<<

Palaeontologia Electronica palaeo-electronica.org

Middle decapod assemblage from the Tuzla Basin (Tušanj, Bosnia and Herzegovina), with a description of two new species and comparison with coeval faunas from Slovenia

Rok Gašparič, Matúš Hyžný, Gordana Jovanović, Stjepan Ćorić, and Sejfudin Vrabac

ABSTRACT

A decapod assemblage consisting of three species is described from the upper Langhian (lower Badenian) of the Tuzla Basin in Bosnia and Herzegovina. The assem- blage is dominated by minuta sp. nov. (Brachyura, ) and accompanied by Munidopsis salinaria sp. nov. (, ) and Portunus monspeliensis A. Milne Edwards, 1860 (Brachyura, ). Based on the calcare- ous nannoplankton, the studied assemblage is assigned to the upper part of the NN5 Zone. The studied assemblage is considered to have inhabited a shallow, near-shore depositional setting, as suggested by the microfossil association. Munidopsis, Por- tunus and Retropluma have previously been reported from Slovenia, the area closest to the Tuzla Basin with known decapod . Contrary to shallow-marine settings of the localities studied herein, Munidopsis and Retropluma from Slovenian localities are reported from deeper-marine settings. The occurrence of near-complete individuals of Retropluma minuta sp. nov. suggests a wider bathymetric range of the in its evo- lutionary past than it has today.

Rok Gašparič. Oertijdmuseum Boxtel, Bosscheweg 80, 5293 WB Boxtel, the Netherlands. [email protected] Matúš Hyžný. Department of Geology and Palaeontology, Faculty of Natural Sciences, Comenius University, Mlynská dolina G1, Ilkovičova 6, Bratislava 842 15, Slovakia; Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7. A-1010 Vienna, Austria. [email protected] Gordana Jovanović. Natural History Museum Belgrade, Njegoševa 51, 11000 Belgrade, Serbia. [email protected]

http://zoobank.org/D4051238-1D9D-4F40-9271-70C05A822967

Gašparič, Rok, Hyžný, Matúš, Jovanović, Gordana, Ćorić, Stjepan, and Vrabac, Sejfudin. 2019. Middle Miocene decapod crustacean assemblage from the Tuzla Basin (Tušanj, Bosnia and Herzegovina), with a description of two new species and comparison with coeval faunas from Slovenia. Palaeontologia Electronica 22.1.9A 1-21. https://doi.org/10.26879/894 palaeo-electronica.org/content/2019/2430-decapods-from-the-tuzla-basin

Copyright: February 2019 Paleontological Society. This is an open access article distributed under the terms of Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0), which permits users to copy and redistribute the material in any medium or format, provided it is not used for commercial purposes and the original author and source are credited, with indications if any changes are made. creativecommons.org/licenses/by-nc-sa/4.0/ GAŠPARIČ ET AL.: DECAPODS FROM THE TUZLA BASIN

Stjepan Ćorić. Geologische Bundesanstalt, Neulinggasse 38, 1030 Wien, Austria. [email protected] Sejfudin Vrabac. Faculty of Mining, Geology and Civil Engineering Tuzla, Univerzitetska 2, 75000 Tuzla, Bosnia and Herzegovina. [email protected]

Keywords: ; ; new species; taphonomy; bathymetry; palaeoenvironment

Submission: 23 May 2018 Acceptance: 4 February 2019

INTRODUCTION graphic age was determined with the microfossil assemblage analysis presented herein and discus- Almost a century has passed since Glaess- sion on palaeoenvironmental and palaeobiogeo- nerʼs (1928) overview of decapods from graphic implications is also provided. what are now Austria and Slovenia, where he emphasised the need for studying fossil decapod GEOLOGICAL SETTING associations in the neighbouring countries. At about the same time, a monograph on fossil deca- The studied area is located in the Tuzla Basin, pods of the former Austro-Hungarian Empire was in the north-eastern part of Bosnia (Figure 1), published (Lőrenthey and Beurlen, 1929). The which is known for its rock-salt deposits. The Mio- beginning of modern research on fossil decapods cene infill, characterised by various lithologies, from Austria is dated to the second half of the reaches a thickness of approximately 2300 m twentieth century with works of Bachmayer (e.g., (Ćorić et al., 2007). The accessible exposures rep- Bachmayer, 1950, 1953, 1954, 1962; Bachmayer resent both siliciclastic and carbonate shallow- and Tollmann, 1953) and Müller (1984, 1998a, water sediments (Stevanović and Eremija, 1960). 1998b). Since the hallmark monograph on Bade- Middle Miocene (Badenian) sediments in the vicin- nian (= Langhian–early Serravallian) decapods by ity of the rock salt mine in Tuzla are exposed Müller (1984), the area once forming the Para- across a relatively large area with numerous fossil tethys Sea (Rögl, 1998, 1999; Harzhauser et al., sites. Microfossil assemblages are dominated by 2002, 2003) has received renewed attention at the foraminifers (Petrović, 1980; Vrabac and Miha- beginning of the twenty-first century. A number of jlović, 1990) and calcareous nannoplankton (Ćorić papers dedicated to Neogene decapod crusta- et al., 2007). Macrofossils are rare and consist of ceans of the northern part of the Pannonian Basin plant remains, foraminifera, pteropods, gastropods, System include studies on , taphonomy, bivalves, decapods, echinoids, and fish (Steva- biodiversity, and distribution (e.g., Hyžný and nović and Eremija, 1960; Vrabac, 1990). Müller, 2010; Hyžný and Schlögl, 2011; Hyžný et Because of salt mine exploration and for al., 2014, 2015, 2016; Hyžný, 2016). However, understanding of its fossil content, the age of the there is only limited information about fossil deca- sedimentary filling of the Tuzla Basin has been dis- pods from the southern part of the Pannonian cussed for a long time. The sediments were Basin System (Mikuž, 2003; Gašparič and Hyžný, assigned to the middle Miocene (Badenian) based 2015; Gašparič and Ossó, 2016). This paper adds on the study of basin lithostratigraphy and foramin- further data on Neogene decapod of ifera (Petrović, 1959; Stevanović and Eremija, the latter area. 1960; Jovanović, 1980; Soklić et al., 1980; Vrabac The earliest report of the Miocene fossil et al., 1990). According to the most recent study by assemblage from the site Dolnja Tuzla in Bosnia Vrabac and Ćorić (2008), the salt formation was and Herzegovina is that by Fuchs (1890), whereas deposited during the middle Miocene (early Bade- Bittner (1892) reported briefly on a ‘small unidenti- nian) in a gulf of the Central Paratethys Sea. fied ’ from the same locality. Later, Stevanović Exploratory drilling in the roof of the salt formation and Eremija (1960) reported several ‘well-pre- in the Tuzla Basin indicates the presence of strata served impressions of ’ in the marls of an of all three parts of the Badenian stage with overly- immediate roof of a salt formation in Tušanj near ing Sarmatian sediments (Vrabac et al., 2013). Tuzla. This material has remained largely unstud- Based on calcareous nannoplankton, the age of ied until recently. The present contribution aims to the roof of the salt formation from the Tuzla Basin address this fossil decapod faunule in detail follow- was assigned to the lower Badenian NN5 Zone ing a recent re-study of the material. The strati- sensu Martini (1971) (Ćorić et al., 2007).

2 PALAEO-ELECTRONICA.ORG

FIGURE 1. Simplified map of Bosnia and Herzegovina showing the fossiliferous locality Tušanj near Tuzla. The colour white represents pre-Cenozoic strata.

Decapod specimens described herein come Tušanj, A. viennensis (d 'Orbigny, 1846) is docu- from two localities in the Tuzla Basin: the ventila- mented only 3 m above the salt formation (Vrabac tion shaft ‘Tušanj-2’ and the manhole in Simin Han et al., 2013). In Tušanj, similarly to the deposit in at Dolnja Tuzla. The localities are positioned Tetima, in the first 3 m following the salt formation approximately 6 km from each other. At both sites, foraminifera are extremely rare and planktic forms the presence of the roof of the salt formation is are dominant. From this information, as well as documented. Based on Bittner (1892), the initial from the borehole ‘IB-1’section, we conclude that exploratory salt shaft is dated to 1887; however, the decapod specimens from the ventilation shaft the ventilation shaft ‘Tušanj-2’, from which deca- in ‘Tušanj-2’ collected at a depth of 283 m belong pod specimens originate, was excavated in the to beds from the immediate proximity of the salt second half of the twentieth century (1953–1967). formation. The shaft ‘Tušanj-2’ is located approximately 30 m The investigated sediment from ‘Tušanj- from the exploration borehole ‘IB-1’ with the GPS 2’contained a rich association of calcareous nan- coordinates E 18°40'22" and N 44°32'57". The nofossils with Sphenolithus heteromorphus Deflan- manhole to the salt mine in Simin Han at Dolnja dre, 1953. Accompanied nannofossils included Tuzla is located at E18°45'01" and N44°31'53". Braarudosphaera bigelowii (Gran and Braarud, It is possible to establish the boundaries 1935) Deflandre, 1947; Coccolithus pelagicus between the salt formation and its immediate roof, (Wallich, 1877) Schiller, 1930; Helicosphaera car- which is located at a depth of 266 m (Vrabac and teri (Wallich, 1877) Kamptner, 1954; H. walbers- Mihajlović, 1990). The laminated and massive dorfensis Müller, 1974; Micrantholithus sp.; marls with a dominant foraminiferan assemblage of Reticulofenestra haqii Backman, 1978; R. minuta Ammonia viennensis (d'Orbigny, 1846) and Nonion Roth, 1970; Rhabdosphaera sicca (Stradner, 1963) commune (d'Orbigny, 1846) overlie the salt forma- Fuchs and Stradner, 1977; and Sphenolithus mori- tion. The first appearance of the foraminifer Uviger- formis (Brönnimann and Stradner, 1960) Bramlette ina macrocarinata Papp and Turnovský, 1953, and Wilcoxon, 1967. Reworked Mesozoic speci- indicates the beginning of the early Badenian in the mens included Watznaueria barnesiae (Black in Central Paratethys (Cicha et al., 1998), and is Black and Barnes, 1959) Perch-Nielsen, 1968; and recorded at about 15 m above the salt formation W. fossacincta (Black, 1971) Bown in Bown and (Vrabac et al., 2013). The total thickness of these Cooper, 1989. marls is about 150 m. In the Tetima salt deposit, Based on the absence of Helicosphaera located 10 km northeast of the salt deposits in ampliaperta Bramlette and Wilcoxon, 1967, the

