The Role of Plasma Membrane Calcium Pump During Pancreatic Cancer

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Plasma Membrane Calcium Pump During Pancreatic Cancer The Role of Plasma Membrane Calcium Pump during Pancreatic Cancer A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Biology, Medicine and Health 2019 PISHYAPORN SRITANGOS School of Medical Sciences/ Division of Cancer Sciences Table of Contents List of Figures ........................................................................................................................... 6 List of Tables ............................................................................................................................. 8 List of Abbreviations ................................................................................................................ 9 Abstract ................................................................................................................................... 13 Declaration .............................................................................................................................. 14 Copyright Statement ............................................................................................................... 14 Acknowledgements ................................................................................................................ 15 Chapter 1 - Introductions ....................................................................................................... 16 1.1 Pancreatic ductal adenocarcinoma ......................................................................................... 16 1.2 Cancer metabolism in PDAC .................................................................................................... 19 1.2.1 Cell metabolism – Glycolysis and Oxidative Phosphorylation ............................................... 19 1.2.2 The Warburg effect – a shift towards aerobic glycolysis ........................................................ 20 1.2.3 Metabolic reprogramming in PDAC ........................................................................................ 23 1.2.3.1 Oncogenes activation in PDAC....................................................................................... 23 1.2.3.2 Inactivation of tumour suppressor genes in PDAC ......................................................... 24 1.3 Functional coupling between glycolysis and Ca2+ signalling ............................................... 26 1.4 Ca2+ signalling and its remodelling in cancer ........................................................................ 28 1.4.1 Ca2+ – a versatile signalling molecule..................................................................................... 28 2+ 1.4.1.1 Elevation of [Ca ]i .......................................................................................................... 30 2+ 1.4.1.2 Reduction of [Ca ]i ......................................................................................................... 30 1.4.2 Remodelling of Ca2+ signalling modulates cancer hallmarks ................................................. 31 1.5 Plasma membrane calcium ATPases ...................................................................................... 34 1.5.1 Plasma membrane calcium ATPase isoform 4 (PMCA4) ...................................................... 36 1.6 Caveolae – a potential intersection between PMCA and glycolytic enzymes? .................. 37 1.6.1 Caveolae ................................................................................................................................ 37 1.6.1.1 Caveolae structural composition ..................................................................................... 38 1.6.1.2 Functional role of the caveolae ....................................................................................... 38 1.6.2 Caveolin .................................................................................................................................. 39 1.6.3 PMCA localisation in the caveolae and potential coupling to glycolytic enzyme ................... 40 1.7 PKM2 – an oncogenic glycolytic enzyme ............................................................................... 41 1.7.1 Regulation of PKM2 oligomeric states ................................................................................... 42 1.7.2 Non-canonical role of PKM2 ................................................................................................... 44 2 1.8 Summary .................................................................................................................................... 45 1.8.1 Overarching Hypothesis ......................................................................................................... 46 1.8.2 Experimental objectives and specific aims ............................................................................. 47 1.9 Journal/Alternative format thesis ............................................................................................ 49 Chapter 2 – General Methods and Optimizations ................................................................. 51 2.1 Materials and methods .................................................................................................................. 51 2.1.1 Cell culture.............................................................................................................................. 51 2.1.2 Chemicals and reagents ......................................................................................................... 51 2.1.3 Cell surface biotinylation ........................................................................................................ 