A Review of Himalcercyon Stat. Nov
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E
Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E. Carlton Louisiana State Arthropod Museum Coleoptera Families Everyone Should Know (Checklist) Suborder Adephaga Suborder Polyphaga, cont. •Carabidae Superfamily Scarabaeoidea •Dytiscidae •Lucanidae •Gyrinidae •Passalidae Suborder Polyphaga •Scarabaeidae Superfamily Staphylinoidea Superfamily Buprestoidea •Ptiliidae •Buprestidae •Silphidae Superfamily Byrroidea •Staphylinidae •Heteroceridae Superfamily Hydrophiloidea •Dryopidae •Hydrophilidae •Elmidae •Histeridae Superfamily Elateroidea •Elateridae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Suborder Polyphaga, cont. Superfamily Cantharoidea Superfamily Cucujoidea •Lycidae •Nitidulidae •Cantharidae •Silvanidae •Lampyridae •Cucujidae Superfamily Bostrichoidea •Erotylidae •Dermestidae •Coccinellidae Bostrichidae Superfamily Tenebrionoidea •Anobiidae •Tenebrionidae Superfamily Cleroidea •Mordellidae •Cleridae •Meloidae •Anthicidae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Superfamily Chrysomeloidea •Chrysomelidae •Cerambycidae Superfamily Curculionoidea •Brentidae •Curculionidae Total: 35 families of 131 in the U.S. Suborder Adephaga Family Carabidae “Ground and Tiger Beetles” Terrestrial predators or herbivores (few). 2600 N. A. spp. Suborder Adephaga Family Dytiscidae “Predacious diving beetles” Adults and larvae aquatic predators. 500 N. A. spp. Suborder Adephaga Family Gyrindae “Whirligig beetles” Aquatic, on water -
Review of the Chinese Species of the Genus Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae: Sphaeridiinae)
Zootaxa 3887 (3): 354–376 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3887.3.4 http://zoobank.org/urn:lsid:zoobank.org:pub:ABD688ED-D7F6-40F1-8821-0C339293A2A5 Review of the Chinese species of the genus Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae: Sphaeridiinae) FENGLONG JIA1,5, PAUL ASTON2 & MARTIN FIKÁČEK3, 4 1Institute of Entomology, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China. E-mail: [email protected]; [email protected] 22F, 102 Wang Tong, Mui Wo, Lantau, Hong Kong S.A.R., China. E-mail: [email protected] 3Department of Entomology, National Museum, Kunratice 1, CZ-148 00 Praha 4, Czech Republic. E-mail: [email protected] 4Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, CZ-128 44 Praha 2, Czech Republic 5Corresponding author Abstract The Chinese species of the genus Coelostoma Brullé, 1835 are revised and diagnosed. Five new species are described: Coelostoma bifidum sp. nov. (Jiangxi, Guangdong, Hong Kong), C. hajeki sp. nov. (Guangdong, Guangxi), C. hongkon- gense sp. nov. (Hong Kong), C. huangi sp. nov. (Guangxi, Jiangxi), and C. gentilii sp. nov. (Xizang). Coelostoma coomani Orchymont, 1932, C. orbiculare (Fabricius, 1775) and C. vividum Orchymont, 1936 are reported for the first time from Chi- na. Coelostoma sulcatum Pu, 1963, syn. nov. is synonymized with C. stultum (Walker, 1858). Additional faunistic data from China are provided for C. phallicum Orchymont, 1940, C. vagum Orchymont, 1940, C. turnai Hebauer, 2006, C. wui Orchymont, 1940, C. -
Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests. -
Water Beetles
Ireland Red List No. 1 Water beetles Ireland Red List No. 1: Water beetles G.N. Foster1, B.H. Nelson2 & Á. O Connor3 1 3 Eglinton Terrace, Ayr KA7 1JJ 2 Department of Natural Sciences, National Museums Northern Ireland 3 National Parks & Wildlife Service, Department of Environment, Heritage & Local Government Citation: Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 – Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover images from top: Dryops similaris (© Roy Anderson); Gyrinus urinator, Hygrotus decoratus, Berosus signaticollis & Platambus maculatus (all © Jonty Denton) Ireland Red List Series Editors: N. Kingston & F. Marnell © National Parks and Wildlife Service 2009 ISSN 2009‐2016 Red list of Irish Water beetles 2009 ____________________________ CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 1 EXECUTIVE SUMMARY...................................................................................................................................... 2 INTRODUCTION................................................................................................................................................ 3 NOMENCLATURE AND THE IRISH CHECKLIST................................................................................................ 3 COVERAGE ....................................................................................................................................................... -
