Coleoptera: Hydrophiloidea: Hydrophilidae) from Eurasia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E
Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E. Carlton Louisiana State Arthropod Museum Coleoptera Families Everyone Should Know (Checklist) Suborder Adephaga Suborder Polyphaga, cont. •Carabidae Superfamily Scarabaeoidea •Dytiscidae •Lucanidae •Gyrinidae •Passalidae Suborder Polyphaga •Scarabaeidae Superfamily Staphylinoidea Superfamily Buprestoidea •Ptiliidae •Buprestidae •Silphidae Superfamily Byrroidea •Staphylinidae •Heteroceridae Superfamily Hydrophiloidea •Dryopidae •Hydrophilidae •Elmidae •Histeridae Superfamily Elateroidea •Elateridae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Suborder Polyphaga, cont. Superfamily Cantharoidea Superfamily Cucujoidea •Lycidae •Nitidulidae •Cantharidae •Silvanidae •Lampyridae •Cucujidae Superfamily Bostrichoidea •Erotylidae •Dermestidae •Coccinellidae Bostrichidae Superfamily Tenebrionoidea •Anobiidae •Tenebrionidae Superfamily Cleroidea •Mordellidae •Cleridae •Meloidae •Anthicidae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Superfamily Chrysomeloidea •Chrysomelidae •Cerambycidae Superfamily Curculionoidea •Brentidae •Curculionidae Total: 35 families of 131 in the U.S. Suborder Adephaga Family Carabidae “Ground and Tiger Beetles” Terrestrial predators or herbivores (few). 2600 N. A. spp. Suborder Adephaga Family Dytiscidae “Predacious diving beetles” Adults and larvae aquatic predators. 500 N. A. spp. Suborder Adephaga Family Gyrindae “Whirligig beetles” Aquatic, on water -
The Evolution and Genomic Basis of Beetle Diversity
The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State -
The Importance of Behavior and Venom System Morphology in Understanding Its Ecology and Evolution
Toxins 2019, 11, 666; doi:10.3390/toxins11110666 S1 of S11 Supplementary Materials: The Diversity of Venom: The Importance of Behavior and Venom System Morphology in Understanding Its Ecology and Evolution Vanessa Schendel, Lachlan D. Rash, Ronald A. Jenner, and Eivind A. B. Undheim Table S1. Independently evolved venomous animal lineages and the primary ecological roles of their venoms. Taxa for which no direct support of their venomous nature could be found are shown in grey font. General Venom System Animal Group Venomous Lineage Primary Role References Morphology Predation, defense, Cnidarians All Nematocysts [1] intraspecific competition Coleoid Posterior and anterior glands, cephalopods, venom injected through salivary Predation [2,3] including octopus papilla. and squid Long duct/venom gland, venom Cone snails and injected through hollow radular Predation, [4] relatives (Conoidea) tooth on proboscis by a distal defense venom pump. Tritons, helmet Two-lobed salivary (venom) Molluscs shells, etc. glands that open through Predation [5] (Tonnoidea) common duct into buccal mass. Dwarf tritons, Single-lobed salivary (venom) including vampire glands that open through Predation [6] snails common duct into buccal mass. (Colubrariidae) Primary and accessory salivary Murex snails (venom) glands that open Predation [7] (Muricidae) through common duct into buccal mass. Proboscis with venom secreting cells, sometimes with stylet to Nemerteans Ribbon worms facilitate venom delivery Predation [8] (Enopla), or pseudocnidae with a potential role in venom delivery. Toxin-producing “lappets” secreting venom into large Blood worms muscular and glandular venom Predation [9] (Glyceridae) reservoir, which is presumably Annelids also involved in venom expulsion. Secretory cells dispersed along Predation, Leeches (Hirudinea) the buccal cavity in jawed [10–12] blood feeding leeches (Arhynchobdellida); Toxins 2019, 11, 666; doi:10.3390/toxins11110666 S2 of S11 presence of two paired salivary glands in jawless leeches (Glossiphoniidae). -
ECOGRAPHY E3271 Ribera, I., Foster, G
