicates the presence of strata served impressions of crabs’ in the marls of an of all three parts of the Badenian stage with overly- immediate roof of a salt formation in Tušanj near ing Sarmatian sediments (Vrabac et al., 2013). Tuzla. This material has remained largely unstud- Based on calcareous nannoplankton, the age of ied until recently. The present contribution aims to the roof of the salt formation from the Tuzla Basin address this fossil decapod faunule in detail follow- was assigned to the lower Badenian NN5 Zone ing a recent re-study of the material. The strati- sensu Martini (1971) (Ćorić et al., 2007). 2 PALAEO-ELECTRONICA.ORG FIGURE 1. Simplified map of Bosnia and Herzegovina showing the fossiliferous locality Tušanj near Tuzla. The colour white represents pre-Cenozoic strata. Decapod specimens described herein come Tušanj, A. viennensis (d 'Orbigny, 1846) is docu- from two localities in the Tuzla Basin: the ventila- mented only 3 m above the salt formation (Vrabac tion shaft ‘Tušanj-2’ and the manhole in Simin Han et al., 2013). In Tušanj, similarly to the deposit in at Dolnja Tuzla. The localities are positioned Tetima, in the first 3 m following the salt formation approximately 6 km from each other. At both sites, foraminifera are extremely rare and planktic forms the presence of the roof of the salt formation is are dominant. From this information, as well as documented. Based on Bittner (1892), the initial from the borehole ‘IB-1’section, we conclude that exploratory salt shaft is dated to 1887; however, the decapod specimens from the ventilation shaft the ventilation shaft ‘Tušanj-2’, from which deca- in ‘Tušanj-2’ collected at a depth of 283 m belong pod specimens originate, was excavated in the to beds from the immediate proximity of the salt second half of the twentieth century (1953–1967). formation. The shaft ‘Tušanj-2’ is located approximately 30 m The investigated sediment from ‘Tušanj- from the exploration borehole ‘IB-1’ with the GPS 2’contained a rich association of calcareous nan- coordinates E 18°40'22" and N 44°32'57". The nofossils with Sphenolithus heteromorphus Deflan- manhole to the salt mine in Simin Han at Dolnja dre, 1953. Accompanied nannofossils included Tuzla is located at E18°45'01" and N44°31'53". Braarudosphaera bigelowii (Gran and Braarud, It is possible to establish the boundaries 1935) Deflandre, 1947; Coccolithus pelagicus between the salt formation and its immediate roof, (Wallich, 1877) Schiller, 1930; Helicosphaera car- which is located at a depth of 266 m (Vrabac and teri (Wallich, 1877) Kamptner, 1954; H. walbers- Mihajlović, 1990). The laminated and massive dorfensis Müller, 1974; Micrantholithus sp.; marls with a dominant foraminiferan assemblage of Reticulofenestra haqii Backman, 1978;
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • (Malacostraca,Decapoda, Brachyura) 2003年12月作成: 2012年1月一部更新: 2018年2月~一部更新中