Dung Beetles: Key to Healthy Pasture? an Overview
Available online at www.worldscientificnews.com WSN 153(2) (2021) 93-123 EISSN 2392-2192 Dung beetles: key to healthy pasture? An overview Sumana Saha1,a, Arghya Biswas1,b, Avirup Ghosh1,c and Dinendra Raychaudhuri2,d 1Post Graduate Department of Zoology, Barasat Government College, 10, K.N.C. Road, Barasat, Kolkata – 7000124, India 2IRDM Faculty Centre, Department of Agricultural Biotechnology, Ramakrishna Mission Vivekananda University, Narendrapur, Kolkata – 700103, India a,b,c,dE-mail address: [email protected], [email protected], [email protected], [email protected] ABSTRACT Dung beetles (Coleoptera: Scarabaeidae) do just what their name suggests: they use the manure, or dung of other animals in some unique ways! Diversity of the coprine members is reflected through the differences in morphology, resource relocation and foraging activity. They use one of the three broad nesting strategies for laying eggs (Dwellers, Rollers, Tunnelers and Kleptocoprids) each with implications for ecological function. These interesting insects fly around in search of manure deposits, or pats from herbivores like cows and elephants. Through manipulating faeces during the feeding process, dung beetles initiate a series of ecosystem functions ranging from secondary seed dispersal to nutrient cycling and parasite suppression. The detritus-feeding beetles play a small but remarkable role in our ecosystem. They feed on manure, use it to provide housing and food for their young, and improve nutrient cycling and soil structure. Many of the functions provide valuable ecosystem services such as biological pest control, soil fertilization. Members of the genus Onthophagus have been widely proposed as an ideal group for biodiversity inventory and monitoring; they satisfy all of the criteria of an ideal focal taxon, and they have already been used in ecological research and biodiversity survey and conservation work in many regions of the world. -
The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al. -
A New Species of the Genus Cyrtonion (Coleoptera: Hydrophilidae: Megasternini) from the Democratic Republic of the Congo
ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 15.viii.2008 Volume 48(1), pp. 27-35 ISSN 0374-1036 A new species of the genus Cyrtonion (Coleoptera: Hydrophilidae: Megasternini) from the Democratic Republic of the Congo Martin FIKÁČEK Department of Entomology, National Museum, Kunratice 1, CZ-148 00 Praha 4, Czech Republic & Charles University in Prague, Faculty of Science, Department of Zoology, Viničná 7, CZ-128 44 Praha 2, Czech Republic; e-mail: mfi [email protected] Abstract. Cyrtonion moto sp. nov. is described from northeastern part of the Democratic Republic of the Congo. The species is compared with the remaining two representatives of the genus, C. ghanense Hansen, 1989 and C. sculpticolle (Régimbart, 1907). Distributions of all three species of the genus Cyrtonion Han- sen, 1989 are mapped and discussed. Key words. Coleoptera, Hydrophilidae, Sphaeridiinae, Megasternini, Cyrtonion, new species, taxonomy, distribution, Afrotropical region Introduction Within the mainland part of the Afrotropical region (i.e. excluding Madagascar, Mascarenes, Seychelles and Cape Verde Islands), the tribe Megasternini is represented by 17 genera conta- ining more than 90 described species (HANSEN 1999, HEBAUER 2006, FIKÁČEK 2007). Among these taxa, the Megasternum group of genera, i.e. the group of genera characterized by large antennal grooves of prosternum reaching laterally pronotal margins, is especially diverse in tropical Africa. This diversity especially concerns the external morphology, which is quite unusual within the otherwise largely externally-uniform representatives of the tribe. Eight genera are presently recognized in Afrotropical region, of which the last three are endemic: Emmidolium Orchymont, 1937, Tectosternum Balfour-Browne, 1958, Megasternum Mulsant, 1844, Pachysternum Motschulsky, 1863, Cryptopleurum Mulsant, 1844, Cyrtonion Hansen, 1989, Cercillum Knisch, 1921, and Pyretus Balfour-Browne, 1950. -
