Carniflora News
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Foraging Modes of Carnivorous Plants Aaron M
Israel Journal of Ecology & Evolution, 2020 http://dx.doi.org/10.1163/22244662-20191066 Foraging modes of carnivorous plants Aaron M. Ellison* Harvard Forest, Harvard University, 324 North Main Street, Petersham, Massachusetts, 01366, USA Abstract Carnivorous plants are pure sit-and-wait predators: they remain rooted to a single location and depend on the abundance and movement of their prey to obtain nutrients required for growth and reproduction. Yet carnivorous plants exhibit phenotypically plastic responses to prey availability that parallel those of non-carnivorous plants to changes in light levels or soil-nutrient concentrations. The latter have been considered to be foraging behaviors, but the former have not. Here, I review aspects of foraging theory that can be profitably applied to carnivorous plants considered as sit-and-wait predators. A discussion of different strategies by which carnivorous plants attract, capture, kill, and digest prey, and subsequently acquire nutrients from them suggests that optimal foraging theory can be applied to carnivorous plants as easily as it has been applied to animals. Carnivorous plants can vary their production, placement, and types of traps; switch between capturing nutrients from leaf-derived traps and roots; temporarily activate traps in response to external cues; or cease trap production altogether. Future research on foraging strategies by carnivorous plants will yield new insights into the physiology and ecology of what Darwin called “the most wonderful plants in the world”. At the same time, inclusion of carnivorous plants into models of animal foraging behavior could lead to the development of a more general and taxonomically inclusive foraging theory. -
Creation and Carnivory in the Pitcher Plants of Nepenthaceae and Sarraceniaceae
OPEN ACCESS JCTS Article SERIES B Creation and Carnivory in the Pitcher Plants of Nepenthaceae and Sarraceniaceae R.W. Sanders and T.C. Wood Core Academy of Science, Dayton, TN Abstract The morphological adaptations of carnivorous plants and taxonomic distributions of those adaptations are reviewed, as are the conflicting classifications of the plants based on the adaptations, reproductive morphology, and DNA sequences. To begin developing a creationist understanding of the origin of plant carnivory, we here focus specifically on pitcher plants of Nepenthaceae and Sarraceniaceae because their popularity as cultivated curiosities has generated a literature resource amenable to baraminological analysis. Hybridization records were augmented by total nucleotide differences to assess species similarities. Nonhybridizing species falling within the molecular range of hybridizing species were included in the monobaramin of the hybridizing species. The combined data support each of the three genera of the Sarraceniaceae as a monobaramin, but the three could not be combined into a larger monobaramin. With the Nepenthaceae, the data unequivocally place 73% of the species in a single monobaramin, strongly suggesting the whole genus (and, thus, family) is a monobaramin. The lack of variation in the carnivorous habit provides no evidence for the intrabaraminic origin of carnivory from non-carnivorous plants. An array of fascinating symbiotic relationships of pitchers in some species with unusual bacteria, insects, and vertebrates are known and suggest the origin of carnivory from benign functions of the adaptive structures. However, these symbioses still do not account for the apparent complex design for carnivory characteristic of all species in the two families. Editor: J.W. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
The Fairchild Tropical Garden NIXON SMILEY ______1
~GAZ.NE AMERICAN HORTI CULTURAL SOCIETY A vnion of the Ame'rican Horticultuml Society and the American Ho·rticultural Council 1600 BLADENSB URG ROAD, NORTHEAST . WASHINGTON 2, D. C. For Un ited H mticulture *** to accumulate, increase, and disseminate horticultuml infmmation B. Y. MORRISON, Editor Di?-ec to?'S T enns Expiring 1960 J AMES R. H ARLOW, Managing Editor D ONOVAN S. CORRELL T exas CARL "V. F ENN I NGER Editorial Committee Pennsylvania W. H . HODGE W'. H . HODGE, Chainnan Pen nS)1 Ivan i(~ ] OHN L. CREECH A. J. IRVI NG Yo?'k FREDElRI C P. L EE New "VILLIAM C. STEERE CONRAD B. LI NK New York CURTIS MAY FREDERICK G. MEYER T erms Ex1Jil'ing 1961 STUART M. ARMSTRONG 'WILBUR H. YOUNGMAN Maryland J OHN L. CREECH Maryland Officers 'WILLIAM H . FREDERICK, JR. DelawQ.j·e PR ES IDENT FRANCIS PATTESON-KNIGHT RICHARD P . 