Mediterranean and West Asia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
435 the Date of the Minoan Santorini Eruption
THE DATE OF THE MINOAN SANTORINI ERUPTION: QUANTIFYING THE “OFFSET” Felix Höflmayer Deutsches Archäologisches Institut, Orient-Abteilung, Peter-Lenné-Strasse 32, 14195 Berlin, Germany. Email: [email protected]. ABSTRACT. Despite many recent attempts to settle the dispute concerning the absolute date of the Minoan Santorini erup- tion, there are still differences between some archaeologists and scientists on the absolute dates and the reliability of radio- carbon dating. The recent publication of over 200 new 14C dates for dynastic Egypt rules out a major flaw in the historical chronology of Egypt and proves the reliability of 14C dating in the Nile Valley. Therefore, the student of Aegean archaeology and eastern Mediterranean interconnections is still confronted with an archaeologically based conventional, or “low,” chro- nology and a 14C-backed “high” chronology. New 14C determinations from different sites of the Aegean support the high chronology for the Late Minoan (LM) IA, while recent re-evaluation of LM IB determinations are slightly higher but more or less in agreement with archaeological estimations. The present contribution reviews archaeological and scientific data for the LM IA period and argues that a reduced (~30 to 50 yr) offset between archaeological and 14C dates for the Minoan San- torini eruption may be possible, thus offering new perspectives for potential solutions for this problem. INTRODUCTION: “HIGH” AND “LOW” CHRONOLOGY AND RECENT DEVELOPMENTS Since the mid-1980s, a date for the Minoan eruption of Santorini 100 to 150 yr higher than previ- ously argued was suggested by radiocarbon dating and climatic events recorded in ice cores and tree rings from North America, Europe, and the eastern Mediterranean, placing the end of the Late Minoan (LM) IA period in the second half of the 17th century BCE (Betancourt 1987; Manning 1988, 1989a,b, 1990a,b, 1999, 2007, 2009; Michael and Betancourt 1988a,b; Friedrich et al. -
The Minoan Eruption of Santorini, Greece
The Minoan eruption of Santorini, Greece A. BOND & R. S. J. SPARKS SUMMARY The Minoan eruption of Santorini produced logical contrasts in the mass flows which pro- the following sequence of deposits- a plinian duced them. Grain size analyses show wide pumice fall deposit, interbedded surtseyan-type ranges in the lithic contents of the different ash fall and base surge deposits, mud-flow types of deposit: ignimbrite (35--6o~), mud- deposits and ignimbrite interbedded with very flows (2o-3o ~) and the pyroclastic fall and coarse, well-sorted flood deposits. The variation base surge deposits (4-x 5 %). The ignimbrite is of thickness and grain size in the plinian deposit enriched in crystals, complemented by deple- indicates a vent x km west of Thera town. The tion in fine air-fall ash beds that interstratify base surges and surtseyan-type activity is in- with the ignimbrite. The gas velocity of the terpreted as the result of sea water entering the plinian phase is estimated as 55o m/s, the erup- magma chamber. The poorly sorted mud-flow tion column height as greater than 2o km deposits and ignimbrite are distinguished on and it is shown that only particles of 2 mm their grain size, temperature and morphological could have reached Minoan Crete. characteristics, which indicate substantial rheo- I N T H ~. L AT E B R ON Z F. A o E a paroxysmal eruption took place on Santorini Vol- cano, referred to as the Minoan eruption after the Minoan civilisation which inhabited the island at that time. The eruption produced a great volume of pumice and ash and resulted in the formation of the present day caldera which measures x 1- 5 × 8 km and probably had a catastrophic effect on the people living in the southern Aegean. -
Turkish President Turgut Özal's Impact on Nursultan