    Catalogue of Brachyuran and Anomuran crabs Collection Donated by the Mr. Seiji Nagai to the Wakayama Prefectural Museum of Natural History 和歌山県立自然博物館所蔵 永井コレクション甲殻類標本目録(短尾類) (Malacostraca,Decapoda, Brachyura) 2003年12月作成: 2012年1月一部更新: 2018年2月~一部更新中 Specimen Number Infraorder Family Genus Species Author Year Japanese Name Locality Remarks (WMNH-Na-Cr **** ) Brachyura Homolodromiidae Dicranodromia aff. baffini (Alcock & Anderson) 1899 タンモウコウなガカムリ 静岡県沖, トロール, 水深300m, (1 新称 0002 1 短尾下目 コウナガカムリ科 ♀) Brachyura Homolodromiidae Dicranodromia crosnieri Guinot 1995 クロニエコウナガカムリ 和歌山県潮岬沖, 水深650m, 199 新称 0004 2 短尾下目 コウナガカムリ科 9. Nov.12., (1♀) Brachyura Homolodromiidae Dicranodromia doederleini Ortmann 1892 コウナガカムリ 神奈川県剣崎東方, 水深200m, 19 0001 3 短尾下目 コウナガカムリ科 90.,(1♀);豊後水道, 水深400m, 1 997., (1♀) Brachyura Homolodromiidae Dicranodromia nagaii Guinot 1995 ナガイコウナガカムリ 静岡県沖, トロール, 水深200m, (1 新称 0003 4 短尾下目 コウナガカムリ科 ♀) Brachyura Dromiidae Eodromia denticulata McLay 1993 トゲトガリカイカムリ 和歌山県潮岬沖, 水深140m, (1♀) 0005 5 短尾下目 カイカムリ科 Brachyura Dromiidae Tunedromia yamashitai (Takeda & Miyake) 1970 ヤマシタヒラアシカムリ 和歌山県潮岬沖, 水深180~200 0006 6 短尾下目 カイカムリ科 m, (3♂♂,3♀♀) Brachyura Dromiidae Lauridromia dehaani (Rathbun) 1923 カイカムリ 静岡県清水市沖, 水深20m, 1973. 0007 7 短尾下目 カイカムリ科 Apr., (1♀) Brachyura Dromiidae Lauridromia intermedia (Laurie) 1906 アカゲカムリ 和歌山県串本町, 水深20~30m, 1 0008 8 短尾下目 カイカムリ科 978. Mar., (2♂♂) Brachyura Dromiidae Dromia dromia (Linnaeus) 1763 オオカイカムリ 台湾 澎湖島, 1976. Mar.,(1♂) 0009 9 短尾下目 カイカムリ科 Brachyura Dromiidae Dromia wilsoni (Fulton & Grant) 1902 ワタゲカムリ 和歌山県串本町, 水深15~20m, 1 0010 10 短尾下目 カイカムリ科 979. Feb.,(3♂♂) Brachyura Dromiidae Paradromia japonica (Henderson) 1888 ニホンカムリ 相模湾, (2♂♂);伊勢湾, (1♂) 0011 11 短尾下目 カイカムリ科 Brachyura Dromiidae Petalomera granulata Stimpson 1858 ヒラアシカムリ 神奈川県三浦半島, 1977. Jan., (1 0012 12 短尾下目 カイカムリ科 ♀);紀伊水道, トロール, 1991. Dec., (1♀) Brachyura Dromiidae Petalomera pulchra Miers 1894 ハリダシヒラアシカムリ 鹿児島県奄美大島大和村, 水深150 新称 0013 13 短尾下目 カイカムリ科 m, 1989.
    [Show full text]
  • BIOPAPUA Expedition Highlighting Deep-Sea Benthic Biodiversity of Papua New- Guinea
    Biopapua Expedition – Progress report MUSÉUM NATIONAL D'HISTOIRE NATURELLE 57 rue Cuvier 75005 PARIS‐ France BIOPAPUA Expedition Highlighting deep-sea benthic Biodiversity of Papua New- Guinea Submitted by: Muséum National d'Histoire Naturelle (MNHN) Represented by (co‐PI): Dr Sarah Samadi (Researcher, IRD) Dr Philippe Bouchet (Professor, MNHN) Dr Laure Corbari (Research associate, MNHN) 1 Biopapua Expedition – Progress report Contents Foreword 3 1‐ Our understanding of deep‐sea biodiversity of PNG 4 2 ‐ Tropical Deep‐Sea Benthos program 5 3‐ Biopapua Expedition 7 4‐ Collection management 15 5‐ Preliminary results 17 6‐ Outreach and publications 23 7‐ Appendices 26 Appendix 1 27 NRI, note n°. 302/2010 on 26th march, 2010, acceptance of Biopapua reseach programme Appendix 2 28 Biopapua cruise Report, submitted by Ralph MANA (UPNG) A Report Submitted to School of Natural and Physical Sciences, University of Papua New Guinea Appendix 3 39 Chan, T.Y (2012) A new genus of deep‐sea solenocerid shrimp (Crustacea: Decapoda: Penaeoidea) from the Papua New Guinea. Journal of Crustacean Biology, 32(3), 489‐495. Appendix 4 47 Pante E, Corbari L., Thubaut J., Chan TY, Mana R., Boisselier MC, Bouchet P., Samadi S. (In Press). Exploration of the deep‐sea fauna of Papua New Guinea. Oceanography Appendix 5 60 Richer de Forges B. & Corbari L. (2012) A new species of Oxypleurodon Miers, 1886 (Crustacea Brachyura, Majoidea) from the Bismark Sea, Papua New Guinea. Zootaxa. 3320: 56–60 Appendix 6 66 Taxonomic list: Specimens in MNHN and Taiwan collections 2 Biopapua Expedition – Progress report Foreword Biopapua cruise was a MNHN/IRD deep‐sea cruise in partnership with the School of Natural and Physical Sciences, University of Papua New Guinea.