3 GAŠPARIČ ET AL.: DECAPODS FROM THE TUZLA BASIN

sample can be attributed to the nannoplankton Abbreviations NN5 Zone sensu Martini (1971). The absence of Parameters measured: L, carapace length exclud- Helicosphaera waltrans Theodoridis, 1984 allows ing rostrum; LR, total carapace length including the assignment of the assemblage to the upper rostrum; LG, length of gastric region; LP, length of part of the NN5 Zone, which can be correlated with pleon; WM, maximum carapace width; WA, total the upper part of the Langhian and the upper part width of anterior margin; OW, fronto-orbital width; of the lower Badenian (Kováč et al., 2007; Piller et WP, width of pleon. All measurements are in milli- al., 2007). metres. Foraminifers are very rare in the sample from ‘Tušanj-2’ and planktic forms dominate. Several SYSTEMATIC PALAEONTOLOGY taxa were identified, including Globigerina bulloi- des d'Orbigny, 1826, Globigerina sp., Quinquelocu- Order Latreille, 1802 lina sp., Cibicidoides sp., and Laevidentalina sp. Infraorder ANOMURA MacLeay, 1838 Superfamily GALATHEOIDEA Samouelle, 1819 MATERIAL AND METHODS Family MUNIDOPSIDAE Ortmann, 1898 Genus MUNIDOPSIS Whiteaves, 1874 Eight decapod specimens were collected from the middle Miocene marls of Tušanj. Seven of Type species. Munidopsis curvirostra Whiteaves, them were recovered from the ventilation shaft of 1874, by monotypy. the salt mine at a depth of 283 m, whereas a single Remarks. Munidopsis is one of the most speciose specimen originates from Dolnja Tuzla. After decapod genera and includes more than 220 spe- preparation with fine needles, the specimens were cies (Macpherson and Baba, 2011). It is highly photographed, measured, and further documented diverse morphologically, which led some scholars using CorelDRAW X5, Adobe Photoshop CC, and to recognise several subgenera in the genus (for Statistica. Photographs were taken with digital details see Ahyong et al., 2011 and Robins et al., cameras Nikon D810 and Nikon Coolpix P7800 2013). Indeed, phylogenetic studies based both on under low angle light source conditions. We molecular and morphological data clearly show observed morphological details and measured that Munidopsis as currently understood is not specimens under stereomicroscope Leica EZ-4D. monophyletic (Ahyong et al., 2011; Bracken-Gris- Because of a delicate nature of the studied speci- som et al., 2013). Despite its speciose nature, the mens they were not whitened prior to photography. genus has a poor fossil record consisting of only a Sieved material from the ‘Tušanj-2’ shaft with handful of taxa (Hyžný et al., 2014). For a discus- granulation 0.1–0.8 mm was used for determina- sion on differentiation of Munidopsis from other tion of foraminifera. Samples were analysed by exclusively fossil genera, a reference is made to stereomicroscope Technical Carl Zeiss Jena with Robins et al. (2013) and references therein. up to x100 magnification. Munidopsis salinaria sp.nov. Repositories Figure 2.1–2.2 zoobank.org/79B0063D-1425-421F-9970-F559C1C3C047 Material studied herein. Specimens PS-02–08 are a part of the Petar Stevanović Collection Diagnosis. Carapace with well-defined hepatic, housed in the Natural History Museum in Belgrade epigastric, mesogastric, epibranchial and cardiac (Serbia). The specimen GBA 1892/005/0001 is regions; epigastric regions circular; rostrum styli- housed in the collections of the Geological Survey form, keeled; carapace surface covered with paral- in Vienna (Austria). lel striae, striae forming longer ridges in Comparative material. Retropluma minuta sp. mesogastric region and posterior part of carapace. nov. described herein was compared with several Etymology. The species epithet refers to the cir- fossil Retropluma species. The material of these cumstances of the type specimen discovery which taxa is deposited in the following institutions: MCZ, was recovered from the exploratory shaft of a salt Museo Civico “G. Zannato” di Montecchio Mag- mine. Latin fem. adj. salinaria, belonging to salt- giore, Italy; MSM, Midtsønderjyllands Museum at works. Gram, Denmark; MSNM, Museo Civico di Storia Holotype. GBA 1892/005/0001—isolated, slightly Naturale di Milano, Italy; RGA/SMNH, Slovenian compressed carapace. Museum of Natural History, Ljubljana, Slovenia. Measurements. L = 6.1; LR = 8.1; LG = 2.5; WM = 6.6; WA = 4.2; WM/L = 1.08.

4 PALAEO-ELECTRONICA.ORG

FIGURE 2. Munidopsis salinaria sp. nov., holotype (GBA 1892/005/0001) showing an incomplete isolated dorsal cara- pace (1) and its schematic reconstruction (2). Scale bar equals 10 mm.

Description. Carapace subsquare (length exclud- once covered by the Paratethys Sea, two addi- ing rostrum/width is ~ 1); moderately convex trans- tional species of Munidopsis are known (Hyžný et versely. Rostrum styliform, keeled; tip broken. al., 2014). Munidopsis lieskovensis Hyžný and Anterior margin sinuous. Lateral margins slightly Schlögl, 2011, from the lower Miocene (Karpatian) convex, with two spines. Grooves well-developed. of the Slovak part of the Vienna Basin, differs in Circumgastric groove strong; slightly V-shaped in having a narrower cardiac region and rather uni- posteriormost part; hepatic and epibranchial form carapace ornamentation. Munidopsis sali- branches distinct. Epigastric, hepatic, epibranchial, naria sp. nov. possesses strong squamous ridges and cardiac regions well defined. Regions slightly on the posterior portions of the carapace; in this inflated. Hepatic region quadrate with one antero- respect, it is close to Munidopsis palmuelleri lateral spine epigastric regions circular and Hyžný, Gašparič, Robins and Schlögl, 2014, from inflated. Area of metagastric region not well pre- the middle Miocene (lower Badenian) of northern served. Cardiac region broad, U-shaped posteri- Slovenia. However, M. palmuelleri differs from the orly, straight posteriorly. Carapace ornamented new species by its proportionally longer carapace, with short to moderately long parallel transverse not well-marked cardiac region, and unkeeled ros- striae, striae forming transverse, squamous ridges trum. In general, the new species shares some in mesogastric and posterior portions of carapace. characters with M. lieskovensis (keeled rostrum, Posterior margin strongly rimmed, seemingly circular epigastric regions) and other characters straight, not well preserved. Ventral surface and with M. palmuelleri (strong squamous ridges on appendages not preserved. posterior portions of the carapace). Munidopsis Remarks. The only known specimen represents salinaria sp. nov. appears to be intermediate an incomplete dorsal carapace, broken at about between the two taxa mentioned and, therefore, is mid-length; thus, the area of the metagastric region considered a close relative of both discussed spe- and posterior carapace margin cannot be cies. This is not surprising given both the geo- described properly. Nevertheless, the specimen is graphic proximity of the known occurrences and complete enough to allow direct comparison with stratigraphic overlap of all three taxa. known fossil and extant congeners. From the area

5 GAŠPARIČ ET AL.: DECAPODS FROM THE TUZLA BASIN

FIGURE 3. Portunus monspeliensis A. Milne Edwards, 1860, a male individual (PS-8) in dorsal (1) and ventral (2) views. Scale bar equals 10 mm.

Munidopsis salinaria sp. nov. differs also from Remarks. There are more than 40 exclusively fos- its fossil congeners from more distant parts of the sil species of Portunus reported worldwide (Sch- world. Munidopsis scrabrosa Feldmann and Wil- weitzer et al., 2010); it must, however, be noted son, 1988, from the upper of Antarctica, that subgenera are not commonly recognized in and M. foersteri Feldmann, Tshudy and Thomson, the palaeontological practice. As noted by Kara- 1993 from the Upper () of sawa et al. (2008) and Spiridonov et al. (2014), the Antarctica have a rounded base of the circumgas- subgenera as recognized by Davie (2002) and Ng tric groove, which seems to be slightly V-shaped in et al. (2008) appear to be not closely related, but M. salinaria sp. nov. Moreover, M. foersteri has a rather represent distinct clades. In this respect, the pyriform carapace and the rostrum is nearly as fossil record of Portunus sensu lato is in need of long as the carapace (Feldmann et al., 1993), quite revision. unlike many other munidopsids (Ahyong et al., Portunus is a common element in Neogene 2011, figure 1). In fact, accommodation of M. foer- decapod assemblages, including those reported steri within the family Chirostylidae would be more from the circum-Mediterranean area (Müller, 1984; appropriate, for which the pyriform carapace with Gašparič and Ossó, 2016; Díaz-Medina et al., much elongated rostrum is typical (Baba et al., 2018). 2008, figure 1). Munidopsis scabrosa has scabrose Portunus monspeliensis A. Milne Edwards, 1860 ornamentation directed forwards; that of M. sali- Figure 3.1-3.2 naria sp. nov. is much more ridge-like. From extant congeners, Munidopsis salinaria 1860 Neptunus monspeliensis A. Milne Edwards, p. 232, pl. 4, fig. 1, pl. 5, fig. 1. sp. nov. with its arrangement of carapace regions is similar to the Bathyankyristes group sensu Ahy- 1860 Neptunus granulatus A. Milne Edwards, p. 241, pl. 3, fig. 1, pl. 7, fig. 2. ong et al. (2011) represented by, e.g., M. (B.) levis Alcock and Anderson, 1894. The combination of 1929 Neptunus granulatus A. Milne Edwards; Lőren- they and Beurlen, p. 188, pl. 13, figs. 3–4), pl. the characters present in M. salinaria ap. nov., 14, figs. 1–4. however, is unique and warrants an erection of a 1956 Neptunus granulatus A. Milne Edwards; new species. Comaschi Caria, p. 284, 288, pl. 1, figs. 1–7, pl. Occurrence. The species is known only from its 2, figs. 1–6, pl. 3, figs. 1–2. type locality, i.e., Dolnja Tuzla in Bosnia and Herze- 1968 Neptunus granulatus A. Milne Edwards; Stancu govina. and Andreescu, p. 466, pl. 7, fig. 85. Infraorder BRACHYURA Latreille, 1802 1984 Portunus monspeliensis (A. Milne Edwards); Superfamily Rafinesque, 1815 Müller, p. 79, pl. 62, figs. 1–2. Family PORTUNIDAE Rafinesque, 1815 1991 Portunus monspeliensis (A. Milne Edwards); Subfamily PORTUNINAE Rafinesque, 1815 Marras and Ventura, p. 108, pl. 1, figs. 1–4, pl. Genus PORTUNUS Weber, 1795 2, figs. 1, 4, pl. 3, figs. 1–3. Type species. Cancer pelagicus Linnaeus, 1758, 1993 Portunus monspeliensis (A. Milne Edwards); by subsequent designation of Rathbun (1926). Müller, p. 14–15, pl. 6, fig. G, pl. 7, fig. A.