Clade Age and Diversification Rate Variation Explain Disparity in Species Richness Among Water Scavenger Beetle (Hydrophilidae) Lineages
Clade Age and Diversification Rate Variation Explain Disparity in Species Richness among Water Scavenger Beetle (Hydrophilidae) Lineages Devin D. Bloom1,2, Martin Fika´cˇek3,4, Andrew E. Z. Short1,2* 1 Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America, 2 Division of Entomology, Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America, 3 Department of Entomology, National Museum, Prague, Czech Republic, 4 Department of Zoology, Faculty of Sciences, Charles University, Prague, Czech Republic Abstract Explaining the disparity of species richness across the tree of life is one of the great challenges in evolutionary biology. Some lineages are exceptionally species rich, while others are relatively species poor. One explanation for heterogeneity among clade richness is that older clades are more species rich because they have had more time to accrue diversity than younger clades. Alternatively, disparity in species richness may be due to among-lineage diversification rate variation. Here we investigate diversification in water scavenger beetles (Hydrophilidae), which vary in species richness among major lineages by as much as 20 fold. Using a time-calibrated phylogeny and comparative methods, we test for a relationship between clade age and species richness and for shifts in diversification rate in hydrophilids. We detected a single diversification rate increase in Megasternini, a relatively young and species rich clade whose diversity might be explained by the stunning diversity of ecological niches occupied by this clade. We find that Amphiopini, an old clade, is significantly more species poor than expected, possibly due to its restricted geographic range. The remaining lineages show a correlation between species richness and clade age, suggesting that both clade age and variation in diversification rates explain the disparity in species richness in hydrophilids. -
The Evolution and Genomic Basis of Beetle Diversity
The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State -
The Importance of Behavior and Venom System Morphology in Understanding Its Ecology and Evolution
Toxins 2019, 11, 666; doi:10.3390/toxins11110666 S1 of S11 Supplementary Materials: The Diversity of Venom: The Importance of Behavior and Venom System Morphology in Understanding Its Ecology and Evolution Vanessa Schendel, Lachlan D. Rash, Ronald A. Jenner, and Eivind A. B. Undheim Table S1. Independently evolved venomous animal lineages and the primary ecological roles of their venoms. Taxa for which no direct support of their venomous nature could be found are shown in grey font. General Venom System Animal Group Venomous Lineage Primary Role References Morphology Predation, defense, Cnidarians All Nematocysts [1] intraspecific competition Coleoid Posterior and anterior glands, cephalopods, venom injected through salivary Predation [2,3] including octopus papilla. and squid Long duct/venom gland, venom Cone snails and injected through hollow radular Predation, [4] relatives (Conoidea) tooth on proboscis by a distal defense venom pump. Tritons, helmet Two-lobed salivary (venom) Molluscs shells, etc. glands that open through Predation [5] (Tonnoidea) common duct into buccal mass. Dwarf tritons, Single-lobed salivary (venom) including vampire glands that open through Predation [6] snails common duct into buccal mass. (Colubrariidae) Primary and accessory salivary Murex snails (venom) glands that open Predation [7] (Muricidae) through common duct into buccal mass. Proboscis with venom secreting cells, sometimes with stylet to Nemerteans Ribbon worms facilitate venom delivery Predation [8] (Enopla), or pseudocnidae with a potential role in venom delivery. Toxin-producing “lappets” secreting venom into large Blood worms muscular and glandular venom Predation [9] (Glyceridae) reservoir, which is presumably Annelids also involved in venom expulsion. Secretory cells dispersed along Predation, Leeches (Hirudinea) the buccal cavity in jawed [10–12] blood feeding leeches (Arhynchobdellida); Toxins 2019, 11, 666; doi:10.3390/toxins11110666 S2 of S11 presence of two paired salivary glands in jawless leeches (Glossiphoniidae). -