TURKISH PRESIDENT TURGUT ÖZAL’S IMPACT ON NURSULTAN NAZARBAYEV’S PERCEPTION OF TURKEY* Nursultan Nazarbayev'ın Türkiye Algısına Tugut Özal'ın Etkisi Din Muhammed AMETBEK** Abstract Nursultan Nazarbayev as the founding President of Kazakhstan played a determinant role in the formation of Kazakh foreign policy. In this respect, the article examines Nazarbayev’s perception of Turkey as a decision maker in foreign policy are based on observation rather than realities. Nazarbayev is aware of the fact that the national identity of Kazakhstan is divided between two competing poles; Russian and Kazakh, in a broader sense; Slavic and Turkic. From this perspective, Nazarbayev’s perception of Turkey is significant as it is not only related to foreign policy but at the same time the national identity of Kazakhstan. The study argues that the President of Republic of Turkey of early 1990s Turgut Özal with his active diplomacy towards Kazakhstan contributed to the positive image of Turkey. The research concludes that close and reliable relations between Nazarbayev and Özal became the basis of a strategic part- nership between Kazakhstan and Turkey. Keywords: Turgut Özal, Nursultan Nazarbayev, Kazakhstan, Turkey, Perception, National Identity Özet Kazakistan’ın kurucu Cumhurbaşkanı Nursultan Nazarbayev’in, Kazak dış politi- kasının oluşumunda belirleyici rol üstlendiği kesindir. Bu bağlamda, makale, Nazarba- yev’in Türkiye algısını ele almaktadır. Çünkü inşacı ekolün iddiasına dış politika kararları gerçeklere değil algı üzerine alınmaktadır. Nazarbayev Kazakistan’ın ulusal kimliğinin Rus ve Kazak olarak, daha geniş kapsamda Slav ve Türk olarak yarışan iki kutba ayrıldığının farkındadır. Buradan hareketle, Nazarbayev’in Türkiye algısı, yal- nızca dış politika açısından değil aynı zamanda Kazakistan’ın ulusal kimliği açısından da önemlidir. -
Download Download
EQA – Environmental quality / Qualité de l’Environnement / Qualità ambientale, 24 (2017) 39-45 PRELIMINARY EVIDENCES OF A PALEOSOL IN THE LIVING LANDSCAPE OF CIVITA DI BAGNOREGIO (ITALY) Sara Marinari (1)*, Maria Cristina Moscatelli (1) , Flavia Fiordelmondo (1) , Rosita Marabottini (1) , Giovanni Maria Di Buduo (2) , Gilmo Vianello (3) (1) Dipartimento per l’innovazione dei sistemi Biologici, Agroalimentari e Forestali, Università degli Studi della Tuscia, Viterbo (2) Museo Geologico e delle Frane, Civita di Bagnoregio, Viterbo (3) Dipartimento di Scienze Agrarie, Alma Mater Studiorum Università di Bologna Corresponding author Email: [email protected] Abstract A paleosol has been identified in an area of great natural interest for its geomorphologic and naturalistic aspects between the municipalities of Bagnoregio and Castiglione in Teverina (Viterbo, Italy). This investigation represents the preliminary steps of a study aimed to know the specific environmental features and dynamics prior to the eruptions of the "nenfri" of the Paleovulsini complex. The physico-chemical characteristics and some horizons morphological details such as the presence of roots fingerprint, the polyhedric angular and columnar structure suggest incipient weathering and pedogenesis. Moreover, the presence of nodules and the high salinity of deep horizons suggest the incorporation of pyroclastic material into a hydromorphic environment at the time of the eruptions, putting forward the hypothesis of a paleo-marsh under an arid paleoclimate. Keywords: paleosol, pyroclastic material, microbiological analysis, Civita di Bagnoregio Introduction A paleosol has been identified in an area of great natural interest for its geomorphologic and naturalistic aspects between the municipalities of Bagnoregio and Castiglione in Teverina (northern Lazio, bordering Umbria). Particular attention is given to landslides and erosive events repetition that affect both the cliff on which Civita rises and the adjacent "Valle dei Calanchi" (Fig. -
Monuments, Materiality, and Meaning in the Classical Archaeology of Anatolia