'WHITE V il'ginia Washington, D. C. DONALD WYMAN 111 assachv.setts FIRST VICE·PRESIDENT Tenns Expiring 1962 DONALD W YMAN Jamaica Plain, Massachusetts FREDERIC P. LEE Maryland HENRY T. SKINNER SECOND VICE- PRESIDENT Distl'ict of Columba STUART M. ARMSTRONG CEORGE H. SPALDING Silvel' Spring, Mal'yland California RICHARD P. WHITE SECRETARY-TREASURER District of Columbia OLIVE E. WEATHERELL AN NE " VERTSNER WOOD Washington, D. C. Pennsylvania The Amel'ican Ho'yticvltw'al Magazine is the official publication of the American Horticultural Society and is issued fo ur times a year during the q uarters commencing with January, April , July and October. It is devoted to the dissemination of knowledge in the science and art of growing ornamental plants, fruits, vegetables, and related subjects. -
Towards Resolving Lamiales Relationships
Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. -
Proboscidea Louisianica (Miller) Thell
Eurasscience Journals Eurasian Journal of Forest Science (2017) 5(2): 19-25 A new alien species record for the flora of Turkey: Proboscidea louisianica (Miller) Thell. Ece Sevgi1, Çağla Kızılarslan-Hançer1, Hatice Yılmaz2, Muhammet Akkaya3 1) Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Botany, 34093, İstanbul, Turkey 2) İstanbul University, Vocational School of Forestry, Ornamental Plants Cultivation Prog., 34473, İstanbul, Turkey 3)Forest Management, Biga-Çanakkale, Turkey *corresponding author: [email protected] Abstract Proboscidea louisianica (Miller) Thell. (Martyniaceae) is reported as a new alien species for the flora of Turkey. A plant species with different and interesting fruits was photographed in 2016. During a field investigation, a population of P. louisianica consisting of ca. 25 individuals was found at roadside between Biga and Karabiga town, district of Çanakkale, and plant specimens with flowers were collected in 2017. After detailed literature studies, this species was identified as Proboscidea louisianica. The family Martyniaceae is represented by just 1 genus with 1 taxa (Ibicella lutea (Lindl.) Van Eselt.) in Turkey and no member of the genus Proboscidea has been recorded before. In this paper, the species was introduced with taxonomical and morphological features. Its ecological impact was also evaluated with potential risks. Keywords: Proboscidea, Martyniaceae, new record, flora, Turkey Özet Bu çalışmada Proboscidea louisianica (Miller) Thell. (Martyniaceae) Türkiye Florası için yeni bir yabancı tür olarak kaydedilmiştir. Çanakkale, Biga-Karabiga arası yol kenarında yaklaşık 25 adet bitkiden oluşan populasyondan 2016 yılında genç meyveli, çiçek taşımayan bireylerden fotoğraflar çekilerek kayıt alınmıştır. 2017 yılında çiçeklenme dönemi olan Ağustos ve Eylül aylarında tekrar arazi çalışması yapılarak hem bitki örnekleri alınmış hem de detaylı populasyon bilgileri kaydedilmiştir. -
Insectivorous Plants”, He Showed That They Had Adaptations to Capture and Digest Animals
the Strange, the Ugly, and the Bizarre . carnivores, parasites, and mycotrophs . Plant Oddities - Carnivores, Parasites & Mycotrophs Of all the plants, the most bizarre, the least understood, but yet the most interesting are those plants that have unusual modes of nutrient uptake. Carnivore: Nepenthes Plant Oddities - Carnivores, Parasites & Mycotrophs Of all the plants, the most bizarre, the least understood, but yet the most interesting are those plants that have unusual modes of nutrient uptake. Parasite: Rafflesia Plant Oddities - Carnivores, Parasites & Mycotrophs Of all the plants, the most bizarre, the least understood, but yet the most interesting are those plants that have unusual modes of nutrient uptake. Things to focus on for this topic! 1. What are these three types of plants 2. How do they live - selection 3. Systematic distribution in general 4. Systematic challenges or issues 5. Evolutionary pathways - how did they get to what they are Mycotroph: Monotropa Plant Oddities - The Problems Three factors for systematic confusion and controversy 1. the specialized roles often involve reductions or elaborations in both vegetative and floral features — DNA also is reduced or has extremely high rates of change for example – the parasitic Rafflesia Plant Oddities - The Problems Three factors for systematic confusion and controversy 2. their connections to other plants or fungi, or trapping of animals, make these odd plants prone to horizontal gene transfer for example – the parasitic Mitrastema [work by former UW student Tom Kleist] -