6 PALAEO-ELECTRONICA.ORG

2003 Portunus monspeliensis (A. Milne Edwards); keels, and the characteristic sternum (Müller, 1984, Mikuž, p. 187–199, p. 1, figs. 1–5, pl. 2, figs. 1– pl. 62, figures 1-2; Marangon and De Angeli, 2009, 8. figures 2-4; Gašparič and Ossó, 2016, pl. 1, figures 2007 Portunus monspeliensis (A. Milne Edwards); A-H). Portunus monspeliensis is among the most Artal and Gilles, p. 8, pl. 1, fig. C. widespread Miocene brachyuran crabs of the cir- 2009 Portunus monspeliensis (A. Milne Edwards); cum-Mediterranean area (Lőrenthey and Beurlen, Marangon and De Angeli, p. 5–10, figs. 2–4. 1929; Gašparič and Ossó, 2016; Díaz-Medina et 2016 Portunus monspeliensis (A. Milne Edwards); al., 2018). This report represents the first occur- Gašparič and Ossó, p. 55–66, pl. 2, figs. A–H. rence of P. monspeliensis from the southern Pan- 2018 Portunus monspeliensis (A. Milne Edwards); nonian Basin of the Central Paratethys. Díaz-Medina, Ossó and Hyžný, p. 133, figs. 3A–E. (abbreviated synonymy) Superfamily RETROPLUMOIDEA Gill, 1894 Family RETROPLUMIDAE Gill, 1894 Material. Single partially preserved carapace of a Genus RETROPLUMA Gill, 1894 male individual, with preserved sternum and pleon (PS-08). Type species. Archaeoplax notopus Alcock and Measurements. L = 30.5; OW = 27.8; MW = 56.4 Anderson, 1894, by monotypy. (estimated value); L/MW = 0.54. Remarks. All species of Retropluma share a set of Description. Carapace hexagonal, incomplete, characteristic carapace features, including a flat- and heavily weathered, with relative carapace tened carapace with a more or less quadrangular measurements of approximately 1.85 times wider outline and distinct transverse carinae, a truncate than long. Front protruding and slightly down- front, exposed orbits, a narrow single-lobed ros- turned. Fronto-orbital and anterolateral margins trum, pincer-shaped chelipeds, long slender poorly preserved. Posterolateral margin presum- pereiopods (P2–P4), and a reduced setose fifth ably straight with concave depression in the last pereiopod (P5) (McLay, 2006). The fossil species third of its length. Posterior margin broad. of Retropluma differ in their carapace width to Dorsal carapace surface covered densely by length ratio, dorsal ornamentation, the position of small granules, cuticle not preserved in its entirety. anterolateral teeth, and the shape of the rostrum Carapace regions faintly defined; protogastric (Artal et al., 2006; Gašparič and Hyžný, 2015). regions as semi-circular lobes with indistinct trans- Other distinctive features such as relative size of verse ridge; mesogastric and metagastric regions ocular peduncles (de Saint Laurent, 1989) are usu- trapezoid in outline and separated by faint trans- ally not present in the fossil material. verse ridge. Cardiac region well-defined, pentago- Retropluma is known from the Miocene of nal, somewhat swollen with central depression Europe, including Slovenia (Gašparič and Hyžný, running longitudinally. Intestinal region faint and 2015; Gašparič and Križnar, 2017), Slovakia circular. Epibranchial region wide, separated from (Hyžný et al., 2015), and Denmark (Fraaije et al., mesobranchial region by arcuate transverse ridge. 2005). The material described below is the first Cervical groove distinct. Branchiocardiac groove report of the genus from Bosnia. well marked, along sides of cardiac region. Retropluma minuta sp. nov. Thoracic sternum broad, oval, widening pos- Figures 4.1-4.6, 5.1-5.4, 6 teriorly, widest at thoracic sternite 6, with straight to zoobank.org/6063B8FC-0711-4087-9469-6B3F77B38670 slightly concave sutures between respective sterni- tes. Thoracic sternites 1–2 not preserved, sternites Diagnosis. Carapace square in outline (W/L~1.0), 3–4 fused in trapezoidal plate, axial sulcus reach- with strong anterolateral tooth pointing slightly out- ing anterior margin of sternite 3, transverse ridge in wards. Rostrum rounded and spiny distally. sternite 4 medially interrupted; sternites 5–7 trans- Rounded, swollen bases of antennules extending versely elongated, distally rounded; sternite 6 the over the sinuous anterior margin. longest; sternite 7 shorter than sternite 6; sternite 8 Etymology. The species epithet refers to its min- not recognizable; sternites 5–7 expanded laterally ute size for retroplumid crabs. The new species into episternites. Pleon broadly subtriangular; pleo- represents the smallest fossil representative of the nites 1–4 not preserved, plenites 5–6 similarly genus described to date. long; telson subtriangular, poorly preserved. Holotype. The holotype (PS-03) consists of an Remarks. Despite the poor preservation of the articulated near-complete individual preserved in studied specimen, it is attributed herein to Por- ventral aspect. tunus monspeliensis based on the broadly hexago- Paratypes. PS-02, near-complete and articulated nal carapace outline, the presence of protogastric male individual in ventral aspect with preserved

7 GAŠPARIČ ET AL.: DECAPODS FROM THE TUZLA BASIN

FIGURE 4. Retropluma minuta sp. nov. 1, PS-3 (holotype), male individual. 2, PS-3 (detailed view on chelipeds. 3, PS- 7 (paratype), female individual. 4, PS-7, detailed view on rostrum. 5, PS-4 (paratype), male individual. 6, PS-4, detailed view on antennular bases. Scale bars in 1, 3, and 5 equal 5 mm, scale bars in 2, 4, and 6 equal 1 mm. P3–P5 = pereiopods 3–5.

anterior; PS-04, near-complete and articulated L = 0.98. PS-04: L = 3.9; LP = 2.3; WM = 3.7; WA = male in ventral aspect with preserved bases of 2.4; WP = 1.0; WM/L = 0.95. PS-05: L = 6.7 (esti- antennules; PS-06, near-complete and articulated mated value); WM = 6.9 (estimated value); WM/L = female in ventral aspect with pleon and fifth pereio- 1.03. PS-06: L = 6.1; LP = 3.6; WM = 6.1; WP = pods; PS-07, near-complete and articulated indi- 2.3; WM/L = 1.00. PS-07: L = 7.1; LP = 4.5; WM = vidual in ventral aspect with preserved front 7.5; WA = 5.6 (estimated value); WP = 2.0; WM/L = including rostrum. 1.03. Measurements. PS-02: L = 3.9; LP = 2.6; WM = Description. Carapace subsquare (WM/L = 0.97– 3.8; WA = 2.1; WP = 1.0; WM/L = 0.97. PS-03: L = 1.03). Rostrum bent slightly downward, rounded 4.1; LP = 2.6; WM = 3.8; WA = 2.6; WP = 1.0; WM/ and spiny distally. Supraorbital margin sinuous,

8 PALAEO-ELECTRONICA.ORG

FIGURE 5. Retropluma minuta sp. nov. (1-4) and Retropluma slovenica Gašparič and Hyžný, 2014 (5, 6). 1, PS-2 (paratype), male individual. 2, PS-6 (paratype), female individual. 3, PS-6, detailed view on male pleon. 4, PS-7, detailed view on female pleon. 5, CNZ-660, male individual. 6, CNZ-275, female individual. Scale bars in 1 and 2 equal 5 mm, scale bars in 3–6 equal 1 mm. P1–P5 = pereiopods 1–5; S2–S6 = pleonal somites 2–6; St5–St7 = tho- racic sternites 5–7. with indistinct supraorbital tooth and reduced Morphological characters of dorsal carapace orbits. Postorbital tooth strong and triangular, only partially preserved. Three transverse carinae pointed forwards. Rounded, swollen bases of discernible on lateral portions of carapace. Carinae antennules extending over the anterior margin and forming ridges at intersection with lateral margin. filling entire orbital area beneath the rostrum. Carapace widest mid-length at median carina. Sur- Anterolateral margin straight till anterior carina. face of thoracic sternites pitted and finely granu- Lateral and posterolateral margins slightly convex. lose, with enlarged granules laterally and on Posterior margin strong and rimmed, with weakly ridges. developed re-entrant for fifth pereiopods (P5).

9 GAŠPARIČ ET AL.: DECAPODS FROM THE TUZLA BASIN

more robust than right cheliped. Fingers stouter, both with several large blunt teeth. Carpus and merus stout and adorned with tubercles. P2–P4 achelate, much longer than chelipeds, P3 longest, surface finely granulose and flattened, with central groove running along the whole length, ending in long blade-like dactyli. P5 strongly reduced and thin, length about one third of P3. Remarks. The studied material consists of six articulated specimens preserved in ventral aspect. Original cuticle, although preserved, is covered by coarse mineral grains which obliterate finer details. Although dorsal carapace features are incomplete, there are enough distinguishing characters to war- rant the erection of a new species. Retropluma minuta sp. nov. differs from its fossil congeners, i.e., Retropluma borealis Fraaije, Hansen and Han- sen, 2005; R. craverii (Crema, 1895); R. eocenica Vía Boada, 1959; and R. slovenica Gašparič and Hyžný, 2014, not only by its minute size, but more importantly, by a distinctly square carapace outline, and the smallest width to length ratio (Figure 7; for FIGURE 6. Retropluma minuta sp. nov., schematic raw data see Appendix 1). Retropluma gallica reconstruction. 1, Carapace in dorsal view (blank area Artal, Van Bakel and Castillo, 2006, was not represents not preserved portion). 2, Male pleon (pleo- included in the comparison because of lack of suffi- nal somite 1 is not preserved). 3, Left cheliped (P1). 4, cient data (i.e., available carapace measurements). Right cheliped (P1). 5, Longest pereiopod (P3). 6, Shortest pereiopod (P5), conjectural. Additionally, Retropluma minuta sp. nov. is charac- terised by a sinuous anterior margin with reduced orbits and enlarged, rounded bases of antennules Female pleon broadly triangular, with straight and a unique male pleon with strong ridge on margins, narrowing anteriorly, somites becoming somite 2. narrower and longer anteriorly, telson longer than Of the previously described fossil representa- wide and terminally rounded. Male pleon narrower tives of Retropluma, R. minuta sp. nov. is similar to than that of female. Somite 2 wide, with strong sin- Retropluma slovenica (Figure 5.5-5.6) from the uous transverse ridge. Posterior margin straight, early Miocene of Slovenia (Gašparič and Hyžný, anterior margin strongly concave. Lateral margins 2015) and the middle Miocene of Slovakia (Hyžný almost triangular. Male pleon widest at transverse et al., 2015). The new species differs from R. slo- ridge of somite 2. Somites 3–5 fused, sutures 3/4 venica in having a subsquare carapace (WM/L = and 4/5 visible. Lateral margins of fused 3–5 seg- 0.98–1.03) whereas it is wider in R. slovenica (WM/ ment straight, narrowing distally. Somite 6 longer L = 1.24), and having a smaller rounded and spi- than wide, with sinuous lateral margins, convex nous rostrum. On the anterior margin of R. minuta posteriorly and concave anteriorly, posterolateral sp. nov. are visible greatly enlarged rounded bases corners bluntly rounded. Distinct transverse ridge of antennules (present also among extant species, in anterior part of somite 6, anterior margin with tel- e.g., McLay, 2006, figure 3A) and reduced ocular son slightly convex and centrally rimmed. Telson orbits, unlike the specimens of R. slovenica. Addi- narrow and long, with rounded termination. Female tionally, R. minuta sp. nov. displays a uniquely sternal plate in outline more round than that of developed and strongly ridged male pleonal somite male, sternites 5–7 long, convex and ridged. Stern- 2 and possesses distinctly unequal chelipeds, with ite 8 reduced and covered by pleon. a much stronger left cheliped (preserved in three Chelipeds (P1) long, slender and distinctly studied specimens) with a dentate occlusal margin, unequal. Right cheliped slender, propodus and whereas the chelipeds in R. slovenica are of sub- dactylus curved, narrowing distally, both fingers equal size with left cheliped being somewhat slen- long and forceps-like, lateral surfaces without orna- derer. Pereiopods 2–4 are longer compared to car- mentation. Occlusal margin of right cheliped fin- apace size in R. minuta sp. nov. and the blade-like gers straight and unarmed. Left cheliped noticeably