Trichurispora Wellgundis Ng, N
Comp. Parasitol. 75(1), 2008, pp. 82–91 Trichurispora wellgundis n. g., n. sp. (Apicomplexa: Eugregarinida: Hirmocystidae) Parasitizing Adult Water Scavenger Beetles, Tropisternus collaris (Coleoptera: Hydrophilidae) in the Texas Big Thicket 1,3 2 2 R. E. CLOPTON, T. J. COOK, AND J. L. COOK 1 Department of Natural Science, Peru State College, Peru, Nebraska, U.S.A. and 2 Department of Biological Sciences, Sam Houston State University, Huntsville, Texas 77341-2166, U.S.A. ABSTRACT: Trichurispora wellgundis n. g., n. sp. (Apicomplexa: Eugregarinida: Hirmocystidae) is described from the adults of the water scavenger beetle Tropisternus collaris (Coleoptera: Hydrophilidae) collected from B A Steinhagen Lake in the Cherokee Unit of the Big Thicket National Preserve, Tyler County, Texas, U.S.A. Trichurispora is distinguished from known genera of Hirmocystidae by a distinct ‘‘trichurisiform’’ oocyst that is hesperidiform in outline, comprising a fusiform oocyst with shallowly ovoid terminal knobs or caps. Oocyst residua are present but confined to a central fusiform residuum vacuole. Adult and larval hydrophilid beetles represent distinctly different opportunities for parasite colonization and diversification. Gregarines have been reported from both adult and larval hydrophilid beetles, but no species and no genus is reported from both adult and larval hosts. In fact, gregarine taxic richness is often more disparate between adult and larval beetles of the same species than between host beetle species. This is the first report of a septate gregarine from an adult hydrophilid beetle in the Nearctic. KEY WORDS: Apicomplexa, Eugregarinida, Hirmocystidae, Gregarine, Trichurispora wellgundis n. g., n. sp., Didymophyes, Enterocystis hydrophili incertae sedis, Stylocephalus brevirostris incertae sedis, Coleoptera, Hydrophilidae, Tropisternus collaris, Texas, Big Thicket, U.S.A. -
Background Studies for the Interpretation of Urban Archaeological Plant and Animal Remains
Background studies for the interpretation of urban archaeological plant and animal remains Archive report 2 Foul-matter insects in grazed turf soils By H. Kenward Environmental Archaeology Unit University of York Date of original: 30th September 1984 Note: This report has been re-typed and re-formatted, with minor editorial corrections, from a poor original. Some statements which appear less viable in the light of later evidence, e.g. concerning waterside oxytelines in York's background fauna, have been left unchanged. The data appendix has been completely re-formatted and updated. This report was allocated post hoc as Reports from the Environmental Archaeology Unit, University of York 1984/06. HK 14th July 2008. Abstract Death assemblages of insects (mostly Coleoptera) from soil in grazing land have been examined, with special reference to species associated with foul matter and dung. Aphodius species made up a large proportion of the foul-matter component, and other species which generally live in dung in large numbers were relatively rare as corpses. Some of the generalist decomposers together with the foul matter species form a group which would be found together as a living community in dung. These observations are applied to supposed dumps of soil in a Roman well at The Bedern, York, and to some other archaeological samples which may have included grassland soil. It is concluded that in each case the soil probably did develop in a grazed area. 1. Introduction Interpretation of archaeological insect assemblages is based on extrapolation of the habitats and behaviour of species at the present day. However, habitat information alone is insufficient.