    [Show full text]
  • The Portunid Crabs (Crustacea : Portunidae) Collected by the NAGA Expedition
    UC San Diego Naga Report Title The Portunid Crabs (Crustacea : Portunidae) Collected by the NAGA Expedition Permalink https://escholarship.org/uc/item/5v7289k7 Author Stephenson, W Publication Date 1967 eScholarship.org Powered by the California Digital Library University of California NAGA REPORT Volume 4, Part 1 Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand 1959-1961 Sponsored by South Viet Natll, Thailand and the United States of Atnerica The University of California Scripps Institution of Oceanography La Jolla, California 1967 EDITORS: EDWARD BRINTON, MILNER B. SCHAEFER, WARREN S. WOOSTER ASSISTANT EDITOR: VIRGINIA A. WYLLIE Editorial Advisors: Jorgen Knu·dsen (Denmark) James L. Faughn (USA) Le van Thoi (Viet Nam) Boon Indrambarya (Thailand) Raoul Serene (UNESCO) Printing of this volume was made possible through the support of the National Science Foundation. The NAGA Expedition was supported by the International Cooperation Administration Contract ICAc-1085. ARTS & CRAFTS PRESS, SAN DIEGO, CALIFORNIA CONTENTS The portunid crabs (Crustacea : Portunidae) collected by theNAGA Expedition by W. Stephenson ------ 4 Gammaridean Amphipoda from the South China Sea by Marilyn Clark Inlbach ---------------- 39 3 THE PORTUNID CRABS (CRUSTACEA: PORTUNIDAE) COLLECTED BY THE NAGA EXPEDITION by w. STEPHENSON* * Senior Foreign Science Fellow of the National Science Foundation, Hancock Foundation, Univer­ sity of Southern California, and Professor of Zoology, University of Queensland, Brisbane, Australia. THE PORTUNID CRABS ( CRUSTACEA : PORTUNIDAE) CONTENTS Systematics ­ - - - - - 7 Literature - ----- 23 Plates 29 Appendix ------ 36 5 INTRODUCTION Although the collections of NAGA Expedition are small and contain many well-known and widely distributed species of the Indo-West Pacific area, they also contain several little-known forms (e.g.
    [Show full text]
  • (Campanian) of the Moyenne Moulouya, Northeast Morocco
    Revista Mexicana de CienciasNew Geológicas, crabs from v. 27,the núm.Upper 2, Cretaceous 2010, p. 213-224 of the Moyenne Moulouya, Morocco 213 New crabs (Crustacea, Decapoda) from the Upper Cretaceous (Campanian) of the Moyenne Moulouya, northeast Morocco Àlex Ossó-Morales1, Pedro Artal2, and Francisco J. Vega3,* 1 Josep Vicenç Foix, 12-H, 1er-1ª 43007 Tarragona, Catalonia, Spain, 2 Museo Geológico del Seminario de Barcelona, Diputación 231, E-08007 Barcelona, Spain. 3 Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Del. Coyoacán, 04510, México D. F., Mexico. * [email protected] ABSTRACT The presence of the genera Costacopluma and Ophthalmoplax in Upper Cretaceous (Campanian) Moroccan strata is documented on the basis of specimens collected from the Calcaires à slumps de Taghit Formation, Moyenne Moulouya (Morocco). Two new species are described, Ophthalmoplax minimus and Costacopluma maroccana. The first record for Opthalmoplax in the west Tethyan realm is reported, and systematic affinities of this genus and its species are discussed. An absolute age of the late Campanian was obtained for this assemblage from 87Sr/86Sr analysis applied to well preserved cuticle calcitic remains of Ophthalmoplax minimus. Costacopluma maroccana represents the 14th species for this genus and the fourth Cretaceous species. Its morphology reinforces hypothesis of two main phyletic groups for this genus. Key words: Crustacea, Decapoda, Ophthalmoplax, Costacopluma, Campanian, Morocco. RESUMEN Se documenta la presencia de los géneros Ophthalmoplax y Costacopluma con base en especímenes recolectados en sedimentos del Cretácico Superior (Campaniano) de la Moyenne Mouluya (Marruecos). Se describen dos nuevas especies: Ophthalmoplax minimus y Costacopluma maroccana. Se identifíca y localiza (por primera vez en la parte occidental del dominio del Tethys) el género Ophthalmoplax, discutiéndose las afinidades sistemáticas de este género y sus especies.