10 PALAEO-ELECTRONICA.ORG

FIGURE 7. Graph showing the ratio between the maximum carapace width and carapace length of fossil Retropluma species. The regression line is based on the ordinary least squares linear model.

dactyli are also markedly longer. Retropluma subject to rapid decomposition, and the fragile exo- minuta sp. nov. also has a more convex posterior skeleton is often fragmented before burial takes margin than R. slovenica. place (Plotnick et al., 1988; Stempien, 2005; Retropluma is represented by seven extant Krause et al., 2011; Klompmaker et al., 2017). species, mostly from the Indo-Pacific region All examined specimens of Retropluma (Gašparič and Hyžný, 2015, table 4). Retropluma minuta sp. nov. are preserved in ventral aspect. minuta sp. nov. resembles closely the extant Ret- Their relaxed position (appendages aligned along ropluma laurentae McLay, 2006, in general outline the carapace sides and chelipeds closed; cf. of the carapace, possession of a small rounded Bishop, 1986, p. 331) suggests that they represent rostrum, a forward pointing triangular postorbital corpses, which indicates that the retroplumid spec- tooth and swollen, rounded bases of antennules. imens are autochthonous. No carapace displace- The carapace outline of R. minuta sp. nov. is sub- ment could be observed, which is otherwise square, whereas it is rectangular in R. laurentae characteristic for preservation of crab moults, in and the anterior margin of R. minuta sp. nov. is which the pleon is not connected to the carapace more sinuous with noticeable supraorbital tooth. anymore (Schäfer, 1972; Bishop, 1986). However, Occurrence. The species is known only from its the moulted carapace may flip back (Schäfer, type locality, i.e., the ventilation shaft of the salt 1972), especially in a low-energy environment, so mine Tušanj-2, Bosnia and Herzegovina. the resulting remains are impossible to distinguish from the corpse. Thus, we cannot say for sure DISCUSSION whether the specimens represent corpses or moults. Whatever the real nature of the specimens, Decapod Taphonomy the preservation of delicate appendages still Decapod crustaceans have a relatively low attached to the crab body does not suggest post- fossilisation potential in comparison to more calci- mortem transport. fied mollusc shells (Kidwell and Flessa, 1995; Studied decapod specimens from the Tuzla Stempien, 2005). Consequently, decapods are Basin show two basic modes of preservation. The

11 GAŠPARIČ ET AL.: DECAPODS FROM THE TUZLA BASIN

Munidopsis and the brachyuran crab of Slovakia where R. slovenica was also found Portunus are preserved as isolated carapaces (Hyžný et al., 2015). without appendages, whereas retroplumid crabs Palaeoenvironment and Bathymetry are complete and virtually intact. This observation has further implications: retroplumid crabs are to The middle Miocene transgression occurred be considered autochthonous, whereas isolated in the area of what is now northern Bosnia and carapace of Munidopsis and insufficiently pre- Herzegovina during the early Badenian, having its served specimen of Portunus monspeliensis might base at 14.91 Ma (Ćorić et al., 2009; Pezelj et al., have been transported prior to final burial. How- 2013; see also Kováč et al., 2017a, 2017b) as a ever, such transport had to be rather short; other- result of the increase in global sea level. The gas- wise fragile carapaces would not be preserved at tropod Sveltia cf. dertovaricosa (Sacco, 1894) and all. the pteropod Vaginella austriaca, Kittl, 1886, were found in the ventilation shaft ‘Tušanj-2’ at 283 m Environment Preferences of Decapods depth, together with the decapod remains and Although the squat lobster Munidopsis is con- internal moulds of cancellariid snails. The mollusc sidered a typical deep-water genus (Macpherson, assemblage suggests fully marine settings. The 2007), squat lobsters in general inhabit a wide foraminiferal assemblages of ‘Tušanj-2’ indicate range of habitats from the intertidal zone to bathyal that the investigated marls of Tušanj were depos- depths (Baba et al., 2008) and are a common ele- ited in very shallow sublittoral settings with the ment of benthic communities on coral reefs or water depth not exceeding 10 m. For comparison, rocky and muddy bottoms (Lowrich and Thiel, numerous miliolid foraminifers inhabit the Gulf of 2011). Moreover, there are fossil representatives of Florida today, in association with nonionids and Munidopsis reported from shallow marine settings rotalid foraminifera, at depths of up to 3 m (Moore, (Feldmann and Wilson, 1988; Feldmann et al., 1957). Quinqueloculina with Ammonia are charac- 1993). teristic for shallow inner shelf settings (Haq and Many extant portunids, such as Portunus Boersma, 1998). Similarly, the absence of dis- pelagicus (Linnaeus, 1758), are found in the Indo- coasters and the dominance of Reticulofenestra Pacific waters and even in the eastern margin of minuta, Helicosphaera carteri, and Coccolithus the Mediterranean Sea (Lai et al., 2010). Judging pelagicus in the nannoplankton assemblage point from the lithologies (sandstones and sandy lime- to a nutrient-rich, shallow-marine environment stones interbedded with marls) bearing fossils of (Ćorić et al., 2009). Portunus monspeliensis (Gašparič and Ossó, Interestingly, the investigated decapod 2016), and comparing to extant P. pelagicus assemblage from the Tuzla Basin consists of taxa (Chande and Mgaya, 2003; Kunsook et al., 2014), not commonly found in shallow-marine settings. it can be concluded that P. monspeliensis inhabited Besides Portunus, a typical inhabitant of shallow a wide range of habitats, but preferred sublittoral waters, there are also specimens of Retropluma. algal and sea grass meadows on both sandy and The occurrence of articulated specimens of the lat- muddy substrate. Based on the cluster analysis, ter genus in sublittoral settings is rather surprising. Müller (1984, table 4) estimated the bathymetry of Although some Eocene retroplumoids have been sedimentary settings with abundant Portunus reported from shallow-marine settings (Beschin et remains as deposited in a shallow marine environ- al., 1996; Khodaverdi et al., 2016), these taxa rep- ment with 20–30 m water depth. resent genera other than Retropluma, whereas Extant representatives of Retropluma prefer- Eocene representatives of Retropluma are known entially inhabit muddy or sandy bottoms at a depth from outer-shelf habitats (Artal et al., 2006). of 70 to 450 m (de Saint Laurent, 1989; McLay, Comparison with Miocene Decapod 2006; see also Gašparič and Hyžný, 2015, table 4), Assemblages from Slovenia where they spend most of the time buried in soft substrate (Ahyong, 2008). Retropluma slovenica Paratethyan decapod faunas are rather from the early Miocene of Slovenia was recorded homogeneous across respective basins (Hyžný, from settings interpreted to have been deposited in 2016); in fact, the Paratethys has been shown to waters deeper than 125 m (Gašparič and Hyžný, represent a compact area without further biogeo- 2015), and a similar depth was estimated for the graphic fragmentation (Harzhauser et al., 2002, palaeoenvironment at the middle Miocene locality 2003). Thus, not surprisingly, the decapod assem- blage from the Tuzla Basin of Bosnia and Herze-

12 PALAEO-ELECTRONICA.ORG

TABLE 1. Palaeoenvironmental preferences of congeners from the roughly coeval decapod assemblages from Slove- nia.

Taxon Retropluma slovenica Gašparič Munidopsis palmuelleri Hyžný et al., Portunus monspeliensis A. Milne and Hyžný, 2014 2014 Edwards, 1860

Localities Činžat (NE Slovenia), Tunjice Košaki (NE Slovenia) Šentilj (NE Slovenia), Kozje (E Slovenia), (Central Slovenia) Brežice (E Slovenia) Age latest Burdigalian (Karpatian) Langhian (early Badenian) Langhian–early Serravallian (Badenian)