51 2.1.4 Sucrose gradient ultracentrifugation ...................................................................................... 51 2.1.5 Western immunoblot .............................................................................................................. 51 2.1.6 Sulforhodamine B (SRB) protein quantification assay ........................................................... 53 2.1.7 Cell count kit-8 (WST-8) viability assay .................................................................................. 53 2.1.8 ATP-luciferase ATP quantification and cell viability assay ..................................................... 53 2.1.9 Live-cell fluorescence microscopy ......................................................................................... 54 2.1.11 Fura-2 calcium concentration calibration ............................................................................... 55 2.1.12 Calcium overload assay ......................................................................................................... 56 2.1.13 Calcium clearance assay ....................................................................................................... 57 2.1.14 GO-ATeam ATP-FRET reporter assay .................................................................................. 58 2.1.15 Immunofluorescence imaging ................................................................................................ 59 2.1.16 RT-qPCR ................................................................................................................................ 59 2.1.17 Gap closure cell migration assay ........................................................................................... 60 2.1.18 siRNA expression knockdown ................................................................................................ 60 2.1.19 Caspase 3/7 cleavage apoptosis assay ................................................................................. 61 2.1.20 BirA* proximity Bio-Identification ............................................................................................ 61 2.1.20.1 Generating stably transfected BirA*-fusion cell lines ...................................................... 61 2.1.20.2 Sample processing and enrichment ............................................................................... 62 2.1.20.3 Data processing and analysis ......................................................................................... 62 2.1.21 Datamining ............................................................................................................................. 63 2.1.22 Agilent Seahorse cell metabolism assays .............................................................................. 63 2.1.23 Statistical Analysis .................................................................................................................. 64 2.2 Methods Optimization ............................................................................................................... 66 2.2.1 Comparing sulforhodamine B (SRB) and cell count kit-8 (WST-8) cell viability assay .......... 66 2.2.2 Optimization of gap closure cell migration assay ................................................................... 69 2.2.3 siRNA expression knockdown, a necessary tool to study the role of PMCA4 and Cav-1 ..... 71 3 2.2.3.1 Selective PMCA4 inhibitors failed to inhibit PMCA activity in MIAPaCa-2 cells predominantly expressing PMCA4 ............................................................................ 71 2.2.3.2 siRNA expression knockdown optimization ............................................................. 73 2.2.4 Analysis of ATP production rate from existing Mito Stress Test data .................................... 76 Chapter 3 – PMCA4 is important for cell migration and apoptotic resistance of MIAPaCa-2 pancreatic
Recommended publications
  • Genome-Wide Analysis of 5-Hmc in the Peripheral Blood of Systemic Lupus Erythematosus Patients Using an Hmedip-Chip
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 35: 1467-1479, 2015 Genome-wide analysis of 5-hmC in the peripheral blood of systemic lupus erythematosus patients using an hMeDIP-chip WEIGUO SUI1*, QIUPEI TAN1*, MING YANG1, QIANG YAN1, HUA LIN1, MINGLIN OU1, WEN XUE1, JIEJING CHEN1, TONGXIANG ZOU1, HUANYUN JING1, LI GUO1, CUIHUI CAO1, YUFENG SUN1, ZHENZHEN CUI1 and YONG DAI2 1Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002; 2Clinical Medical Research Center, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China Received July 9, 2014; Accepted February 27, 2015 DOI: 10.3892/ijmm.2015.2149 Abstract. Systemic lupus erythematosus (SLE) is a chronic, Introduction potentially fatal systemic autoimmune disease characterized by the production of autoantibodies against a wide range Systemic lupus erythematosus (SLE) is a typical systemic auto- of self-antigens. To investigate the role of the 5-hmC DNA immune disease, involving diffuse connective tissues (1) and modification with regard to the onset of SLE, we compared is characterized by immune inflammation. SLE has a complex the levels 5-hmC between SLE patients and normal controls. pathogenesis (2), involving genetic, immunologic and envi- Whole blood was obtained from patients, and genomic DNA ronmental factors. Thus, it may result in damage to multiple was extracted. Using the hMeDIP-chip analysis and valida- tissues and organs, especially the kidneys (3). SLE arises from tion by quantitative RT-PCR (RT-qPCR), we identified the a combination of heritable and environmental influences. differentially hydroxymethylated regions that are associated Epigenetics, the study of changes in gene expression with SLE.
