Notions of similarity for systems biology models Item Type Article Authors Henkel, Ron; Hoehndorf, Robert; Kacprowski, Tim; Knuepfer, Christian; Liebermeister, Wolfram; Waltemath, Dagmar Citation Henkel, R., Hoehndorf, R., Kacprowski, T., Knüpfer, C., Liebermeister, W., & Waltemath, D. (2016). Notions of similarity for computational biology models. doi:10.1101/044818 Eprint version Publisher's Version/PDF DOI 10.1093/bib/bbw090 Publisher Oxford University Press (OUP) Journal Briefings in Bioinformatics Rights © The Author 2016. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
[email protected] Download date 02/10/2021 18:43:02 Item License http://creativecommons.org/licenses/by-nc/4.0/ Link to Item http://hdl.handle.net/10754/618024 Briefings in Bioinformatics, 19(1), 2018, 77–88 doi: 10.1093/bib/bbw090 Advance Access Publication Date: 14 October 2016 Paper Downloaded from https://academic.oup.com/bib/article-abstract/19/1/77/2549051 by King Abdullah University of Science and Technology user on 06 April 2020 Notions of similarity for systems biology models Ron Henkel, Robert Hoehndorf, Tim Kacprowski, Christian Knu¨ pfer, Wolfram Liebermeister and Dagmar Waltemath Corresponding author: Dagmar Waltemath, Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock, Germany. Tel.: +49 381 498-7575; Fax: +49 381 498-7572; E-mail:
[email protected] Abstract Systems biology models are rapidly increasing in complexity, size and numbers.