Ventilative Cooling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thermal Assessment of a Novel Combine Evaporative Cooling Wind Catcher
energies Article Thermal Assessment of a Novel Combine Evaporative Cooling Wind Catcher Azam Noroozi * and Yannis S. Veneris School of Architecture, National Technical University of Athens, Section III, 42 Patission Av., 10682 Athens, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-210-772-3885 (ext. 3567) Received: 5 January 2018; Accepted: 13 February 2018; Published: 15 February 2018 Abstract: Wind catchers are one of the oldest cooling systems that are employed to provide sufficient natural ventilation in buildings. In this study, a laboratory scale wind catcher was equipped with a combined evaporative system. The designed assembly was comprised of a one-sided opening with an adjustable wetted pad unit and a wetted blades section. Theoretical analysis of the wind catcher was carried out and a set of experiments were organized to validate the results of the obtained models. The effect of wind speed, wind catcher height, and mode of the opening unit (open or closed) was investigated on temperature drop and velocity of the moving air through the wind catcher as well as provided sensible cooling load. The results showed that under windy conditions, inside air velocity was slightly higher when the pad was open. Vice versa, when the wind speed was zero, the closed pad resulted in an enhancement in air velocity inside the wind catcher. At wind catcher heights of 2.5 and 3.5 m and wind speeds of lower than 3 m/s, cooling loads have been approximately doubled by applying the closed-pad mode. Keywords: wind catcher; cooling system; experimental validation; thermal modeling 1. -
The Wind-Catcher, a Traditional Solution for a Modern Problem Narguess
THE WIND-CATCHER, A TRADITIONAL SOLUTION FOR A MODERN PROBLEM NARGUESS KHATAMI A submission presented in partial fulfilment of the requirements of the University of Glamorgan/ Prifysgol Morgannwg for the degree of Master of Philosophy August 2009 I R11 1 Certificate of Research This is to certify that, except where specific reference is made, the work described in this thesis is the result of the candidate’s research. Neither this thesis, nor any part of it, has been presented, or is currently submitted, in candidature for any degree at any other University. Signed ……………………………………… Candidate 11/10/2009 Date …………………………………....... Signed ……………………………………… Director of Studies 11/10/2009 Date ……………………………………… II Abstract This study investigated the ability of wind-catcher as an environmentally friendly component to provide natural ventilation for indoor environments and intended to improve the overall efficiency of the existing designs of modern wind-catchers. In fact this thesis attempts to answer this question as to if it is possible to apply traditional design of wind-catchers to enhance the design of modern wind-catchers. Wind-catchers are vertical towers which are installed above buildings to catch and introduce fresh and cool air into the indoor environment and exhaust inside polluted and hot air to the outside. In order to improve overall efficacy of contemporary wind-catchers the study focuses on the effects of applying vertical louvres, which have been used in traditional systems, and horizontal louvres, which are applied in contemporary wind-catchers. The aims are therefore to compare the performance of these two types of louvres in the system. For this reason, a Computational Fluid Dynamic (CFD) model was chosen to simulate and study the air movement in and around a wind-catcher when using vertical and horizontal louvres. -
Humidity-Sensitive, Demand-Controlled Ventilation Applied to Multiunit Residential Building—Performance and Energy Consumption in Dfb Continental Climate
energies Article Humidity-Sensitive, Demand-Controlled Ventilation Applied to Multiunit Residential Building—Performance and Energy Consumption in Dfb Continental Climate Jerzy Sowa * and Maciej Mijakowski Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-22-234-7428 Received: 16 November 2020; Accepted: 8 December 2020; Published: 17 December 2020 Abstract: Humidity-sensitive, demand-controlled ventilation systems have been in use for many years in regions with oceanic climates. Some attempts have been made to apply this technology in Poland, which has a continental climate. This article evaluates the performance and energy consumption of such a system when applied in an eight-floor, multiunit, residential building, i.e., the virtual reference building described by the National Energy Conservation Agency (NAPE), Poland. Simulations using the computer program CONTAM were performed for the whole heating season based upon the climate in Warsaw. Besides passive stack ventilation, that served as a reference, two ventilation systems were studied: one standard and one “hybrid” system with additional roof fans. This study confirmed that the application of humidity-sensitive, demand-controlled ventilation in multiunit residential buildings in a continental climate (Dfb) led to significant energy savings (up to 11.64 kWh/m2 of primary energy). However, the operation of the system on higher floors was found to be ineffective. Ensuring consistent operation of the system on all floors required supplementary fans. The introduction of a hybrid mode reduced carbon dioxide concentrations by approximately 32% in the units located in the upper part of the building. -