MONUMENTS, MATERIALITY, AND MEANING IN THE CLASSICAL ARCHAEOLOGY OF ANATOLIA by Daniel David Shoup A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Classical Art and Archaeology) in The University of Michigan 2008 Doctoral Committee: Professor Elaine K. Gazda, Co-Chair Professor John F. Cherry, Co-Chair, Brown University Professor Fatma Müge Göçek Professor Christopher John Ratté Professor Norman Yoffee Acknowledgments Athena may have sprung from Zeus’ brow alone, but dissertations never have a solitary birth: especially this one, which is largely made up of the voices of others. I have been fortunate to have the support of many friends, colleagues, and mentors, whose ideas and suggestions have fundamentally shaped this work. I would also like to thank the dozens of people who agreed to be interviewed, whose ideas and voices animate this text and the sites where they work. I offer this dissertation in hope that it contributes, in some small way, to a bright future for archaeology in Turkey. My committee members have been unstinting in their support of what has proved to be an unconventional project. John Cherry’s able teaching and broad perspective on archaeology formed the matrix in which the ideas for this dissertation grew; Elaine Gazda’s support, guidance, and advocacy of the project was indispensible to its completion. Norman Yoffee provided ideas and support from the first draft of a very different prospectus – including very necessary encouragement to go out on a limb. Chris Ratté has been a generous host at the site of Aphrodisias and helpful commentator during the writing process. -
4 International Workshop on Collapse Calderas September 23-29, 2012
4th International Workshop on Collapse Calderas September 23-29, 2012, Vulsini Calderas, Italy Second Circular - http://www.gvb-csic.es/CCC.htm Organizers: Valerio Acocella; Roma Tre, Roma, Italy; [email protected] Adelina Geyer; CSIC, Barcelona, Spain; [email protected] Danilo M. Palladino; La Sapienza, Roma, Italy; [email protected] Scientific Committee: Valerio Acocella, Univ. Roma Tre, Italy. Gerardo J. Aguirre-Díaz; UNAM, Queretaro, Mexico. Jim Cole; Univ. Canterbury, Christchurch, New Zealand. Adelina Geyer; CSIC, Barcelona, Spain. Agust Gudmundsson; Univ. Royal Holloway, London, England. Peter W. Lipman; USGS, Menlo Park, USA. Joan Martí; CSIC, Barcelona, Spain. Geshi Nobuo; Geological Survey, Ibaraki, Japan. Stephen Self; Open University, UK/US-NRC. Roberto Sulpizio; Univ. Bari, Italy. Danilo M. Palladino; Univ. La Sapienza Roma, Italy. 1 2 What is the Workshop on Collapse Calderas? The IAVCEI Collapse Calderas Commission (CCC; http://www.gvb-csic.es/CCC.htm) was created in 2008 to have a wider and deeper understanding on calderas. It includes caldera geology, geodesy and geophysics, modelling, magma chamber processes, volcanic hazard and risk management, economic benefits and environmental research. CCC promotes interdisciplinary interaction to help solve the many questions regarding the formation, evolution and affect on society of collapse calderas. Previous meetings were held at Tenerife, Canarias, (2005), Mexican Volcanic Belt (2008) and Reunion (2010). Venue The 4th Workshop on Collapse Calderas is scheduled for September 23-29, 2012, at Hotel Royal in Bolsena, Central Italy. Bolsena is a medieval village on the edge of Bolsena Caldera, that is the most distinctive feature of the Vulsini Calderas District, 100 km north of Rome. -
MOUNTAINEERING in TURKEY DAGCILIK Turkey's Mountaineering Map
Mountaineering, Turkey-Adiyamanli.org wysiwyg://38/http://www.adiyamanli.org/mountaineering_turkey.h MOUNTAINEERING IN TURKEY DAGCILIK Turkey's Mountaineering Map A glance at a topographical map of Turkey immediately reveals that this is a country of mountains. Rising in all four directions, mountains encircle the peninsula of Anatolia. A part of the Alpine-Himalayan mountain range, Turkey has mountainous regions of different geological formations. The North Anatolian range skirts the Mediterranean shore. Turkey's magnificent mountains and forests are mostly undeveloped, existing as wonderful natural preserves for an extraordinary variety of wildlife, flora and fauna. Two of Turkey's most famous peaks are volcanoes, both inactive, Mt. Erciyes in Kayseri in Central Anatolia (3917 m) and Mt. Agri (Mt. Ararat 5137 m) in the East. Other well-known mountain ranges are the Rize-Ka‡kar (3932 m) in