Lithology micaceous siltstones, sandy clayey marls calcareous sandstone siltstones Bathymetry epibathyal epibathyal sublittoral Preservation fully articulated disarticulated disarticulated Substrate muddy bottom muddy bottom sandy or seagrass bottom Ecology benthic infaunal benthic epifaunal benthic/pelagic

govina described herein is very close speliensis (Brachyura, Portunidae). Based on the taxonomically to decapod associations from the microfossil association, the studied assemblage is geographically proximal area of Slovenia. All three considered to have once inhabited a shallow, near- genera, Munidopsis, Portunus, and Retropluma, shore depositional setting. The occurrence of near- have been previously reported from Slovenian complete individuals of Retropluma in the Miocene early and middle Miocene localities (Hyžný et al., shallow-marine settings of the Tuzla Basin sug- 2014; Gašparič and Hyžný, 2015; Gašparič and gests wider bathymetric range of the genus than it Ossó, 2016). There are, however, distinct differ- displays today. All three genera reported from the ences in the inferred palaeoenvironment of locali- Tuzla Basin, namely Munidopsis, Portunus and ties with respective decapod taxa (Table 1). Retropluma, have previously been reported from Although in all cases muddy sea bottoms with pre- Slovenia, the most proximal area with known deca- dominantly siliciclastic depositional settings were pod fossils to that of the Tuzla Basin in Bosnia and documented, the water depth apparently was not Herzegovina. Contrary to shallow-marine settings similar. Whereas Retropluma slovenica and Muni- of the localities of the Tuzla Basin, Munidopsis and dopsis palmuelleri are considered to derive from a Retropluma from Slovenian localities are reported deep water environment (Hyžný et al., 2014; from deeper-marine settings. Gašparič and Hyžný, 2015), the association from the Tuzla Basin dominated by Retropluma minuta ACKNOWLEDGEMENTS sp. nov. occurred in a shallow-water, nutrient rich We wish to thank I. Zorn (Geologische Bunde- palaeoenvironment. sanstalt, Wien) for help and information on material deposited at the GBA, V. Mikuž (Faculty of Natural CONCLUSIONS Sciences and Engineering, University of Ljubljana) A fossil decapod assemblage consisting of and M. Križnar (Museum of Natural History, Lju- three species is described from the upper Lang- bljana) for their support, A. Žibrat Gašparič (Fac- hian (lower Badenian) of the Tuzla Basin. The ulty of Arts, University of Ljubljana) for her linguistic occurrence is the first formal report of fossil deca- support and proofreading of the manuscript. The pod crustaceans from Bosnia and Herzegovina. manuscript benefitted from constructive criticism of The decapod assemblage is dominated by Ret- three anonymous reviewers. The research of MH ropluma minuta sp. nov. (Brachyura, Retroplumi- was supported by the Austrian Science Fund dae) and accompanied by Munidopsis salinaria sp. (FWF; Lise Meitner Program M 1544-B25), Slovak nov. (Anomura, Galatheoidea) and Portunus mon- Research and Development Agency under con-

13 GAŠPARIČ ET AL.: DECAPODS FROM THE TUZLA BASIN tract nos. APVV-16-0121 and APVV-17-0555, and by Hungarian Scientific Research Fund (OTKA K112708).

REFERENCES

Ahyong, S.T. 2008. Deepwater crabs from seamounts and chemosynthetic habitats off eastern New Zealand (Crustacea: Decapoda: Brachyura). Zootaxa, 1708:1-72. Ahyong, S.T., Andreakis, N., and Taylor, J. 2011. Mitochondrial phylogeny of the deep-sea squat lobsters, Munidopsidae (Galatheoidea). Zoologischer Anzeiger, 250:367-377. https://doi.org/ 10.1016/j.jcz.2011.06.005 Alcock, A. and Anderson, A.R. 1894. Natural History notes from H. M. Indian Marine Survey Steamer “Investigator”, Commander C.F. Oldham, R.N., commanding. Series II, No. 14. An account of a recent collection of deep-sea Crustacea from the Bay of Bengal and Laccadive Sea. Journal of the Asiatic Society of Bengal, 63:141-185. Artal, P. and Gilles, A. 2007. New Miocene crabs from Pignon (southeast France). Memorie della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 35:8-11. Artal, P., Van Bakel, B., and Castillo, J. 2006. Retropluma Gill, 1894 (Crustacea, Decapoda) from the Eocene of the eastern Pyrenees (Spain, France). Cainozoic Research, 5:65-71. Baba, K., Macpherson, E., Poore, G.C.B., Ahyong, S.T., Bermudez, A., Cabezas, P., and Lin, Ch.-W. 2008. Catalogue of squat lobsters of the world (Crustacea: Decapoda: Anomura– families Chirostylidae, Galatheidae and Kiwaidae). Zootaxa, 1905:1-220. Bachmayer, F. 1950. Neue Dekapoden aus dem österreichischen Tertiär. Annalen des Naturhistorischen Museums in Wien, 57:133-140. Bachmayer, F. 1953. Die Dekapodenfauna des tortonischen Leithakalkes von Deutsch-Altenburg (Niederösterreich). Mitteilungen der Geologischen Gesellschaft in Wien, 44 (for 1951):237- 262. Bachmayer, F. 1954. Zwei bemerkenswerte Crustaceen-Funde aus dem Jungtertiär des Wiener Beckens. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Klasse der Kaiserlichen Akademie der Wissenschaften, Wien, 163(1-2):63-70. Bachmayer, F. 1962. Die Calappiden (Crustacea, Decapoda) aus den tortonischen Ablagerungen des Wiener Beckens. Annalen des Naturhistorischen Museums in Wien, 65:39-46. Bachmayer, F. and Tollmann, A. 1953. Die Crustaceen-Fauna aus dem tortonischen Leithakalk (Steinbrüche der Firma Fenk) bei Groß-Höflein im Burgenland, p. 308-314. In (editor unknown) Kober-Festschrift 1953, Skizzen zum Antlitz der Erde. Geologische Arbeiten, herausgegeben aus Anlaβ des 70. Geburtstages von Prof. Dr. L. Kober, Universität Wien, Gesellschaftsbuchdruckerei Brüder Hollinek, Wien. Backman, J. 1978. Late Miocene-Early nannofossil biochronology and biogeography in the Vera Basin, SE Spain. Stockholm Contributions in Geology, 32:93-114. Beschin, C., Busulini, A., De Angeli, A., and Tessier, G. 1996. Retroplumoidea (Crustacea, Brachyura) nel Terziario del Vicentino (Italia settentrionale). Lavori-Società Veneziana di Scienze Naturali, 21:83-102. Bishop, G. A. 1986. Taphonomy of the North American decapods. Journal of Crustacean Biology, 6:326-355. https://doi.org/10.1163/193724086X00190 Bittner, A. 1892. A Petrefakten des marinen Neogens von Dolnja Tuzla in Bosnien.Verhandlungen der k.k. Geologischen Reichsanstalt, 7:189-183. Black, M. 1971. Coccoliths of the Speeton Clay and Sutterby Marl. Proceedings of the Yorkshire Geological Society, 38:381-424. https://doi.org/10.1144/pygs.38.3.381 Black, M. and Barnes, B. 1959. The structure of coccoliths from the English Chalk. Geological Magazine, 96:321-328. https://doi.org/10.1017/S0016756800062294 Bown, P.R. and Cooper, M.K.E. 1989. , p.82-115. In Bown, P.R. (ed.), Calcareous Nannofossil Biostratigraphy. British Micropalaeontological Society Publication Series. Chapman & Hall, London. Bracken-Grissom, H.D., Cannon, M.E., Cabezas, P., Feldmann, R.M., Schweitzer, C.E., Ahyong, S.T., Felder, D.L., Lemaitre, R., and Crandall, K.A. 2013. A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda). BMC Evolutionary Biology, 13:128 (28 pages). https://doi.org/10.1186/1471-2148-13-128

14 PALAEO-ELECTRONICA.ORG

Bramlette, M.N. and Wilcoxon, J.A. 1967. Middle Tertiary calcareous nannoplankton of the Cipero section, Trinidad, W.I. Tulane Studies in Geology and Paleontology, 5:93-131. Brönnimann, P. and Stradner, H. 1960. Die Foraminiferen- und Discoasteriden-zonen von Kuba und ihre interkontinentale Korrelation. Erdoel-Zeitschrift, 76(10):364-369. Chande, A.I. and Mgaya, Y.D. 2003. The fishery of Portunus pelagicus and species diversity of portunid crabs along the coast of Dar es Salaam, Tanzania. Western Indian Ocean Journal of Marine Science, 2/1:75-84. https://doi.org/10.4314/wiojms.v2i1.28431 Cicha, I., Rögl, F., Rupp, C., and Čtyroká, J. 1998. Oligocene–Miocene foraminifera of the Central Paratethys. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 549:1-325. Comaschi Caria, I. 1956. I Crostacei miocenici della Sardegna. Bollettino del Servizio Geologico d’Italia, 78:283-290. Ćorić, S., Pavelić, D., Rögl, F., Mandić, O., Vrabac, S., Avanić, R., Jerković, L., and Vranjković, A. 2009. Revised Middle Miocene datum for initial marine flooding of North Croatian Basins (Pannonian Basin System, Central Paratethys). Geologia Croatica, 62:31-43. Ćorić, S., Vrabac, S., Ferhatbegović, Z., and Ðulović, I. 2007. Biostratigraphy of Middle Miocene Sediments from the Tuzla Basin (North-eastern Bosnia) Based on Foraminifera and Calcareous Nannoplankton. Joannea Geologie und Paläontologie, 9:21-23. Crema, C. 1895. Sopra alcuni decapodi terziarii del Piemonte. Atti Reale Accademia delle Scienze di Torino, 30:664-681. Davie, P.J.F. 2002. Crustacea: Malacostraca: Eucarida (Part 2): Decapoda—Anomura, Brachyura, p. 1-641. In Wells, A. and Houston, W.W.K. (eds.), Zoological Catalogue of Australia. Vol. 19.3B. CSIRO Publishing, Melbourne. De Angeli, A., Garassino, A., and Pasini, G. 2011. Retropluma craverii (Crema, 1895) (Crustacea, Decapoda, Brachyura, Retroplumidae) from the Pliocene of Reggio Emilia (N Italy). Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 152:37-44. Deflandre, G. 1947. Braarudosphaera nov. gen., type d'une famille nouvelle de Coccolithophorides actuels a elements composites. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, 225:439-441. Deflandre, G. 1953. Hétérogénéité intrinsèque et pluralité des éleménts dans les coccolithes actuels et fossiles. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences Paris, 237:1785-1787. de Saint Laurent, M. 1989. La nouvelle superfamille des Retroplumoidea Gill, 1894 (Decapoda, Brachyura): systématique, affinités et évolution. Mémoire du Muséum national d’Histoire Naturelle, 144:103-179. Díaz-Medina, G., Ossó, À., and Hyžný, M. 2018. A middle Miocene decapod faunule from Granada (Spain), with remarks on distribution pattern of the crab Portunus monspeliensis. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 288:129-141. https://doi.org/ 10.1127/njgpa/2018/0728 Feldmann, R.M., Tshudy, D.M., and Thomson, M.R.A. 1993. and decapod crustaceans from James Ross Basin, Antarctic Peninsula. The Paleontological Society Memoir, 28:1-41. Feldmann, R.M. and Wilson, M.T. 1988. Eocene decapod crustaceans from Antarctica. Memoirsof Geological Society of America, 169:465-488. Fraaije, R.H.B., Hansen, J., and Hansen, T. 2005. Late Miocene decapod fauna from Gram, Denmark. Palaeontos, 7:51-61. Fuchs, R. and Stradner, H. 1977. Über Nannofossilien im Badenien (Mittelmiozan) der zentralen Paratethys. Beiträge zur Paläontologie von Österreich, 2:1-58. Fuchs, Th. 1890. Einsendungen von Petrefacten aus Bosnien von Dolnja Tuzla. Annalen des k. k. Naturhistorischen Hofmuseums, Notizen, 5:86. Gašparič, R. and Hyžný, M. 2015 (online 2014). An early Miocene deep-water decapod crustacean faunule from the Slovenian part of the Styrian Basin, and its palaeoenvironmental and palaeobiogeographical significance. Papers in Palaeontology, 1:141-166. https://doi.org/ 10.1002/spp2.1006 Gašparić, R. and Križnar, M. 2017. Early Miocene decapod Retropluma slovenica Gašparič & Hyžný, 2014 from Govce beds of Tunjice Hills (Central Slovenia). Geologija, 59:55-66. https:/ /doi.org/10.5474/geologija.2017.006