Carniflora News
THE AUSTRALASIAN CARNIVOROUS PLANTS SOCIETY INC. CARNIFLORA NEWS January 2016 Welcome to Carniflora News, a newsletter produced by IN THIS ISSUE the Australasian Carnivorous Plants Society Inc. that News documents the meetings, news and events of the Meeting Summary society. In the Greenhouse Seed Bank News NEWS Classifieds & Sponsors Contact Us Membership Membership Form UPCOMING EVENTS 8th January 2016 AUSCPS Meeting Plant theme - Dionaea Membership is now open for 2016. 12th February 2016 The Australasian Carnivorous Plants Society Inc. is AUSCPS AGM now offering two forms of membership to cater for Plant theme - Utricularia, those who want to receive electronic versions of Aldrovanda, Genlisea Carniflora Australis ($25) and those who still prefer the printed version ($35). The difference in cost is to cater 11th March 2016 for the increase in postage and printing fees of the AUSCPS Meeting journal. Plant theme - Drosera, Byblis Over the past year the society Executive has been busy reviewing, updating and implementing existing 9-10th April 2016 services to reach a broader range of enthusiasts and Collectors Plant Fair provide value for money for your membership fee. New memberships and renewal’s may be achieved by 8th April 2016 attending our monthly meetings or by completing the AUSCPS Meeting membership form attached to this newsletter. Plant theme - Pinguicula Without a strong and committed membership the 13th May 2016 Australasian Carnivorous Plant Society Inc. will cease AUSCPS Meeting to exist, so if you love carnivorous plants, love to read Plant theme - Pygmy Drosera Carniflora Australis and love to meet other growers and collectors, then NOW is the time to join. -
Carnivorous Plant Newsletter Vol 48, No 2, June 2019
Byblis in cultivation in the tropics and in temperate climates Gregory Allan • Birmingham • United Kingdom • [email protected] Cindy Chiang • Singapore • [email protected] This article has been written based mostly on the authors’ experiences in growing Byblis in the UK and in Singapore. It is hoped that growers in regions with different climates will be able to extrapo- late from the information provided here, adjusting the methods described below to suit their own growing conditions. Hopefully much of the information provided here is universal in its application. Introduction If any genus of carnivorous plants deserves to be better known, both by horticulturalists and botanists, it is Byblis. The common name (ironically rarely used by enthusiasts) for the genus is “rainbow plants”, on account of the prismatic effect that can be produced when the sun shines on their copiously-produced sticky glands. All species follow a basic morphological plan: they have a central stem from which radiate numerous filiform leaves and scapes with showy flowers that typi- cally have purple petals (although white forms of most species are known) and vivid yellow anthers. Virtually all parts of the plants are covered in mucilage-tipped stalked glands (colloquially referred to as “tentacles”), which efficiently capture small insects, as well as microscopic sessile digestive glands. Another interesting characteristic of the genus is the presence of pulvini in most, if not all, species. Pulvini are swellings at the base of pedicels which, usually after successful pollination, uti- lize hydraulics to bend the pedicel, and consequently the developing fruit, downwards towards the ground. This phenomenon was discovered by Brian Barnes in the early 21st century. -
Italian Botanist 10 Supplementary Data to Notulae to the Italian Alien Vascular Flora: 10 Edited by G
Italian Botanist 10 Supplementary data to Notulae to the Italian alien vascular flora: 10 Edited by G. Galasso, F. Bartolucci Categories concerning the occurrence status of taxa follow Galasso et al. (2018). 