    [Show full text]
  • Genetic and Epigenetic Determinants of Thrombin Generation Potential : an Epidemiological Approach Maria-Ares Rocanin-Arjo
    Genetic and Epigenetic Determinants of Thrombin Generation Potential : an epidemiological approach Maria-Ares Rocanin-Arjo To cite this version: Maria-Ares Rocanin-Arjo. Genetic and Epigenetic Determinants of Thrombin Generation Potential : an epidemiological approach. Génétique humaine. Université Paris Sud - Paris XI, 2014. Français. NNT : 2014PA11T067. tel-01231859 HAL Id: tel-01231859 https://tel.archives-ouvertes.fr/tel-01231859 Submitted on 21 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ PARIS-SUD ÉCOLE DOCTORALE 420 : SANTÉ PUBLIQUE PARIS SUD 11, PARIS DESCARTES Laboratoire : Equip 1 de Unité INSERM UMR_S1166 Genomics & Pathophysiology of Cardiovascular Diseases THÈSE DE DOCTORAT SANTÉ PUBLIQUE - GÉNÉTIQUE STATISTIQUE par Ares ROCAÑIN ARJO Genetic and Epigenetic Determinants of Thrombin Generation Potential: an epidemiological approach. Date de soutenance : 20/11/2014 Composition du jury : Directeur de thèse : David Alexandre TREGOUET DR, INSERM U1166, Université Paris 6, Jussieu Rapporteurs : Guy MEYER PU_PH, Service de pneumologie. Hôpital européen Georges Pompidou Richard REDON DR, Institut thorax, UMR 1087 / CNRS UMR 6291 , Université de Nantes Examinateurs : Laurent ABEL DR, INSERM U980, Institut Imagine Marie Aline CHARLES DR, INSERM U1018, CESP Al meu pare (to my father /à mon père) Your genetics load the gun.
    [Show full text]
  • Computational Genome-Wide Identification of Heat Shock Protein Genes in the Bovine Genome [Version 1; Peer Review: 2 Approved, 1 Approved with Reservations]
    F1000Research 2018, 7:1504 Last updated: 08 AUG 2021 RESEARCH ARTICLE Computational genome-wide identification of heat shock protein genes in the bovine genome [version 1; peer review: 2 approved, 1 approved with reservations] Oyeyemi O. Ajayi1,2, Sunday O. Peters3, Marcos De Donato2,4, Sunday O. Sowande5, Fidalis D.N. Mujibi6, Olanrewaju B. Morenikeji2,7, Bolaji N. Thomas 8, Matthew A. Adeleke 9, Ikhide G. Imumorin2,10,11 1Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria 2International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA 3Department of Animal Science, Berry College, Mount Berry, GA, 30149, USA 4Departamento Regional de Bioingenierias, Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Queretaro, Mexico 5Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria 6Usomi Limited, Nairobi, Kenya 7Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria 8Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA 9School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa 10School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30032, USA 11African Institute of Bioscience Research and Training, Ibadan, Nigeria v1 First published: 20 Sep 2018, 7:1504 Open Peer Review https://doi.org/10.12688/f1000research.16058.1 Latest published: 20 Sep 2018, 7:1504 https://doi.org/10.12688/f1000research.16058.1 Reviewer Status Invited Reviewers Abstract Background: Heat shock proteins (HSPs) are molecular chaperones 1 2 3 known to bind and sequester client proteins under stress. Methods: To identify and better understand some of these proteins, version 1 we carried out a computational genome-wide survey of the bovine 20 Sep 2018 report report report genome.