15 GAŠPARIČ ET AL.: DECAPODS FROM THE TUZLA BASIN

Gašparić, R. and Ossó, A. 2016. New reports of decapod Portunus monspeliensis A. Milne Edwards, 1860 from Miocene beds of eastern Slovenia with notes on palaeoecology and palaeobiogeography. Geologija, 60:77-85. http://doi.org/10.5474/geologija.2016.005 Gill, T. 1894. A new bassalian type of crabs. American Naturalist, 28:1034-1045. Glaessner, M.F.1928. Die Dekapodenfauna des österreichischen Jungtertiärs. Jahrbuch der Geologischen Bundesanstalt, 78:161-219. Gran, H.H. and Braarud, T. 1935. A quantitative study of the phytoplankton in the Bay of Fundy and the Gulf of Maine (including observations on hydrography, chemistry and turbidity). Journal of the Biological Board of Canada, 1:279-467. https://doi.org/10.1139/f35-012 Haq, B.U. and Boersma, A. 1998. Introduction to Marine Micropaleontology. Elsevier, Amsterdam and Tokyo. Harzhauser, M., Mandic, O., and Zuschin, M. 2003. Changes in Paratethyan marine molluscs at the Early/Middle Miocene transition: diversity, palaeogeography and palaeoclimate. Acta Geologica Polonica, 53:323-339. Harzhauser, M., Piller, W.E., and Steininger, F.F. 2002. Circum-Mediterranean Oligo-Miocene biogeographic evolution – the gastropods’ point of view. Palaeogeography, Palaeoclimatology, Palaeoecology, 183:103-133. https://doi.org/10.1016/S0031- 0182(01)00464-3 Hyžný, M. 2016. Diversity and distribution patterns of the Oligocene and Miocene decapod crustaceans (Crustacea: Malacostraca) of the Western and Central Paratethys. Geologica Carpathica, 67:471-494. https://doi.org/10.1515/geoca-2016-0030 Hyžný, M., Gašparič, R., Robins, C.M., and Schlögl, J. 2014. Miocene squat lobsters (Decapoda, Anomura, Galatheoidea) of the Central Paratethys – a review, with description of a new species of Munidopsis. Scripta Geologica, 147:241-267. Hyžný, M., Hudáčková, N., and Szalma, Š. 2015. Taphonomy and diversity of Middle Miocene decapod crustaceans from the Novohrad-Nógrad Basin, Slovakia, with remarks on palaeobiography. Acta Geologica Slovaca, 7:139-154. Hyžný, M., Mandic, O., Harzhauser, M., and Ledvák, P. 2016. Euryhaline preferences of the decapod crab Mioplax socialis enabled it to survive the Badenian/Sarmatian extinction (Miocene) in the Central Paratethys. Geologica Carpathica, 67:165-176. https://doi.org/ 10.1515/geoca-2016-0011 Hyžný, M. and Müller, P.M. 2010. The first fossil record of the genus Callichirus (Decapoda, Axiidea, Callianassidae) from the middle Miocene of Hungary, with description of a new species. Bulletin of the Mizunami Fossil Museum, 36:37-43. Hyžný, M. and Schlögl, J. 2011. An early Miocene deep-water decapod crustacean faunule from the Vienna basin (Western Carpathians, Slovakia). Palaeontology, 54:323-349. https:// doi.org/10.1111/j.1475-4983.2011.01033.x Jovanović, Č. 1980. Geneza pretortonskih miocenskih sedimenata na prostoru između Drine i Une. Geološki Glasnik, 15:1-159. Kamptner, E. 1954. Untersuchungen über den Feinbau der Coccolithen. Anzeiger. Österreichische Akademie der Wissenschaften. Mathematische-Naturwissenschafliche Klasse, 87:152-158. Karasawa , H., Schweitzer, C.E., and Feldmann, R.M. 2008. Revision of Portunoidea Rafinesque, 1815 (Decapoda: Brachyura) with emphasis on the fossil genera and families. Journal of Crustacean Biology, 28:82-127. https://doi.org/10.1651/07-2882R.1 Khodaverdi Hassan-vand, M., Bahrami, A., Yazdi, M., Ossó, À., Safari, A., Martínez, J.L., and Vega, F.J. 2016. Occurrence of Retrocypoda almelai Via Boada, 1959 (Decapoda: Retroplumidae) in the Eocene of Central Iran. Paleontología Mexicana, 5:21-31. Kidwell, S.M. and Flessa, K.W. 1995. The quality of the fossil record: populations, species, and communities. Annual Review of Earth and Planetary Sciences, 24:433-464. https://doi.org/ 10.1146/annurev.earth.24.1.433 Kittl, E. 1886. Ueber die Miozanen Pteropoden von Oesterreich– Ungarn mit Berücksihtigung verwandter Vorkommnise der Nachbarnländer. Annalen des k. k. Naturhistorischen Hofmuseums Wien, 1:47-74. Klompmaker, A.A., Portell, R.W., and Frick, M.G. 2017. Comparative experimental taphonomy of eight marine indicates distinct differences in preservation potential. Palaeontology, 60:773-794. https://doi.org/10.1111/pala.12314 Kováč, M., Andreyeva-Grigorovich, A., Bajraktarević, Z., Brzobohatý, R., Filipescu, S., Fodor, L., Harzhauser, M., Nagymarosy, A., Oszczypko, N., Pavelić, D., Rögl, F., Saftić, B., Sliva, Ľ.,

16 PALAEO-ELECTRONICA.ORG

and Studencka, B. 2007. Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. Geologica Carpathica, 58:579-606. Kováč, M., Hudáčková, N., Halásová, E., Kováčová, M., Holcová, K., Oszczypko-Clowes, M., Báldi, K., Less, G., Nagymarosy, A., Ruman, A., Klučiar, T., and Jamrich, M. 2017a. The Central Paratethys palaeoceanography: a water circulation model based on microfossil proxies, climate, and changes of depositional environment. Acta Geologica Slovaca, 9:75- 114. Kováč, M., Márton, E., Oszczypko, N., Vojtko, R., Hók, J., Králiková, S., Plašienka, D., Klučiar, T., Hudárková, N., and Oszczypko-Clowes, M. 2017b. Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Global and Planetary Change, 155:133-154. https://doi.org/10.1016/j.gloplacha.2017.07.004 Krause, R.A. Jr., Parsons-Hubbard, K., and Walker, S.E. 2011. Experimental taphonomy of a decapod crustacean: Long-term data and their implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 312:350-362. https://doi.org/10.1016/ j.palaeo.2011.03.020 Kunsook, C., Gajaseni, N., and Paphavasit, N. 2014. The feeding ecology of the blue swimming crab, Portunus pelagicus (Linnaeus, 1758), at Kung Krabaen Bay, Chanthaburi Province, Thailand. Tropical Life Sciences Research, 25:13-27. Lai, J.C.Y., Ng, P.K.L., and Davie, P.J.F. 2010. A Revision of the Portunus pelagicus (Linneus, 1758) species complex (Crustacea: Brachyura: Portunidae), with the recognition of four species. Raffles Bulletin of Zoology, 58:199-237. Larghi, C. 2003. First record of Oligocene retroplumd crab (Crustacea: Decapoda: Brachyura) from Italy. Bulletin of the Mizunami Fossil Museum, 30:57-60. Latreille, P.A. 1802. Histoire Naturelle, Général et Particulière, des Crustacés et des Insectes, Volume 3. Familles naturelles des genres. Dufart, Paris. Linnaeus, C. 1758. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. Editio Decima, Reformata. Laurentius Salvius, Holmiae. Lőrenthey, E. and Beurlen, K. 1929. Die fossilen Dekapoden der Länder der ungarischen Krone. Geologica Hungarica, Series Palaeontologica, 3:1-420. Lowrich, G.A. and Thiel, M. 2011. Ecology, physiology, feeding and trophic role of squat lobsters, p. 183-222. In Poore, G.C.B., Ahyong, S.T., and Taylor, J. (eds.), The Biology of Squat Lobsters. CSIRO Publishing, Melbourne. MacLeay, W.S. 1838. On the brachyurous decapod Crustacea brought from the Cape by Dr. Smith, p. 53-71. In Smith, A. (ed.), Illustrations of the Zoology of South Africa, Consisting Chiefly of Figures and Descriptions of the Objects of Natural History Collected during an Expedition into the Interior of South Africa, in the Years 1834, 1835, and 1836; Fitted Out by "The Cape of Good Hope Association for Exploring Central Africa": Together with a Summary of African Zoology, and an Inquiry Into the Geographical Ranges of Species in that Quarter of the Globe, Volume 5. Smith, Elder and Co., London. Macpherson, E. 2007. Species of the genus Munidopsis Whiteaves, 1784 from the Indian and Pacific Oceans and reestablishment of the genus Galacantha A. Milne-Edwards, 1880 (Crustacea, Decapoda, Galatheidae). Zootaxa, 1417:1-135. Macpherson, E. and Baba, K. 2011. Taxonomy of squat lobsters, p. 39-71. In Poore, G.C.B., Ahyong, S.T., and Taylor, J. (eds), The Biology of Squat Lobsters. CSIRO Publishing, Melbourne. Marangon, S. and De Angeli, A. 2009. Exceptionally preserved specimens of Portunus monspeliensis (A. Milne Edwards, 1860) (Brachyura, Portunidae) from the Miocene of Sardinia (Italy). Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 150:3-12. Marras, G. and Ventura, G. 1991. Crostacei decapodi del Miocene di Sassari (Sardegna nord occidentale). Bollettino della Società Sarda di Scienze Naturali, 28:105-119. Martini, E. 1971. Standard Tertiary and Quartenary calcareous nannoplankton zonation, p. 739- 785. In Farinacci, A. (ed), Proceedings of the 2nd Planktonic Conference. Tecnoscienza, Roma. McLay, C.L. 2006. Retroplumidae (Crustacea, Decapoda) from the Indo-Malayan archipelago (Indonesia, Philippine) and the Melanesian arc islands (Solomon Islands, Fiji and New Caledonia), and paleogeographical comments. Mémoires du Muséum National d’Histoire Naturelle, 193:375-391.