ECOGRAPHY E3271 Ribera, I., Foster, G. N. and Vogler, A. P. 2003. Does habitat use explain large scale species rich- ness patterns of aquatic beetles in Europe? – Eco- graphy 26: 145–152. Appendix Data set used in the analyses. Species were compiled from the literature, updated until December 1999 (see References). Only main source references for the habitat of the species are listed. H, habitat: 0, running; 1, running and stagnant; 2, stagnant; ?, unknown. Sites (in brackets, total number of species): 1, Mallorca (141); 2, Holland (272); 3, Corsica (192); 4, France (460); 5, Denmark (245); 6, Sweden (273); 7, Norway (219); 8, Finland (243); 9, Iberia (469); 10, Britain (248); 11, Ireland (180); 12, Germany (358); 13, Italy (478); 14, Sicily (235); 15, Sardinia (237). No.Genus Species SuperFamily H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 Hydroscapha granulum Myxophaga 0 1 1 1 1 1 2 Microsporus acaroides Myxophaga 1 1 1 1 3 Microsporus hispanicus Myxophaga 0 1 1 1 1 4 Microsporus spississimus Myxophaga 0 1 1 5 Aulonogyrus concinnus Hydradephaga 1 1 1 1 1 1 1 1 1 6 Aulonogyrus striatus Hydradephaga 0 1 1 1 1 1 1 1 7 Gyrinus minutus Hydradephaga 2 1 1 1 1 1 1 1 1 1 1 1 1 8 Gyrinus aeratus Hydradephaga 1 1 1 1 1 1 1 1 1 1 9 Gyrinus caspius Hydradephaga 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 Gyrinus colymbus Hydradephaga 2 1 1 1 1 1 11 Gyrinus dejeani Hydradephaga 1 1 1 1 1 1 1 12 Gyrinus distinctus Hydradephaga 2 1 1 1 1 1 1 1 1 1 1 1 1 1 13 Gyrinus marinus Hydradephaga 1 1 1 1 1 1 1 1 1 1 1 1 14 Gyrinus natator Hydradephaga 2 1 1 1 1 1 1 1 1 15 Gyrinus -
DARKLING BEETLE Or STINK BEETLE Class Order Family Genus Species Insecta Coleoptera Tenebrionidae Eleodes Spp
DARKLING BEETLE or STINK BEETLE Class Order Family Genus Species Insecta Coleoptera Tenebrionidae Eleodes spp Range: Found worldwide. 100 species in this genus in California. Habitat: Forests, grasslands, and deserts. Found under rocks and logs during the day. Niche: Herbivorous, terrestrial, nocturnal Diet: Wild: Scavenge on a wide variety of decaying and fresh plant and animal matter Zoo: Apple, monkey chow, lettuce Special Adaptations: The forewing (elytra) is fused so this beetle is flightless. They have chewing mouthparts and adults have a hard exoskeleton, smooth and black and are a little over an inch long. Antennae are thread-like, but some species’ are slightly enlarged at the terminal end and appear club-like. Darkling beetles undergo a complete metamorphosis. The eggs are laid in soil. The mealworm is the larval state of the darkling beetle and may molt 9-20 times. The adults will live 3-15 years. Compound eyes are kidney-shaped or notched rather than round. These beetles do not need to drink and can produce water metabolically; also their wings are fused to reduce water loss. Other: When disturbed, they will stand on their heads and elevate their rear end and emit a foul-smelling odor. This emission makes them unpalatable to would-be predators. Hence an alternate common name of “stink beetle”. They are sexually dimorphic. The cactus longhorn beetle mimics the darkling beetle because of the smell. Complete metamorphosis. ▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼ DERMESTID BEETLE or SKIN BEETLE Class Order Family Genus Species Insecta Coleoptera Dermestidae Dermestes maculatus Range: Worldwide distribution except Antarctica Habitat: on dead animals Niche: Scavengers, omnivorous, terrestrial Diet: Wild: dry animal or plant material such as skin or pollen, animal hair, feathers, dead insects and natural fibers Zoo: Special Adaptations: Undergo complete metamorphosis. -
Current Classification of the Families of Coleoptera