1. Nomenclatural updates Family Nomenclature according to Revised nomenclature References/Note Galasso et al. (2018) Fabaceae Acacia dealbata Link subsp. Acacia dealbata Link Hirsch et al. (2017, 2018, 2020) dealbata Pinaceae Abies nordmanniana (Steven) Abies nordmanniana (Steven) Another subspecies exists Spach Spach subsp. nordmanniana Asteraceae Centaurea iberica Spreng. subsp. Centaurea iberica Trevir. ex iberica Spreng. subsp. iberica Poaceae Digitaria ischaemum (Schreb. ex Digitaria ischaemum (Schreb.) Synonym of Digitaria violascens Schweigg.) Muhlenb. var. Muhl. var. violascens (Link) Link violascens (Link) Radford Radford Poaceae Gigachilon polonicum Seidl ex Gigachilon polonicum (L.) Seidl Synonym of Triticum turgidum Á.Löve subsp. dicoccon ex Á.Löve subsp. dicoccon L. subsp. dicoccon (Schrank ex (Schrank) Á.Löve (Schrank) Á.Löve, comb. inval. Schübl.) Thell. Poaceae Gigachilon polonicum Seidl ex Gigachilon polonicum (L.) Seidl Synonym of Triticum turgidum Á.Löve subsp. durum (Desf.) ex Á.Löve subsp. durum (Desf.) L. subsp. durum (Desf.) Husn. Á.Löve Á.Löve Poaceae Gigachilon polonicum Seidl ex Gigachilon polonicum (L.) Seidl Synonym of Triticum turgidum Á.Löve subsp. turanicum ex Á.Löve subsp. turanicum L. subsp. turanicum (Jakubz.) (Jakubz.) Á.Löve (Jakubz.) Á.Löve Á.Löve & D.Löve Poaceae Gigachilon polonicum Seidl ex Gigachilon polonicum (L.) Seidl Synonym of Triticum turgidum Á.Löve subsp. turgidum (L.) ex Á.Löve subsp. turgidum (L.) L. subsp. turgidum Á.Löve Á.Löve Balsaminaceae Impatiens cristata auct., non Impatiens tricornis Lindl. Akiyama and Ohba (2016); it is Wall. -
Australian Carnivorous Plants N
AUSTRALIAN NATURAL HISTORY International Standard Serial Number: 0004-9840 1. Australian Carnivorous Plants N. S. LANDER 6. With a Thousand Sea Lions JUDITH E. KING and on the Auckland Islands BASIL J . MAR LOW 12. How Many Australians? W. D. BORRIE 17. Australia's Rainforest Pigeons F. H. J. CROME 22. Salt-M aking Among the Baruya WILLIAM C. CLARKE People of Papua New Guinea and IAN HUGHES 25. The Case for a Bush Garden JEAN WALKER 28. "From Greenland's Icy Mountains . .... ALEX RITCHIE F RO NT COVER . 36. Books Shown w1th its insect prey is Drosera spathulata. a Sundew common 1n swampy or damp places on the east coast of Australia between the Great Div1d1ng Range and the AUSTRALIAN NATURAL HISTORY 1s published quarterly by The sea. and occasionally Australian Museum. 6-8 College Street. Sydney found 1n wet heaths in Director Editorial Committee Managing Ed 1tor Tasman1a This species F H. TALBOT Ph 0. F.L S. HAROLD G COGGER PETER F COLLIS of carnivorous plant also occurs throughout MICHAEL GRAY Asia and 1n the Philip KINGSLEY GREGG pines. Borneo and New PATRICIA M McDONALD Zealand (Photo S Jacobs) See the an1cle on Australian car ntvorous plants on page 1 Subscrtpttons by cheque or money order - payable to The Australian M useum - should be sent to The Secretary, The Australian Museum. P.O. Box 285. Sydney South 2000 Annual Subscription S2 50 posted S1nglc copy 50c (62c posted) jJ ___ AUSTRALIAN CARNIVOROUS PLANTS By N . S.LANDER Over the last 100 years a certain on ly one. -
The Cost of Carnivory for Darlingtonia Californica (Sarraceniaceae): Evidence from Relationships Among Leaf Traits1
American Journal of Botany 92(7): 1085±1093. 2005. THE COST OF CARNIVORY FOR DARLINGTONIA CALIFORNICA (SARRACENIACEAE): EVIDENCE FROM RELATIONSHIPS AMONG LEAF TRAITS1 AARON M. ELLISON2,4 AND ELIZABETH J. FARNSWORTH3 2Harvard University, Harvard Forest, P.O. Box 68, Petersham, Massachusetts 01366 USA; and 3New England Wild Flower Society, 180 Hemenway Road, Framingham, Massachusetts 01701 USA Scaling relationships among photosynthetic rate, foliar nutrient concentration, and leaf mass per unit area (LMA) have been observed for a broad range of plants. Leaf traits of the carnivorous pitcher plant Darlingtonia californica, endemic to southern Oregon and northern California, USA, differ substantially from the predictions of these general scaling relationships; net photosynthetic rates of Darlingtonia are much lower than predicted by general scaling relationships given observed foliar nitrogen (N) and phosphorus (P) concentrations and LMA. At ®ve sites in the center of its range, leaf traits of Darlingtonia were strongly correlated with elevation and differed with soil calcium availability and bedrock type. The mean foliar N : P of 25.2 6 15.4 of Darlingtonia suggested that these plants were P-limited, although N concentration in the substrate also was extremely low and prey capture was uncommon. Foliar N : P stoichiometry and the observed deviation of Darlingtonia leaf traits from predictions of general scaling relationships permit an initial assessment of the ``cost of carnivory'' in this species. Carnivory in plants is thought to have evolved in response to N limitation, but for Darlingtonia, carnivory is an evolutionary last resort when both N and P are severely limiting and photosynthesis is greatly reduced. Key words: carnivorous plants; Darlingtonia californica; fens; leaf mass area; leaf traits; photosynthesis; nitrogen; serpentine.