The Effect of Refurbishment and Trickle Vents on Airtightness: the Case of a 1930S Semi-Detached House
The effect of refurbishment and trickle vents on airtightness: the case of a 1930s semi-detached house. Ben Roberts*1, David Allinson1, Kevin Lomas1, and Stephen Porritt1 1 School of Civil and Building Engineering Loughborough University Loughborough, UK Presenting author *Corresponding author: [email protected] ABSTRACT As UK homes are insulated and draught proofed in an attempt to reduce wintertime heating demand they become more airtight. Any reduction in infiltration could have a detrimental effect on indoor air quality. Controllable background ventilation provided by trickle vents is one method of maintaining indoor air quality. A 1930s semi-detached 3-bedroom house was refurbished with double-glazed windows, trickle vents, doors and loft insulation. 167 blower door tests were carried out pre- and post-refurbishment between January and March 2017 to understand the repeatability of the test and quantify how trickle vents affect airtightness. The refurbishment reduced air leakage by 29% from 20.8 to 14.7m3/h/m2 at 50Pa (with all windows and trickle vents closed), but still in excess of the current UK regulations for new builds (10m3/h/m2 at 50Pa). Opening trickle vents provided limited additional ventilation, only increasing air change rate by 1.8m3/h/m2 with all vents open. The test was found to be repeatable with a standard error of 0.07m3/h/m2 at 50Pa with no relationship between the test result and wind speed or direction. The results lead to two important conclusions. Firstly, after refurbishing older homes of this type, infiltration rates are still well above recommendations for adequate indoor air quality. -
Understanding Residential Occupant Cooling Behaviour Through Electricity Consumption in Warm-Humid Climate
Article Understanding Residential Occupant Cooling Behaviour through Electricity Consumption in Warm-Humid Climate Kumar Biswajit Debnath *, David P Jenkins, Sandhya Patidar and Andrew D Peacock School of Energy, Geoscience, Infrastructure and Society (EGIS), Heriot-Watt University, Edinburgh EH14 4AS, UK; [email protected] (D.P.J.); [email protected] (S.P.); [email protected] (A.D.P.) * Correspondence: [email protected] Received: 21 March 2020; Accepted: 15 April 2020; Published: 19 April 2020 Abstract: According to the India Energy Security Scenario 2047, the number of residential air conditioner (A/C) units may increase seven-fold by 2037 as compared to 2017. Also, the related energy consumption might increase four times in the next two decades, according to India’s National Cooling Action Plan. Therefore, the study of occupant cooling behaviour is essential to reduce and manage the significant electricity demand, helping to formulate and implement climate- specific cooling policies, and to adopt low-energy and low-cost technologies at mass-market scale. The study aims to analyse residential electricity consumption in order to investigate occupant behaviour, especially for thermal comfort by using space cooling and mechanical ventilation technologies. Among the five climate zones in India, this study focuses on the occupant behaviour in a warm-humid climate using Auroville as a case study, where climate analysis of the past 30 years demonstrated progression towards unprecedented warmer weather in the last five years. In this study, electricity consumption data from 18 households (flats) were monitored for seven months (November 2018–June 2019). -
03 Indoor Climate
03 Indoor Climate Introduction It is the atmosphere of a living space. It captures and displays the essence of a home. It fills the outer form with life. It creates harmony (or disharmony), which affects the entire human condition – mind, soul, and body. Figure: The hearth as the center of warmth. Healthy indoor climate due to a radiant heating system and natural building materials such as wood and clay. Photo: Dirk Dittmar, Building Biology Consulting Office IBN The selection of building materials and the type of construction influence the quality of the indoor climate, which very much defines both the quality of living in a given building as well as its biological effect. We should always keep this in mind with almost any building project, be it small or big. The following discussion not only applies to residential buildings but also to schools, hospitals, nursing homes, and especially to the large number of office spaces and workshops. Today there is so much talk about a positive work "climate" and a people-friendly work environment that the health and human factor aspects of indoor climate are often overlooked. Even in places where performance is a priority such as educational institutions and workplaces, a healthy indoor climate is just as important as organization, efficiency, and optimum indoor furnishings and technologies. In addition to the quantitative performance, an appropriate indoor climate promotes human health (low sick leave rates, reaching old age), contentment, well-being, and generally a positive work or 1 learning environment. And as has been repeatedly demonstrated, it also has a positive impact on work performance. -