The Great Lakes Entomologist Volume 8 Number 3 - Fall 1975 Number 3 - Fall 1975 Article 4 October 1975 Current Classification of the amiliesF of Coleoptera M G. de Viedma University of Madrid M L. Nelson Wayne State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation de Viedma, M G. and Nelson, M L. 1975. "Current Classification of the amiliesF of Coleoptera," The Great Lakes Entomologist, vol 8 (3) Available at: https://scholar.valpo.edu/tgle/vol8/iss3/4 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. de Viedma and Nelson: Current Classification of the Families of Coleoptera THE GREAT LAKES ENTOMOLOGIST CURRENT CLASSIFICATION OF THE FAMILIES OF COLEOPTERA M. G. de viedmal and M. L. els son' Several works on the order Coleoptera have appeared in recent years, some of them creating new superfamilies, others modifying the constitution of these or creating new families, finally others are genera1 revisions of the order. The authors believe that the current classification of this order, incorporating these changes would prove useful. The following outline is based mainly on Crowson (1960, 1964, 1966, 1967, 1971, 1972, 1973) and Crowson and Viedma (1964). For characters used on classification see Viedma (1972) and for family synonyms Abdullah (1969). Major features of this conspectus are the rejection of the two sections of Adephaga (Geadephaga and Hydradephaga), based on Bell (1966) and the new sequence of Heteromera, based mainly on Crowson (1966), with adaptations. -
Laboratory Methods for Rearing Soil Beetles (Coleoptera)
ZOOLOGICA Bolesław Burakowski Laboratory methods for rearing soil beetles (Coleoptera) Polska Akademia Nauk Muzeum i Instytut Zoologii Warszawa 1993 http://rcin.org.pl POLSKA AKADEMIA NAUK MUZEUM I INSTYTUT ZOOLOGII MEMORABILIA ZOOLOGICA 46 Bolesław Burakowski Laboratory methods for rearing soil beetles (Coleopter a) WARSZAWA 1993 http://rcin.org.pl MEMORABILIA ZOOLOGICA, 46, 1993 World-list abbreviation: Memorabilia Zool. EDITORIAL STAFF Editor — in — chief — Bohdan Pisarski Asistant editor — Wojciech Czechowski Secretary — Katarzyna Cholewicka-Wiśniewska Editor of the volume — Wojciech Czechowski Publisher Muzeum i Instytut Zoologii PAN ul. Wilcza 64, 00-679 Warszawa PL ISSN 0076-6372 ISBN 83-85192-12-3 © Copyright by Muzeum i Instytut Zoologii PAN Warszawa 1993 Nakład 1000 egz. Ark. wyd. 5,5. Ark. druk 4 Druk: Zakład Poligraficzno-Wydawniczy „StangraF’ http://rcin.org.pl Bolesław Bu r a k o w sk i Laboratory methods for rearing soil beetles ( Coleoptera) INTRODUCTION Beetles are the most numerous group of insects; nearly 300,000 species have been described up till now, and about 6,000 of these occur in Poland. The morphological variability and different modes of life result from beetle ability to adapt to all kinds of habitats. Terrestrial and soil living forms dominate. Beetles undergo a complete metamorphosis and most species live in soil during at least one of the stages. They include predators, herbivores, parasites and sapro- phagans, playing a fairly significant role in nature and in man’s economy. Our knowledge of beetles, even of the common species, is insufficient. In spite of the fact that the beetle fauna of Central Europe has been studied relatively well, the knowledge accumulated is generally limited to the adults, while the immature stages have not been adequately studied. -
World Catalogue of Haliplidae – Corrections and Additions, 2 (HALIPLIDAE) 25
©Wiener Coleopterologenverein (WCV), download unter www.biologiezentrum.at 22 Koleopt. Rdsch. 83 (2013) Koleopterologische Rundschau 83 23–34 Wien, September 2013 Laccophilus sordidus SHARP, 1882 First record from Iran. This is the most northern limit of the distribution of the species. It was World Catalogue of Haliplidae – previously known from Egypt, Saudi Arabia, and Yemen. corrections and additions, 2 Acknowledgements (Coleoptera: Haliplidae) We are grateful to Dr. H. Fery (Berlin) for his help with identification of some specimens and B.J. van VONDEL Dr. J. Hájek (Prague) for his help with literature. The deputy of research, Shahid Chamran University of Ahvaz is thanked for financial support of Abstract the project (# 101). A second series of corrections and additions to the World Catalogue of Haliplidae (Coleoptera) published as part of Volume 7 of the World Catalogue of insect series (VONDEL 2005) are presented. References All new taxa, new synonymies and new data on distribution are summarized. The number of species of the family Haliplidae is now 240, distributed in five genera. DARILMAZ, M.C., İNCEKARA, Ü. & VAFAEI, R. 2013: Contribution to the knowledge of Iranian Aquatic Adephaga (Coleoptera). – Spixiana 36 (1): 