17 GAŠPARIČ ET AL.: DECAPODS FROM THE TUZLA BASIN

Mikuž, V. 2003. Miocenske rakovice iz okolice Šentilja v Slovenskih Goricah. (The Miocene crabs from vicinity Šentilj in Slovenske Gorice, Slovenia). Razprave IV. razreda SAZU, 44:187-199. Milne Edwards, A. 1860. Histoire des Crustacés podophthalmaires fossiles et Monographie des Décapodes Macroures de la famille des Thalassinens. Annales des Sciences Naturelles, 4e Série, 14:129-357. Moore, W.E. 1957. Ecology of recent foraminifera in Northern Florida Keys. AAPG Bulletin, 41:727-741. Müller, C. 1974. Nannoplankton aus dem Mittel-Miozän von Walbersdorf (Burgenland). Senckenbergiana Lethaea, 55:389-405. Müller, P. 1984. Decapod Crustacea of the Badenian. Geologica Hungarica, Series Palaeontologica, 42:3-317. Müller, P. 1993. Neogene Decapod Crustaceans from Catalonia. Scripta Musei Geologici Seminarii Barcinonensis, 225:1-39. Müller, P. 1998a: Crustacea Decapoda, p. 1-48. In Flügel, H.W. (ed.), Catalogus Fossilium Austriae. Verlag der Österreichischen Akademie der Wissenschaften, Wien. Müller, P. 1998b. Decapode Crustacea aus dem Karpat des Korneuburger Beckens (Unter- Miozän, Niederösterreich). Beiträge zur Paläontologie, 23:273-281. Ng, P.K.L., Guinot, D., and Davie, P.J.F. 2008. Systema Brachyurorum: Part I. An annotated checklist of extant brachyuran crabs of the world. The Raffles Bulletin of Zoology, Supplement 17:1-286. d'Orbigny, A. D. 1826. Tableau méthodique de la classe des Céphalopodes. Annales des Sciences Naturelles, 7:96-169, 245-314. d'Orbigny, A.D. 1846. Die fossilen foraminiferen des tertiären Beckens von Wien. Foraminifères fossiles du bassin tertiaire de Vienne. Gide, Paris. Ortmann, A.E. 1898. Gliedierfüssler: Arthropoda, p. 1057-1168. In Gerstäcker, A. and Ortmann, A.E. (eds.), Dr. H.G. Bronn’s Klassen und Ordnungen des Thier-Reichs, wissenschaftlich dargestellt in Wort und Bild. Bdand V, Abteilung. 2 (Crustacea), 2 Hälfte (Malacostraca). C.F. Winter, Leizig. Papp, A. and Turnovsky, K. 1953. Die Entwicklung der Uvigerinen im Vindobon (Helvet und Torton) des Wiener Beckens. Jahrbuch der Geologischen Bundesanstalt, 96:117-142. Perch-Nielsen, K. 1968. Der Feinbau und die Klassifikation der Coccolithen aus dem Maastrichtien von Danemark. Biologiske Skrifter. Kongelige Danske Videnskabernes Selskab, 16:1-96. Petrović, M. 1980. Biostratigrafski značaj srednjemiocenskih foraminifera iz bušotina Tuzlanskog basena. Geološki anali Balkanskog Poluostrva, 43-44:155-203. Petrović, V.M. 1959. Prilog poznavanju tortonsko-sarmatskih foraminifera iz Tuzle i uže okoline. Geološki anali Balkanskog Poluostrva, 26:195-202. Pezelj, Đ., Mandić, O., and Ćorić, S. 2013. Paleoenvironmental dynamics in the southern Pannonian Basin during initial Middle Miocene marine flooding. Geologica Carpathica, 64:81- 100. Piller, W.E., Harzhauser, M., and Mandic, O. 2007. Miocene Central Paratethys stratigraphy - current status and future directions. Stratigraphy, 4:151-168. Plotnick, R., Baumiller, T., and Wetmore, K.L. 1988. Fossilization potential of the mud crab, Panopeus (Brachyura: Xanthidae) and temporal variability in crustacean taphonomy. Palaeogeography, Palaeoclimatology, Palaeoecology, 63:27-43. https://doi.org/10.1016/ 0031-0182(88)90089-2 Rafinesque, C.S. 1815. Analyse de la Nature, ou Tableau de l’Univers et des Corps Organises. J. Barravecchia, Palermo. Robins, C.M., Feldmann, R.M., and Schweitzer, C.E. 2013. Nine new genera and 24 new species of the Munidopsidae (Decapoda: Anomura: Galatheoidea) from the Jurassic Ernstbrunn Limestone of Austria, and notes on fossil munidopsid classification. Annalen des Naturhistorischen Museums in Wien, 115A:167-251. Rögl, F. 1998. Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Annalen des Naturhistorischen Museums in Wien, 99A:279-310. Rögl, F. 1999. Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene Paleogeography (short overview). Geologica Carpathica, 59:339-349. Roth, P.H. 1970. Oligocene calcareous nannoplankton biostratigraphy. Eclogae Geologicae Helvetiae, 63:799-881.

18 PALAEO-ELECTRONICA.ORG

Sacco, F.1894. I molluschi del terreni terziarii del Piemonte e dellaLiguria,16 (Cancellariidae) H.e A. Adams 1853. Bolettino dei Musei di Zoologiae di Anatomia Comparata della Reale Universita di Torino, 171: 68-70. Samouelle, G. 1819. The Entomologist’s Useful Compedium; or an Introduction to the Knowledge of British Insects, Comprising the Best Means of Obtaining and Preserving Them, and a Description of the Apparatus Generally Used; Together with the Genera of Linné, and the Modern Method of Arranging the Classes Crustacea, Myriapoda, Spiders, Mites and Insects, from Their Affinities and Structure, According to the Views of Dr. Leach. Also an Explanation of the Terms Used in Entomology; a Calendar of the Times of Appearance and Usual Situations of Near 3,000 Species of British Insects; with Instructions for Collecting and Fitting Up Objects for the Microscope. Thomas Boys, London. Schäfer, W. 1972. Ecology and Palaeoecology of Marine Environments (Aktuo-paläontologie nach Studien in der Nordsee, Translated by I. Oertel, Edited by G.Y. Craig). Oliver and Boyd, Edinbourgh. Schiller, J. 1930. Coccolithineae, p.89-267. In Rabenhorst, L. (ed.), Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Akademische Verlagsgesellschaft, Leipzig. Schweitzer, C.E., Feldmann, R.M., Garassino, A., Karasawa, H., and Schweigert, G. 2010. Systematic list of fossil decapod crustacean species. Crustaceana Monographs, 10:1-222. https://doi.org/10.1163/ej.9789004178915.i-222 Soklić, I., Atanacković, M., Jerković, L., and Petrović, M. 1980. Biostratigrafski aspekti za utvrđivanje geneze i starosti tuzlanskog sonog ležišta. Simpozij iz Regionalne Geologije i Paleontologije, 1980:307-316. Spiridonov, V.A., Neretina, T.V., and Schepetov, D. 2014. Morphological characterization and molecular phylogeny of Portunoidea Rafinesque, 1815 (Crustacea Brachyura): Implications for understanding evolution of swimming capacity and revision of the family-level classification. Zoologischer Anzeiger, 253:404-429. https://doi.org/10.1016/j.jcz.2014.03.003 Stancu, I. and Andreescu, E. 1968. Fauna tortoniana din regiunea Rugi-Delinesti (Bazanul Caransebesului). Studii și Cercetări de Geologie, Geofizică, Geografie: Seria Geologie, 2:455-471. Stempien, J.A. 2005. Brachyuran taphonomy in a modern tidal-flat environment: Preservation potential and anatomical bias. Palaios, 20:400-410. Stevanović, P. and Eremija, M. 1960. Miocen Donje Tuzle. Geološki Anali Balkanskog Poluostrva, 27:45-102. Stradner, H. 1963. New contributions to Mesozoic stratigraphy by means of nannofossils. Proceedings of the Sixth World Petroleum Congress, 1(4):167-183. Theodoridis, S. 1984. Calcareous nannofossil biostratigraphy of the Miocene and revision of the helicoliths and discoasters. Utrecht Micropaleontological Bulletin, 32:1-271. Vía Boada, L. 1959. Decápodos fósiles del Eoceno espanol. Boletin del Instituto Geológico y Minero de Espana, 70:1-72. Vrabac, S. 1990. Asocijacije makrofaune i njihov stratigrafski značaj u krovinskim sedimentima ležišta soli Tuzlanskog basena. Zbornik XII. Kongresa Geologa SFRJ, 1:302-311. Vrabac, S. and Ćorić, S., 2008. Revizija „karpata“ Tuzlanskog bazena sa osvrtom na stratigrafski položaj sone formacije. Geološki Glasnik, 37:71-81 Vrabac, S. and Mihajlović, Đ. 1990. Paleontološke i biostratigrafske odlike krovinskih sedimenata ležišta kamene soli Tušanj u Tuzli. Geološki anali Balkanskog Poluostrva, 53:297-303. Vrabac, S., Ćorić, S., Ferhatbegović, Z., and Đulović, I. 2013. Stratigraphy of the middle Miocene salt deposit Tetima near Tuzla (The Central Paratethys, north Bosnia), p. 207. In Çağatay, N. and Zabci, C. (eds.), Regional Committee on Mediterranean Neogene Stratigraphy 14 Congress, Neogene to Geological Evolution of Mediterranean, Paratethys and Black Sea. Book of Abstracts. Istanbul Technical University, Istanbul. Wallich, G.C. 1877. Observations on the coccosphere. Annals and Magazine of Natural History, 19:342-350. Weber, F. 1795. Nomenclator entomologicus secundum entomologiam systematicam ill. Fabricii, adjectis speciebus recens detectis et varietatibus. Bohn, C.E. Hamburg, London. Whiteaves, J.F. 1874. On recent deep-sea dredging operations in the Gulf of St. Lawrence. American Journal of Science, Series 3, 7:210-219.

19 GAŠPARIČ ET AL.: DECAPODS FROM THE TUZLA BASIN

APPENDIX 1.