Window Ventilator Range
D A T A S H E E T W R 1 GREENWOOD REQUIREMENTS WINDOW VENTILATOR RANGE UNDER PART F: MEANS OF VENTILATION FOR WINDOW Greenwood offers a range of window ventilators for varying application requirements including through frame, glazed in and overframe. All products have been tested in MANUFACTURERS conjunction with BS EN 13141-1 Clause 4 Ventilation for Buildings at third party accredited test houses. All information is available on request. AND INSTALLERS SUppLYING NEW Equivalent Dimensions (mm) Slot Length Central Gap Length Product Code Configuration Area (mm2) (length x height x deep) Height (mm) Slot Sizes (mm) BUILD WINDOWS A Vent 3000A.12 Inner Unit & Outer Canopy 1813 Inner: 280 x 18 x 6.5 Outer: 280 x 26 x 24 12 250 4000A.12 Inner Unit & Outer Canopy 2623 Inner: 375 x 18 x 6.5 Outer: 375 x 26 x 24 12 334 6000A.12 Inner Unit & Outer Canopy 3935 Inner: 555 x 18 x 6.5 Outer: 555 x 26 x 24 12 250 15 250 8000A.12 Inner Unit & Outer Canopy 5013 Inner: 725 x 18 x 6.5 Outer: 725 x 26 x 24 12 334 15 334 NEW BUILD 3000A.16 Inner Unit & Outer Canopy 1644 Inner: 230 x 18 x 6.5 Outer: 230 x 26 x 24 16 188 4000A.16 Inner Unit & Outer Canopy 2393 Inner: 290 x 18 x 6.5 Outer: 290 x 26 x 24 16 250 6000A.16 Inner Unit & Outer Canopy 3397 Inner: 415 x 18 x 6.5 Outer: 415 x 26 x 24 16 375 8000A.16 Inner Unit & Outer Canopy 3935 Inner: 555 x 18 x 6.5 Outer: 555 x 26 x 24 16 250 15 250 D Vent WINDOWS 2000DF Inner Unit & External Grille 1396 Inner: 219 x 26.5 x 11 13 165 4000DF Inner Unit & External Grille 2770 Inner: 414 x 26.5 x 11 13 165 30 165 INDOOR -
Evaluating Ventilation Systems for Existing Homes
Evaluating Ventilation Systems for Existing Homes Robb Aldrich and Lois Arena Consortium for Advanced Residential Buildings February 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste ii Evaluating Ventilation Systems for Existing Homes Prepared for: The National Renewable Energy Laboratory On behalf of the U.S. -
Download at April 2009 CIBSE Journal 25
April 2009 Is this eco-house our best hope? THE INTERVIEW FROM ENGINEER TO FACILITIES MANAGER LIGHTING UP NEW HANDBOOK FOR PROFESSIONALS FAÇADES GERMAN LESSONS ON INTEGRATION www.cibsejournal.com CIBSEapr09cover.indd 1 2/4/09 16:30:12 With more than 1,500 schools, colleges and universities already benefiting from Monodraught Windcatcher, SunPipe, SunCatcher and Sola-boost systems no company is better placed to advise on the health, welfare and energy saving benefits of natural ventilation and natural daylight. So whether you are an education professional, architect, consultant or contractor, this experience and our knowledge of current legislation and the latest guidelines makes Monodraught the perfect partner when you are building schools for the future. Call or email us for a copy of our new schools brochure. 2 CIBSE Journal April 2009 www.cibsejournal.com p02_CIBSEMagApr09.indd 2 30/3/09 08:55:36 Contents April 2009 22 38 32 News Features 50 Lighting: Handbook A Society of Light and Lighting first – 6 News 22 The Interview a new handbook for generalists and Round-up of the latest news from Ewen Rose reveals how Eddie Myles specialists. across the sector. went from a hardman contractor to an accommodating facilities manager. 12 CIBSE News Classified Read the latest member news from 28 People: Terry Wyatt CIBSE. Industry leader Terry Wyatt tells 52 Products Carina Bailey why buildings are failing Products and services in the industry. to be energy efficient and what needs Opinion 54 Directory to be done to reverse the trend. 14 Letters A guide to suppliers across the Topical opinions and views from 32 COVER STORY building services sector. -
Heating and Cooling with Focus on Increased Energy Efficiency and Improved Comfort Low Exergy Systems for Heating and Cooling of Buildings