    [Show full text]
  • Gene Targeting Therapies (Roy Alcalay)
    Recent Developments in Gene - Targeted Therapies for Parkinson’s Disease Roy Alcalay, MD, MS Alfred and Minnie Bressler Associate Professor of Neurology Division of Movement Disorders Columbia University Medical Center Disclosures Funding: Dr. Alcalay is funded by the National Institutes of Health, the DOD, the Michael J. Fox Foundation and the Parkinson’s Foundation. Dr. Alcalay receives consultation fees from Genzyme/Sanofi, Restorbio, Janssen, and Roche. Gene Localizations Identified in PD Gene Symbol Protein Transmission Chromosome PARK1 SNCA α-synuclein AD 4q22.1 PARK2 PRKN parkin (ubiquitin ligase) AR 6q26 PARK3 ? ? AD 2p13 PARK4 SNCA triplication α-synuclein AD 4q22.1 PARK5 UCH-L1 ubiquitin C-terminal AD 4p13 hydrolase-L1 PARK6 PINK1 PTEN-induced kinase 1 AR 1p36.12 PARK7 DJ-1 DJ-1 AR 1p36.23 PARK8 LRRK2 leucine rich repeat kinase 2 AD 12q12 PARK9 ATP13A2 lysosomal ATPase AR 1p36.13 PARK10 ? ? (Iceland) AR 1p32 PARK11 GIGYF2 GRB10-interacting GYF protein 2 AD 2q37.1 PARK12 ? ? X-R Xq21-q25 PARK13 HTRA2 serine protease AD 2p13.1 PARK14 PLA2G6 phospholipase A2 (INAD) AR 22q13.1 PARK15 FBXO7 F-box only protein 7 AR 22q12.3 PARK16 ? Discovered by GWAS ? 1q32 PARK17 VPS35 vacuolar protein sorting 35 AD 16q11.2 PARK18 EIF4G1 initiation of protein synth AD 3q27.1 PARK19 DNAJC6 auxilin AR 1p31.3 PARK20 SYNJ1 synaptojanin 1 AR 21q22.11 PARK21 DNAJC13 8/RME-8 AD 3q22.1 PARK22 CHCHD2 AD 7p11.2 PARK23 VPS13C AR 15q22 Gene Localizations Identified in PD Disorder Symbol Protein Transmission Chromosome PD GBA β-glucocerebrosidase AD 1q21 SCA2
    [Show full text]
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • Transcriptomic Analysis of the Aquaporin (AQP) Gene Family
    Pancreatology 19 (2019) 436e442 Contents lists available at ScienceDirect Pancreatology journal homepage: www.elsevier.com/locate/pan Transcriptomic analysis of the Aquaporin (AQP) gene family interactome identifies a molecular panel of four prognostic markers in patients with pancreatic ductal adenocarcinoma Dimitrios E. Magouliotis a, b, Vasiliki S. Tasiopoulou c, Konstantinos Dimas d, * Nikos Sakellaridis d, Konstantina A. Svokos e, Alexis A. Svokos f, Dimitris Zacharoulis b, a Division of Surgery and Interventional Science, Faculty of Medical Sciences, UCL, London, UK b Department of Surgery, University of Thessaly, Biopolis, Larissa, Greece c Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece d Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece e The Warren Alpert Medical School of Brown University, Providence, RI, USA f Riverside Regional Medical Center, Newport News, VA, USA article info abstract Article history: Background: This study aimed to assess the differential gene expression of aquaporin (AQP) gene family Received 14 October 2018 interactome in pancreatic ductal adenocarcinoma (PDAC) using data mining techniques to identify novel Received in revised form candidate genes intervening in the pathogenicity of PDAC. 29 January 2019 Method: Transcriptome data mining techniques were used in order to construct the interactome of the Accepted 9 February 2019 AQP gene family and to determine which genes members are differentially expressed in PDAC as Available online 11 February 2019 compared to controls. The same techniques were used in order to evaluate the potential prognostic role of the differentially expressed genes. Keywords: PDAC Results: Transcriptome microarray data of four GEO datasets were incorporated, including 142 primary Aquaporin tumor samples and 104 normal pancreatic tissue samples.