the Eastern Black Sea region, Nigde-Aladag (3756 m) in the Central Taurus range, and the Cilo and Sat Mountains (4136 m) near Hakkari in the Eastern Taurus. The mountainous nature of the country has influenced its cultural evolution. For centuries, nomads and semi-nomadic peoples have migrated annually to the fresh pastures of the higher elevations in the summer. These alpine meadows, called yayla, still represent a firm tie to traditional culture. For climbers and those interested in mountain geography, Turkey offers a wealth of exploration. Glaciers, volcanoes, and peculiar geological formations such as kars prove irresistible to researchers and students of geology. The challenging terrain offers great opportunities for aficionados of outdoor sports who find interesting experiences on the mountains of Eastern, Central and Southern Turkey. -
Derivation of Intermediate to Silicic Magma from the Basalt Analyzed at the Vega 2 Landing Site, Venus
RESEARCH ARTICLE Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus J. Gregory Shellnutt* National Taiwan Normal University, Department of Earth Sciences, Taipei, Taiwan * [email protected] Abstract a1111111111 a1111111111 Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site a1111111111 indicates that intermediate to silicic liquids can be generated by fractional crystallization and a1111111111 equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 a1111111111 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) composi- tions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at OPEN ACCESS all pressures but requires relatively high temperatures ( 950ÊC) to generate the initial melt Citation: Shellnutt JG (2018) Derivation of at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be intermediate to silicic magma from the basalt generated at much lower temperatures (< 800ÊC). Anhydrous partial melt modeling yielded analyzed at the Vega 2 landing site, Venus. PLoS mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature ONE 13(3): e0194155. https://doi.org/10.1371/ journal.pone.0194155 required to produce the first liquid is very high ( 1130ÊC). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate Editor: Axel K Schmitt, Heidelberg University, GERMANY that, under certain conditions, the Vega 2 composition can generate silicic liquids that pro- duce granitic and rhyolitic rocks. -
Volcanic Rocks from Central Italy: an Oxygen Isotopic Microanalytical and Geochemical Study
Volcanic Rocks from Central Italy: An Oxygen Isotopic Microanalytical and Geochemical Study Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen vorgelegt von Peter Barnekow aus Bremen Göttingen 2000 D 7 Referent: Prof. Dr. J. Hoefs Korreferent: Prof. Dr. S.F. Foley Tag der mündlichen Prüfung: 30. Oktober 2000 Table of Contents Table of Contents ,QWURGXFWLRQ BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB 1.1 General Charakteristics of the Tertiary to Quarternary Italian Magmatic Rocks .........1 1.2 Magmatic Provinces in Italy.........................................................................................2 1.3 Overview of the Different Genetic Models ..................................................................3 1.4 Investigated Area and Petrogenetic Subdivision ..........................................................6 1.5 Oxygen Isotopes ...........................................................................................................7 6DPSOH'HVFULSWLRQ BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB 2.1 Sampling.......................................................................................................................9 2.2 Geological and Petrographical Description of the Samples .......................................10 2.2.1 Monti Vulsini – Roman Province Type Rocks...........................................................10 2.2.2 Orciatico and Montecatini Val di Cecina – Lamproites .............................................11 -
Country Profile – Azerbaijan