Heating and Cooling with Focus on Increased Energy Efficiency and Improved Comfort Low Exergy Systems for Heating and Cooling of Buildings Abstract: Environment problems such as global warming, which have been linked to the extended use of energy, and the negative environmental effects of energy production which they are mainly due to the use of fossil fuels. Heating, cooling and lighting appliances in buildings cause more than one third of the world’s primary energy demand. Then using renewable energy sources for heating and cooling buildings is very important for safe future energy demand .Increasing energy efficiency and improving thermal comfort can realize by using low exergy systems for heating and cooling of buildings. ‘Low exergy systems’ means systems that provide heating or cooling energy at a temperature close to room temperature. Low temperature heating systems or high temperature cooling systems can use a variety of fuels and renewable energy sources, having many benefits such as: improved thermal comfort, improved indoor air quality, reduced energy consumption and reduced draughts and dust. Active and passive systems: Passive systems defined as building envelope systems use various environment potentials as sun, wind. Active systems are consisting of various mechanical and electric components as fans, heat pumps… Energy, Exergy, and Entropy: In the theory of thermodynamics, Exergy is the maximum work that can be obtains from an energy flow or a change of a system. Exergy analysis provides us with additional information on where and when the losses occur. It helps us to see in which part of the energy chain the biggest savings can be achieve. -
Analysis of a Low Energy Wind Catcher with Horizontally-Arranged Heat
Available online at www.sciencedirect.com ScienceDirect AvailableAvailable online online at at www.sciencedirect.com www.sciencedirect.com Energy Procedia 00 (2017) 000–000 www.elsevier.com/locate/procedia ScienceDirectScienceDirect EnergyEnergy Procedia Procedia 14200 (2017) (2017 )2095–2101 000–000 www.elsevier.com/locate/procedia 9th International Conference on Applied Energy, ICAE2017, 21-24 August 2017, Cardiff, UK Indoor environmental quality (IEQ) analysis of a low energy wind catcherThe with 15th International horizontally Symposium-arranged on District heat Heating transfer and Cooling devices JohnAssessing Calautita, Angelo the feasibility Aquinob*, Dominic of using O’Connor the heatb, Sheen demand Cabaneros-outdoorb, Sally temperatureShahzadc, Saeedfunction Wazed forb, Tom a long Garwood-termb, Katrinadistrict Calautit heat ademand,Ben Hughes forecastb a Departmenta,b,c of Architecture aand Built Environment,a University of Nob ttingham, Nottingham NG7c 2RD, UK c I. Andri ć b*Department, A. Pina of Mechanical, P. Ferrão Engineering,, J. FournierUniversity of Sheffield,., B. LacarrièreSheffield S10 2TN,, O.UK Le Corre cCollege of Engineering, University of Derby, Derby DE22 3AW, UK aIN+ Center for Innovation, Technology and Policy Research - Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal bVeolia Recherche & Innovation, 291 Avenue Dreyfous Daniel, 78520 Limay, France c Abstract Département Systèmes Énergétiques et Environnement - IMT Atlantique, 4 rue Alfred Kastler, 44300 Nantes, France Windcatchers are natural ventilation systems based on the design of traditional architecture, intended to provide ventilation by manipulatingAbstract pressure differentials around buildings induced by wind movement and temperature difference. Though the movement of air caused by the wind catcher will lead to a cooling sensation for occupants, the high air temperature in hot climatesDistrict willheating result networks in little arecooling commonly or thermal addressed discomfort in the to literature occupants. -
Towards a Computational Fluid Dynamics-Based Fuzzy Logic Controller of the Optimum Windcatcher Internal Design for Efficient Natural Ventilation in Buildings
Hindawi Mathematical Problems in Engineering Volume 2021, Article ID 9936178, 10 pages https://doi.org/10.1155/2021/9936178 Research Article Towards a Computational Fluid Dynamics-Based Fuzzy Logic Controller of the Optimum Windcatcher Internal Design for Efficient Natural Ventilation in Buildings Ashraf Balabel ,1 Mohammad Faizan,2 and Ali Alzaed3 1Mechanical Engineering Department, Taif University, Taif, Saudi Arabia 2Mechanical Engineering Department, Aligarh Muslim University, Aligarh, India 3Architectural Engineering Department, Taif University, Taif, Saudi Arabia Correspondence should be addressed to Ashraf Balabel; [email protected] Received 8 March 2021; Revised 23 March 2021; Accepted 29 March 2021; Published 12 April 2021 Academic Editor: G. Muhiuddin Copyright © 2021 Ashraf Balabel et al. 'is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Recently, increased attention has been given to the coupling of computational fluid dynamics (CFD) with the fuzzy logic control system for obtaining the optimum prediction of many complex engineering problems. 'e data provided to the fuzzy system can be obtained from the accurate computational fluid dynamics of such engineering problems. Windcatcher performance to achieve thermal comfort conditions in buildings, especially in hot climate regions, is considered as one such complex problem. Windcatchers can be used as natural ventilation and passive cooling systems in arid and windy regions in Saudi Arabia. Such systems can be considered as the optimum solution for energy-saving and obtaining thermal comfort in residential buildings in such regions. In the present paper, three-dimensional numerical simulations for a newly-developed windcatcher model have been performed using ANSYS FLUENT-14 software.