    [Show full text]
  • Author's Response
    Dear Authors, I carefully read your responses to the reviewer’s comments and your revised manuscript. You addressed most of the reviewer’s comments and you improved the manuscript. Thank you. However, there are a few points that I would like to you to work on. Most of them are related to open questions of the reviewers in their comments. While you answer very well to these questions in your point to point response, too often, you do not include that information in the text of your manuscript. I think you should include such information because, if the reviewer asked that question, it is most probably because the information was missing or should be clarified in the manuscript. Here is the list of things I would like you to consider in a revised version of your manuscript. Response: Thank you for your comment. We integrated the requested changes in the manuscript, and provide a second markup version. • I suggest that you add the explanation provided to Lazarus comment’s about the glue somewhere in the text, maybe in section 2.3 Response: A paragraph about this was added in second 2.2 when discussing about the choice of the glue, on lines 166 to 169. • I also suggest to add on line 286 : “(…) and to send any suggestion to improve the taxonomical framework of the database” or something similar. Response: This was added as suggested on lines 301 to 302. • I suggest you add something in the discussion about the usefulness of improving the identification to a level that is useful for paleoenvironmental research.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Notopus Dorsipes (Linnaeus) in Singapore: First Record of the Brachyuran Superfamily Raninoidea (Crustacea: Decapoda) on the Sunda Shelf
    NATURE IN SINGAPORE 2012 5: 19–25 Date of Publication: 27 January 2012 © National University of Singapore NOTOPUS DORSIPES (LINNAEUS) IN SINGAPORE: FIRST RECORD OF THE BRACHYURAN SUPERFAMILY RANINOIDEA (CRUSTACEA: DECAPODA) ON THE SUNDA SHELF Martyn E. Y. Low1* and S. K. Tan2 1Department of Marine and Environmental Sciences, Graduate School of Engineering and Science University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan 2Raffles Museum of Biodiversity Research, National University of Singapore 6 Science Drive 2, Singapore 117546, Republic of Singapore (*Corresponding author: [email protected]) INTRODUCTION Recently, a brachyuran crab identified as Notopus dorsipes (Linnaeus, 1758), was found at Changi (north-east Singapore). This represents the first record of the superfamily Raninoidea de Haan, 1839, in Singapore and on the Sunda Shelf (Figs. 1, 2). The superfamily Raninoidea has a worldwide distribution and its members inhabit marine habitats from the intertidal zone to over 300 m deep (reviewed in Ahyong et al., 2009; see also Dawson & Yaldwyn, 1994). Fifty species of raninoids are currently assigned to 12 genera in six subfamilies (Ng et al., 2008). Notopus dorsipes belongs to a monotypic genus currently assigned to the subfamily Notopodinae Serène & Umali, 1972 (see Ng et al., 2008). Originally described as Cancer dorsipes by Linnaeus (1758), this species has had a confused nomenclatural history (see Holthuis, 1962). In order to stabilise the name Cancer dorsipes Linnaeus, Holthuis (1962: 55) designated a figure in Rumphius (1705: pl. 10: Fig. 3) as the lectotype of Notopus dorsipes (reproduced as Fig. 3). De Haan (1841) established the genus Notopus for Cancer dorsipes Linnaeus, the type species by monotypy.
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks.
    [Show full text]
  • Munidopsis Lauensis Baba & De Saint Laurent, 1992
    Zootaxa 3737 (1): 092–096 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3737.1.8 http://zoobank.org/urn:lsid:zoobank.org:pub:74259389-ECB8-4787-8954-3D9CFF3783B5 Munidopsis lauensis Baba & de Saint Laurent, 1992 (Decapoda, Anomura, Munidopsidae), a newly recorded squat lobster from a cold seep in Taiwan CHIA-WEI LIN1,2, SHINJI TSUCHIDA3, SAULWOOD LIN4, CHRISTIAN BERNDT5 & TIN-YAM CHAN6* 1Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University. Hualien 97401, Taiwan, R.O.C. 2Department of Exhibition, National Museum of Marine Biology and Aquarium, Pingtung, 944, Taiwan, R.O.C. 3Japan Agency of Marine Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan. 4Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan, R.O.C. 5GEOMAR Helmholtz Centre for Ocean Research Kiel, 24248 Kiel, Germany. 6Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan, R.O.C. E-mail: [email protected] *Corresponding author. Abstract The squat lobster, Munidopsis lauensis Baba & de Saint Laurent, 1992, is recorded from Taiwan for the first time. This species was previously known only from deep-sea hydrothermal vents in the South-West Pacific but it was now found at a deep-sea cold seep site off southwestern Taiwan. The identity of the Taiwanese material is confirmed by comparison of sequences from the barcoding gene COI. Munidopsis lauensis can be easily separated from other congeners in Taiwanese waters by the eyes bearing a strong mesiodorsal spine and a small mesioventral spine, smooth carapace, fingers of the cheliped distally spooned and fixed finger without a denticulate carina on the distolateral margin.