Country profile – Azerbaijan Version 2008 Recommended citation: FAO. 2008. AQUASTAT Country Profile – Azerbaijan. Food and Agriculture Organization of the United Nations (FAO). Rome, Italy The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way. All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact-us/licencerequest or addressed to [email protected]. FAO information products are available on the FAO website (www.fao.org/ publications) and can be purchased through [email protected]. -
Dating the Santorini Eruption
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2014 The olive-branch dating of the Santorini eruption Cherubini, Paolo ; Humbel, Turi ; Beeckman, Hans ; Gärtner, Holger ; Mannes, David ; Pearson, Charlotte ; Schoch, Werner ; Tognetti, Roberto ; Lev-Yadun, Simcha Abstract: The date of the volcanic eruption of Santorini that caused extensive damage toMinoan Crete has been controversial since the 1980s. Some have placed the event in the late seventeenth century BC. Others have made the case for a younger date of around 1500 BC. A recent contribution to that controversy has been the dating of an olive tree branch preserved within the volcanic ash fall on Santorini. In this debate feature Paolo Cherubini and colleagues argue that the olive tree dating (which supports the older chronology) is unreliable on a number of grounds. There follows a response from the authors of that dating, and comments from other specialists, with a closing reply from Cherubini and his team. DOI: https://doi.org/10.1017/s0003598x00050365 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-154340 Journal Article Published Version Originally published at: Cherubini, Paolo; Humbel, Turi; Beeckman, Hans; Gärtner, Holger; Mannes, David; Pearson, Charlotte; Schoch, Werner; Tognetti, Roberto; Lev-Yadun, Simcha (2014). The olive-branch dating of the Santorini eruption. Antiquity, 88(339):267-273. DOI: https://doi.org/10.1017/s0003598x00050365 Bronze Age catastrophe and modern controversy: dating the Santorini eruption The date of the volcanic eruption of Santorini that caused extensive damage to Minoan Crete has been controversial since the 1980s. -
The Theran Eruption and Minoan Palatial Collapse: New Interpretations Gained from Modelling the Maritime Network
The Theran eruption and Minoan palatial collapse: new interpretations gained from modelling the maritime network. Carl Knappett, Department of Art, University of Toronto, Ray Rivers, Department of Physics, Imperial College London, Tim Evans, Department of Physics, Imperial College London, UK. What was the effect on Late Minoan civilisation of the catastrophic destruction of Akrotiri on Thera (Santorini) by volcanic eruption? Not much, according to the evidence for continuing prosperity on Crete. But the authors mobilise their ingenious mathematical model (published in Antiquity 82, 1009-24), this time to show that the effects of removing a major port of call could have impacted after an interval, as increased costs of transport gradually led to ever fewer routes and eventual economic collapse. Keywords: Bronze Age, Aegean, Minoan, Crete, Thera, Santorini, Akrotiri, maritime communications, network analysis Introduction We seek in this paper to provide a novel perspective on the possible causes for the demise of Cretan Bronze Age palatial society c. 1500 BC using a mathematical model developed from a previous study (Knappett et al 2008). Various explanations have been proposed for the collapse - a tsunami generated by the Theran eruption destroying the Minoan fleet, an invasion by Mycenaean mainlanders, or internal socio-political turmoil and unrest (Rehak & Younger 2001). Today many scholars would see many such factors, natural and social, combining in some way. And although most do see some role for the Theran eruption, the fact that it took place some 50-100 years before the collapse makes it difficult to envisage what that role might have been. One persuasive argument sees indirect though insidious effects, both economic (such as ashfall polluting water supply and compromising crop yields in east Crete) and social, such as ideological uncertainty (Driessen & Macdonald 1997: 89-98).