Measurements of Retropluma spp. used for construction of graph shown in Figure 7.

carapace max. carapace length carapace width/ taxon repository number locality reference (including max. width carapace rostrum) in in mm length mm

Retropluma slovenica RGA/SMNH 173 Činžat, Slovenia Gašparič and Hyžný (2015) 4.6 5.2 1.13 Retropluma slovenica RGA/SMNH 267 Činžat, Slovenia Gašparič and Hyžný (2015) 11.1 13.2 1.19 Retropluma slovenica RGA/SMNH 270 and 290 Činžat, Slovenia Gašparič and Hyžný (2015) 13.2 16.8 1.27 Retropluma slovenica RGA/SMNH 318 and 319 Činžat, Slovenia Gašparič and Hyžný (2015) 15.0 16.6 1.11 Retropluma slovenica RGA/SMNH 320 Činžat, Slovenia Gašparič and Hyžný (2015) 13.6 16.8 1.24 Retropluma slovenica RGA/SMNH 554 and 559 Činžat, Slovenia Gašparič and Hyžný (2015) 11.3 15.2 1.35 Retropluma slovenica RGA/SMNH 555 and 556 Činžat, Slovenia Gašparič and Hyžný (2015) 14.7 17.0 1.16 Retropluma slovenica RGA/SMNH 558 and 553 Činžat, Slovenia Gašparič and Hyžný (2015) 12.2 13.9 1.14 Retropluma slovenica RGA/SMNH 642 and 619 Činžat, Slovenia Gašparič and Hyžný (2015) 10.6 12.0 1.13 Retropluma slovenica RGA/SMNH 656 Činžat, Slovenia Gašparič and Hyžný (2015) 6.2 7.4 1.19 Retropluma slovenica RGA/SMNH 657 Činžat, Slovenia Gašparič and Hyžný (2015) 5.3 7.4 1.40 Retropluma slovenica RGA/SMNH 658 and 659 Činžat, Slovenia Gašparič and Hyžný (2015) 13.2 15.6 1.18 Retropluma slovenica RGA/SMNH 662 Činžat, Slovenia Gašparič and Hyžný (2015) 11.6 14.2 1.22 Retropluma slovenica RGA/SMNH 663 Činžat, Slovenia Gašparič and Hyžný (2015) 10.7 13.8 1.29 Retropluma slovenica RGA/SMNH 673 and 674 Činžat, Slovenia Gašparič and Hyžný (2015) 13.2 17.0 1.29 Retropluma slovenica RGA/SMNH 705 Činžat, Slovenia Gašparič and Hyžný (2015) 13.8 16.3 1.18 Retropluma slovenica RGA/SMNH 707 Činžat, Slovenia Gašparič and Hyžný (2015) 17.9 19.5 1.09 Retropluma slovenica RGA/SMNH 710 Činžat, Slovenia Gašparič and Hyžný (2015) 12.0 13.3 1.11 Retropluma slovenica RGA/SMNH 724 Činžat, Slovenia Gašparič and Hyžný (2015) 8.2 10.3 1.26 Retropluma slovenica RGA/SMNH 735 Činžat, Slovenia Gašparič and Hyžný (2015) 14.0 17.1 1.22 Retropluma slovenica RGA/SMNH 1142 and 1143 Činžat, Slovenia Gašparič and Hyžný (2015) 7.8 10.6 1.36 Retropluma slovenica RGA/SMNH 1203 Činžat, Slovenia Gašparič and Hyžný (2015) 9.3 11.1 1.19 Retropluma slovenica RGA/SMNH 1208 and 1207 Činžat, Slovenia Gašparič and Hyžný (2015) 5.9 7.2 1.22 Retropluma slovenica RGA/SMNH 1216 Činžat, Slovenia Gašparič and Hyžný (2015) 5.7 6.4 1.12 Retropluma slovenica RGA/SMNH 139 Činžat, Slovenia Gašparič and Hyžný (2015) 8.3 10.7 1.29 Retropluma slovenica RGA/SMNH 145 Činžat, Slovenia Gašparič and Hyžný (2015) 9.2 11.1 1.21 Retropluma slovenica RGA/SMNH 275 Činžat, Slovenia Gašparič and Hyžný (2015) 9.9 11.6 1.17 Retropluma slovenica RGA/SMNH 287 Činžat, Slovenia Gašparič and Hyžný (2015) 8.3 10.0 1.20 Retropluma slovenica RGA/SMNH 322 Činžat, Slovenia Gašparič and Hyžný (2015) 11.8 15.3 1.30 Retropluma slovenica RGA/SMNH 548 Činžat, Slovenia Gašparič and Hyžný (2015) 11.4 14.8 1.30 Retropluma slovenica RGA/SMNH 549 Činžat, Slovenia Gašparič and Hyžný (2015) 4.5 6.1 1.36 Retropluma slovenica RGA/SMNH 557 Činžat, Slovenia Gašparič and Hyžný (2015) 7.6 10.3 1.36 Retropluma slovenica RGA/SMNH 561 Činžat, Slovenia Gašparič and Hyžný (2015) 9.3 11.3 1.22 Retropluma slovenica RGA/SMNH 564 Činžat, Slovenia Gašparič and Hyžný (2015) 8.3 10.1 1.22 Retropluma slovenica RGA/SMNH 631 Činžat, Slovenia Gašparič and Hyžný (2015) 9.1 13.4 1.47 Retropluma slovenica RGA/SMNH 633 Činžat, Slovenia Gašparič and Hyžný (2015) 9.2 13.5 1.47 Retropluma slovenica RGA/SMNH 641 Činžat, Slovenia Gašparič and Hyžný (2015) 9.5 12.6 1.33 Retropluma slovenica RGA/SMNH 646 Činžat, Slovenia Gašparič and Hyžný (2015) 6.6 7.2 1.09 Retropluma slovenica RGA/SMNH 655 Činžat, Slovenia Gašparič and Hyžný (2015) 7.4 8.7 1.18 Retropluma slovenica RGA/SMNH 660 Činžat, Slovenia Gašparič and Hyžný (2015) 8.4 10.0 1.19 Retropluma slovenica RGA/SMNH 664 Činžat, Slovenia Gašparič and Hyžný (2015) 4.4 5.3 1.20 Retropluma slovenica RGA/SMNH 672 Činžat, Slovenia Gašparič and Hyžný (2015) 7.5 9.5 1.27 Retropluma slovenica RGA/SMNH 725 Činžat, Slovenia Gašparič and Hyžný (2015) 11.0 13.4 1.22

20 PALAEO-ELECTRONICA.ORG

carapace max. carapace length carapace width/ taxon repository number locality reference (including max. width carapace rostrum) in in mm length mm

Retropluma slovenica RGA/SMNH 732 Činžat, Slovenia Gašparič and Hyžný (2015) 16.3 18.7 1.15 Retropluma slovenica RGA/SMNH 886 and 887 Činžat, Slovenia Gašparič and Hyžný (2015) 10.9 13.2 1.21 Retropluma slovenica RGA/SMNH 890 Činžat, Slovenia Gašparič and Hyžný (2015) 7.4 9.9 1.34 Retropluma slovenica RGA/SMNH 1206 Činžat, Slovenia Gašparič and Hyžný (2015) 5.3 6.3 1.19 Retropluma slovenica RGA/SMNH 1209 Činžat, Slovenia Gašparič and Hyžný (2015) 10.6 14.2 1.34 Retropluma slovenica RGA/SMNH 1212 Činžat, Slovenia Gašparič and Hyžný (2015) 4.4 6.3 1.43 Retropluma slovenica RGA/SMNH 1213 Činžat, Slovenia Gašparič and Hyžný (2015) 4.5 6.1 1.36 Retropluma craverii RGA/SMNH 1316 Castellarano, Italy De Angeli et al. (2011) 19.0 22.0 1.16 Retropluma craverii RGA/SMNH 1315 Castellarano, Italy De Angeli et al. (2011) 21.5 23.2 1.08 Retropluma craverii RGA/SMNH 1313 Castellarano, Italy De Angeli et al. (2011) 24.4 25.1 1.03 Retropluma craverii RGA/SMNH 1317 Castellarano, Italy De Angeli et al. (2011) 10.1 12.1 1.20 Retropluma eocenica MCZ 1467 Nogarole Beschin et al. (1996) 8.4 10.5 1.25 Vincentino, Italy Retropluma eocenica MCZ 1469 Nogarole Beschin et al. (1996) 8.8 11.4 1.30 Vincentino, Italy Retropluma eocenica MCZ 1470 Nogarole Beschin et al. (1996) 9.1 13.5 1.48 Vincentino, Italy Retropluma eocenica MCZ 1474 Arzignano, Italy Beschin et al. (1996) 10.0 14.0 1.40 Retropluma eocenica MCZ 1473 Nogarole Beschin et al. (1996) 11.2 14.2 1.27 Vincentino, Italy Retropluma eocenica MCZ 1471 Nogarole Beschin et al. (1996) 11.1 14.6 1.32 Vincentino, Italy Retropluma eocenica MCZ 1478 Nogarole Beschin et al. (1996) 12.5 16.6 1.33 Vincentino, Italy Retropluma cf. MSNMi26238 Ponzone, Italy Larghi (2003) 6.4 8.8 1.38 eocenica Retropluma borealis MSM 1577 Gram, Denmark Fraaije et al. (2005) 12.9 17.0 1.32 Retropluma borealis MSM 1454 Gram, Denmark Fraaije et al. (2005) 11.9 15.8 1.33 Retropluma borealis MSM 1580 Gram, Denmark Fraaije et al. (2005) 8.1 10.8 1.34 Retropluma borealis MSM 1581 Gram, Denmark Fraaije et al. (2005) 10.3 11.9 1.15 Retropluma borealis MSM 1582 Gram, Denmark Fraaije et al. (2005) 11.0 14.4 1.31 Retropluma borealis MSM 1593/1 Gram, Denmark Fraaije et al. (2005) 10.4 12.4 1.20 Retropluma borealis MSM 1593/5 Gram, Denmark Fraaije et al. (2005) 7.9 10.0 1.26 Retropluma borealis MSM 1593/8 Gram, Denmark Fraaije et al. (2005) 9.0 11.9 1.32 Retropluma borealis MSM 1593/10 Gram, Denmark Fraaije et al. (2005) 7.1 9.1 1.29 Retropluma slovenica RGA/SMNH 1500 and 1501 Kamnik/Rakovnik, Gašparič and Križnar (2017) 14.5 18.4 1.27 Slovenia Retropluma slovenica RGA/SMNH 1502 and 1503 Kamnik/Rakovnik, Gašparič and Križnar (2017) 10.9 13.4 1.23 Slovenia Retropluma slovenica RGA/SMNH 1504 and 1505 Kamnik/Rakovnik, Gašparič and Križnar (2017) 17.8 20.3 1.14 Slovenia Retropluma minuta PS-2 Tušanj, Bosnia this paper 3.9 3.8 0.97 and Herzegovina Retropluma minuta PS-3 Tušanj, Bosnia this paper 4.1 4.0 0.98 and Herzegovina Retropluma minuta PS-4 Tušanj, Bosnia this paper 3.9 3.7 0.95 and Herzegovina Retropluma minuta PS-5 Tušanj, Bosnia this paper 6.7 6.9 1.03 and Herzegovina Retropluma minuta PS-6 Tušanj, Bosnia this paper 6.1 6.1 1.00 and Herzegovina Retropluma minuta PS-7 Tušanj, Bosnia this paper 7.2 7.4 1.03 and Herzegovina

21