    [Show full text]
  • Reproductive and Nutritional Cycles of the Crab <Emphasis Type="Italic">
    REPRODUCTIVE AND NUTRITIONAL CYCLES OF THE CRAB PORTUNUS* PELAGICUS (LINNAEUS) (DECAPODA: BRACHYURA) OF THE MADRAS COAST BY A. ABDtm RAHAMAN (Department of Zoology, Madurai University,~ Madurai,-2, India) Received December 28, 1966 (Communicated by Prof S. Krishnaswamy, l~.A.sc.) ABSTRACT The gonadal and hepatic indices were deterrmned. Even though the crab Portunus pelagicus is a continuous breeder, there appears to be three maximal periods of development of the gonad and hepatopancreas. The gonad index is high in the months of November-January and June and the hepatic index shows the greatest development in the months of November-January and August. There appears to be a direct relationship between gonadal and hepatopancreatic development. These results have been discussed in the light of previous work. INTRODUCTION THE reproductive cycle of invertebrates and their sexual periodicities have been extensively studied by many workers (Bennett and Giese, I955; Farmanfarmaian et al., 1958; Giese, 1959 a, 1959 b; Giese et al., 1964; Raha- man, 1965). Of these mention may be made of the studies on the periodic changes in the reproductive cycle of several species of arthropods of tem- perate regions by Boolootian et al. (1959) and Giese (1959). Except for the work on the Indian prawn Penaeus indieus (Subrahmanyam, 1963) similar work on tropical arthropods has been very few. Prasad and Tampi (1953) studied the biology of the blue swimming crab, Portunus pelagieus (Neptunus pelagieus) which forms an important fishery along the east coast of India. Delsman and De Man (1925) found berried crabs of this species throughout the year in Batavia. Prasad and Tampi (loc.
    [Show full text]
  • Descriptions of Some Apparently New Species of Annulosa, (Collected by Mr. Macgillivray During the Voyage of H.M.S. Rattlesnake)
    fi. DOUGLAS LAURIE—BRACHYURA. 407 REPORTS on the MARINE BIOLOGY of the SUDANESE RED SEA.—XXI. On the BEACHYURA. By R. DOUGLAS LAURIE, M.A. (Oxon.), Lecturer in Embryology and Senior Demonstrator in Zoology in the University of Liverpool. (Communicated by Prof. W. A. HERDMAK, F.R.S., F.L.S.) (PLATES 42-45 and 5 Text-figures.) [Read 18th June, 1914.] THE collection comprises 65 species, of which 1, Chlorodopsis arabica, is new to science and 8 are new to the Red Sea. The latter are Cryptodromia gilesii (Ale), Notopus dorsipes (Fabr.), two varieties of Lambrus (Aulaco- lambrus) hoplonotus, Ad. & Wh., Chlorodopsis arabica, Laurie, n. sp., Actwmnus setifer (de Haan), var. tomentosus, Dana, Litocheira Integra (Miers), Macrophthalmus graefei, A. M.-Edw., and Palicus whitei (Miers). In addition, the very decided variety cytherea of Chlorodiella niger (Forsk.) is new to the Red Sea, and should perhaps be reinstated in the specific rank originally given to it by Dana. Of the genera named above, 2 are new to the Red Sea fauna, namely, Litocheira and Notopus, and the latter is the first recorded Red Sea representative of the family Raninidse. The material in the collection helps in the elucidation of the following, in addition to other points of interest :— Thalamka cJiaptalii and T. poissonii, both of Audouin and Savigny, 1826, are easily separable species. Lambrus (Aulacolambrus) hoplonotus, Ad. & Wh., will, I think, be found to comprise at least two species. Macrophtlialmus biennis, A. M.-Edw., is, I believe, incorrectly considered by Alcock to be a synonym of M. convexus, Stm. See note under M.
    [Show full text]