149–152. Key words: Coleoptera, Haliplidae, World Catalogue, additions, corrections. FERY, H. & HOSSEINIE, S.O. 1998: A taxonomic revision of Deronectes Sharp, 1882 (Insecta: Coleoptera: Dytiscidae) (part II). – Annalen des Naturhistorischen Museums Wien B 100: 219–290. Introduction FERY, H., PEŠIĆ, V. & DARVISHZADEH, I. 2012: Faunistic notes on some Hydradephaga from the Khuzestan, Hormozgan and Sistan & Baluchestan provinces in Iran, with descriptive notes on the The World Catalogue of the beetle family Haliplidae (VONDEL 2005) was published on June 24, female of Glareadessus franzi Wewalka & Biström 1998 (Coleoptera, Dytiscidae, Noteridae). -
An Inventory of Nepal's Insects
An Inventory of Nepal's Insects Volume III (Hemiptera, Hymenoptera, Coleoptera & Diptera) V. K. Thapa An Inventory of Nepal's Insects Volume III (Hemiptera, Hymenoptera, Coleoptera& Diptera) V.K. Thapa IUCN-The World Conservation Union 2000 Published by: IUCN Nepal Copyright: 2000. IUCN Nepal The role of the Swiss Agency for Development and Cooperation (SDC) in supporting the IUCN Nepal is gratefully acknowledged. The material in this publication may be reproduced in whole or in part and in any form for education or non-profit uses, without special permission from the copyright holder, provided acknowledgement of the source is made. IUCN Nepal would appreciate receiving a copy of any publication, which uses this publication as a source. No use of this publication may be made for resale or other commercial purposes without prior written permission of IUCN Nepal. Citation: Thapa, V.K., 2000. An Inventory of Nepal's Insects, Vol. III. IUCN Nepal, Kathmandu, xi + 475 pp. Data Processing and Design: Rabin Shrestha and Kanhaiya L. Shrestha Cover Art: From left to right: Shield bug ( Poecilocoris nepalensis), June beetle (Popilla nasuta) and Ichneumon wasp (Ichneumonidae) respectively. Source: Ms. Astrid Bjornsen, Insects of Nepal's Mid Hills poster, IUCN Nepal. ISBN: 92-9144-049 -3 Available from: IUCN Nepal P.O. Box 3923 Kathmandu, Nepal IUCN Nepal Biodiversity Publication Series aims to publish scientific information on biodiversity wealth of Nepal. Publication will appear as and when information are available and ready to publish. List of publications thus far: Series 1: An Inventory of Nepal's Insects, Vol. I. Series 2: The Rattans of Nepal. -
Catalogue of Palearctic Hydrophiloidea (Coleoptera)
Przewoźny M. 2018: Catalogue of Palearctic Hydrophiloidea (Coleoptera). Internet version 2018-01-01 Catalogue of Palearctic Hydrophiloidea (Coleoptera) Created by Robert B. Angus, The Natural History Museum, United Kingdom, Martin Fikáček, National Museum, Czech Republic, Elio Gentili, Italy, Fenglong Jia, Sun-Yatsen University, China, Yûsuke N. Minoshima, Kitakyushu Museum Of Natural History And Human History, Japan, Alexander Prokin, Russian Academy Of Sciences, Russia, Marek Przewoźny, Adam Mickiewicz University, Poland, Sergey K. Ryndevich, Baranivichi State University, Belarus; published as chapters in the Catalogue of Palaearctic Coleoptera: Fikáček M., Ryndevich S.K. 2015: Epimetopidae Zaitzev, 1908, p. 33. In. Löbl I & Löbl D. (eds.): Catalogue of Palaearctic Coleoptera. Volume 2. Hydrophiloidea – Staphylinoidea. Revised and Updated Edition. Brill, Leiden Boston, 1702 pp. Fikáček M. 2015: Spercheidae Erichson, 1837, pp. 36-37. In. Löbl I & Löbl D. (eds.): Catalogue of Palaearctic Coleoptera. Volume 2. Hydrophiloidea – Staphylinoidea. Revised and Updated Edition. Brill, Leiden Boston, 1702 pp. Fikáček M., Przewoźny M. 2015: Georissidae Laporte, 1840, pp. 33-35. In. Löbl I & Löbl D. (eds.): Catalogue of Palaearctic Coleoptera. Volume 2. Hydrophiloidea – Staphylinoidea. Revised and Updated Edition. Brill, Leiden Boston, 1702 pp. Fikáček M., Angus R.B., Gentili E., Jia F., Minoshima Y.N., Prokin A., Przewoźny M., Ryndevich S.K. 2015: Helophoridae Leach, 1815, Hydrochidae Thomson, 1859, Hydrophilidae, pp. 25-33, 35-36, 37-76. In. Löbl I & Löbl D. (eds.): Catalogue of Palaearctic Coleoptera. Volume 2. Hydrophiloidea – Staphylinoidea. Revised and Updated Edition. Brill, Leiden Boston, 1702 pp. Przewoźny M. 2018: Catalogue of Palearctic Hydrophiloidea (Coleoptera). Internet version 2018-01-01 updated and modified by Marek Przewoźny <[email protected]>, Adam Mickiewicz University, Poland Update distributed as a PDF file via Internet; version 2018-01-01. -