    [Show full text]
  • Supplementary Table S1. Upregulated Genes Differentially
    Supplementary Table S1. Upregulated genes differentially expressed in athletes (p < 0.05 and 1.3-fold change) Gene Symbol p Value Fold Change 221051_s_at NMRK2 0.01 2.38 236518_at CCDC183 0.00 2.05 218804_at ANO1 0.00 2.05 234675_x_at 0.01 2.02 207076_s_at ASS1 0.00 1.85 209135_at ASPH 0.02 1.81 228434_at BTNL9 0.03 1.81 229985_at BTNL9 0.01 1.79 215795_at MYH7B 0.01 1.78 217979_at TSPAN13 0.01 1.77 230992_at BTNL9 0.01 1.75 226884_at LRRN1 0.03 1.74 220039_s_at CDKAL1 0.01 1.73 236520_at 0.02 1.72 219895_at TMEM255A 0.04 1.72 201030_x_at LDHB 0.00 1.69 233824_at 0.00 1.69 232257_s_at 0.05 1.67 236359_at SCN4B 0.04 1.64 242868_at 0.00 1.63 1557286_at 0.01 1.63 202780_at OXCT1 0.01 1.63 1556542_a_at 0.04 1.63 209992_at PFKFB2 0.04 1.63 205247_at NOTCH4 0.01 1.62 1554182_at TRIM73///TRIM74 0.00 1.61 232892_at MIR1-1HG 0.02 1.61 204726_at CDH13 0.01 1.6 1561167_at 0.01 1.6 1565821_at 0.01 1.6 210169_at SEC14L5 0.01 1.6 236963_at 0.02 1.6 1552880_at SEC16B 0.02 1.6 235228_at CCDC85A 0.02 1.6 1568623_a_at SLC35E4 0.00 1.59 204844_at ENPEP 0.00 1.59 1552256_a_at SCARB1 0.02 1.59 1557283_a_at ZNF519 0.02 1.59 1557293_at LINC00969 0.03 1.59 231644_at 0.01 1.58 228115_at GAREM1 0.01 1.58 223687_s_at LY6K 0.02 1.58 231779_at IRAK2 0.03 1.58 243332_at LOC105379610 0.04 1.58 232118_at 0.01 1.57 203423_at RBP1 0.02 1.57 AMY1A///AMY1B///AMY1C///AMY2A///AMY2B// 208498_s_at 0.03 1.57 /AMYP1 237154_at LOC101930114 0.00 1.56 1559691_at 0.01 1.56 243481_at RHOJ 0.03 1.56 238834_at MYLK3 0.01 1.55 213438_at NFASC 0.02 1.55 242290_at TACC1 0.04 1.55 ANKRD20A1///ANKRD20A12P///ANKRD20A2///
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • Manuale D'uso Lumia Con Windows Phone 8.1 Update 2
    Manuale d'uso Lumia con Windows Phone 8.1 Update 2 Edizione 1.0 IT Informazioni sul presente manuale d'uso Questo è il manuale d'uso della versione software utilizzata. Importante: Per informazioni importanti sull'utilizzo sicuro del telefono, leggere la sezione Informazioni sul prodotto e sulla sicurezza contenuta nel manuale d'uso fornito nella confezione o disponibile online. Per informazioni preliminari sull'uso del nuovo telefono, leggere il manuale d'uso presente nella confezione. Per indicazioni online per l'utente, video a ulteriori informazioni e la risoluzione dei problemi, visitare il sito www.microsoft.com/mobile/support/. Sono disponibili anche video di supporto all'indirizzo www.youtube.com/lumiasupport. Nel telefono è integrato inoltre un manuale d'uso completo, sempre a portata di mano e disponibile all'occorrenza. Per trovare le risposte alle proprie domande e ottenere utili suggerimenti, toccare Lumia - Guida. Se è la prima volta che si utilizza un telefono Lumia, leggere la sezione destinata ai nuovi utenti. Le Condizioni del Servizio e l'Informativa sulla Privacy di Microsoft Mobile sono disponibili all'indirizzo www.microsoft.com/mobile/privacypolicy. © 2015 Microsoft Mobile. Tutti i diritti sono riservati. 2 Manuale d'uso Lumia con Windows Phone 8.1 Update 2 Indice Informazioni sulla sicurezza 5 Contatti e messaggi 60 Operazioni preliminari 6 Chiamate 60 Bloccare i tasti e lo schermo 6 Contatti 65 Caricare il telefono 7 Social network 71 Il tuo primo Lumia? 10 Messaggi 72 Configura telefono 10 E-mail 76 Esplorare
    [Show full text]
  • Formation of COPI-Coated Vesicles at a Glance Eric C