The Field Museum 2011 Annual Report to the Board of Trustees
THE FIELD MUSEUM 2011 ANNUAL REPORT TO THE BOARD OF TRUSTEES COLLECTIONS AND RESEARCH Office of Collections and Research, The Field Museum 1400 South Lake Shore Drive Chicago, IL 60605-2496 USA Phone (312) 665-7811 Fax (312) 665-7806 http://www.fieldmuseum.org - This Report Printed on Recycled Paper - 1 CONTENTS 2011 Annual Report ..................................................................................................................................... 3 Collections and Research Committee of the Board of Trustees ................................................................. 8 Encyclopedia of Life Committee and Repatriation Committee of the Board of Trustees ............................ 9 Staff List ...................................................................................................................................................... 10 Publications ................................................................................................................................................. 15 Active Grants .............................................................................................................................................. 39 Conferences, Symposia, Workshops and Invited Lectures ........................................................................ 56 Museum and Public Service ...................................................................................................................... 64 Fieldwork and Research Travel ............................................................................................................... -
Ecological Investigations on Hydrophilidae and Helophoridae (Coleoptera) Specimens Gathered from Several Water Bodies of Western Turkey
Knowl. Manag. Aquat. Ecosyst. 2017, 418, 43 Knowledge & © A. Akünal and E.G. Aslan, Published by EDP Sciences 2017 Management of Aquatic DOI: 10.1051/kmae/2017035 Ecosystems www.kmae-journal.org Journal fully supported by Onema RESEARCH PAPER Ecological investigations on Hydrophilidae and Helophoridae (Coleoptera) specimens gathered from several water bodies of Western Turkey Ayçin Akünal1,* and Ebru Gül Aslan2 1 Department of Emergency and Disaster Management, Beysehir Ali Akkanat School of Applied Sciences, Selçuk University, 42700 Beysehir/Konya, Turkey 2 Department of Biology, Faculty of Arts and Sciences, Süleyman Demirel University, 32260 Isparta, Turkey Abstract – The aim of this study is to present environmental variables which were effective on habitat preferences of Hydrophilidae and Helophoridae species found in western region of Turkey. The surveys were conducted in İzmir, Manisa and Aydın provinces and specimens were collected regularly during the years 2013 and 2014. Totally, 30 species classified in 8 genera of the two families were recorded. Physicochemical parameters including temperature, dissolved oxygen, pH, electrical conductivity and salinity were measured from 99 different aquatic sites. The relationships between the species and the effect (s) of the mentioned parameters on the presence or absence of the beetles were evaluated by various statistical tests. According to the results; electrical conductivity, salinity and temperature are the main water parameters associated with aquatic beetle distribution. Pearson’s correlation analysis coefficient between the salinity and electrical conductivity parameters was calculated as 0.965 which is statistically significant (p < 0.01). The relationships between environmental variables and the determined species were also evaluated with canonical correspondence analysis (CCA), and the distributions of species according to these variables were presented by using a CCA plot.