    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs209890. doi:10.1242/jcs.209890 CELL SCIENCE AT A GLANCE Formation of COPI-coated vesicles at a glance Eric C. Arakel1 and Blanche Schwappach1,2,* ABSTRACT unresolved, this review attempts to refocus the perspectives of The coat protein complex I (COPI) allows the precise sorting of lipids the field. and proteins between Golgi cisternae and retrieval from the Golgi KEY WORDS: Arf1, ArfGAP, COPI, Coatomer, Golgi, Endoplasmic to the ER. This essential role maintains the identity of the early reticulum, Vesicle coat secretory pathway and impinges on key cellular processes, such as protein quality control. In this Cell Science at a Glance and accompanying poster, we illustrate the different stages of COPI- Introduction coated vesicle formation and revisit decades of research in the Vesicle coat proteins, such as the archetypal clathrin and the coat context of recent advances in the elucidation of COPI coat structure. protein complexes II and I (COPII and COPI, respectively) are By calling attention to an array of questions that have remained molecular machines with two central roles: enabling vesicle formation, and selecting protein and lipid cargo to be packaged within them. Thus, coat proteins fulfil a central role in the 1Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee homeostasis of the cell’s endomembrane system and are the basis 23, 37073 Göttingen, Germany. 2Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany. of functionally segregated compartments. COPI operates in retrieval from the Golgi to the endoplasmic reticulum (ER) and in intra-Golgi *Author for correspondence ([email protected]) transport (Beck et al., 2009; Duden, 2003; Lee et al., 2004a; Spang, E.C.A., 0000-0001-7716-7149; B.S., 0000-0003-0225-6432 2009), and maintains ER- and Golgi-resident chaperones and enzymes where they belong.
    [Show full text]
  • Supplementary Table 4
    Li et al. mir-30d in human cancer Table S4. The probe list down-regulated in MDA-MB-231 cells by mir-30d mimic transfection Gene Probe Gene symbol Description Row set 27758 8119801 ABCC10 ATP-binding cassette, sub-family C (CFTR/MRP), member 10 15497 8101675 ABCG2 ATP-binding cassette, sub-family G (WHITE), member 2 18536 8158725 ABL1 c-abl oncogene 1, receptor tyrosine kinase 21232 8058591 ACADL acyl-Coenzyme A dehydrogenase, long chain 12466 7936028 ACTR1A ARP1 actin-related protein 1 homolog A, centractin alpha (yeast) 18102 8056005 ACVR1 activin A receptor, type I 20790 8115490 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 15688 7979904 ADAM21 ADAM metallopeptidase domain 21 14937 8054254 AFF3 AF4/FMR2 family, member 3 23560 8121277 AIM1 absent in melanoma 1 20209 7921434 AIM2 absent in melanoma 2 19272 8136336 AKR1B10 aldo-keto reductase family 1, member B10 (aldose reductase) 18013 7954777 ALG10 asparagine-linked glycosylation 10, alpha-1,2-glucosyltransferase homolog (S. pombe) 30049 7954789 ALG10B asparagine-linked glycosylation 10, alpha-1,2-glucosyltransferase homolog B (yeast) 28807 7962579 AMIGO2 adhesion molecule with Ig-like domain 2 5576 8112596 ANKRA2 ankyrin repeat, family A (RFXANK-like), 2 23414 7922121 ANKRD36BL1 ankyrin repeat domain 36B-like 1 (pseudogene) 29782 8098246 ANXA10 annexin A10 22609 8030470 AP2A1 adaptor-related protein complex 2, alpha 1 subunit 14426 8107421 AP3S1 adaptor-related protein complex 3, sigma 1 subunit 12042 8099760 ARAP2 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 2 30227 8059854 ARL4C ADP-ribosylation factor-like 4C 32785 8143766 ARP11 actin-related Arp11 6497 8052125 ASB3 ankyrin repeat and SOCS box-containing 3 24269 8128592 ATG5 ATG5 autophagy related 5 homolog (S.
    [Show full text]