Lii N Fi Ff Til Los Alamos

Total Page:16

File Type:pdf, Size:1020Kb

Lii N Fi Ff Til Los Alamos Cottf-fooizd- LA-UR- 9 5-2674 7/tfe: POSSIBILITIES FOR MAGNETIC CONTROL OF FISSION PLASMA PROPULSION f! CO «- & iji •*?? ea u, K 2 I ^5 •§ ~ S" ^3 « so - u c w o SI §?S "1 iff 6 *E St T3 *> Author(s): R. A. Gervrin, R. A. Nebel, Theoretical Division, T-15 3 — SS2lis S M S g 8 D. I. Poston, TSA-12 * a lii c Los Alamos National Laboratory 1 a' "8 E s 2 .!»• (-< CO O 3 C 09 f-i !i S .•8-8 u * h c 4> .3 *5 a i 8 S3 § 8"° n O 35 „ « G d> U V3 "8-S 1§ u o u « « t. Coo s C V i! *"S s Ui *^ if ° >, ° I sz •8"S 5 fi E Submitted to: 31ST AIAA/ASME/SAE/ASEE JOINT PROPULSION CONFERENCE ii *.s.s AND EXHIBIT, JULY 10-12, 1995/San Diego, CA £ E ff til DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED <g$ A ?!S ? 0 f{-' Los Alamos NATIONAL LABORATORY Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Form No. 836 R5 ST 2629 10/91 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. AM A A AIAA 95 - 2903 Possibilities for Magnetic Control of Fission Plasma Propulsion R. A. Gerwin, D. I. Poston, and R. A. Nebel Los Alamos National Laboratory Los Alamos, NM 31 st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit July 10-12,1995/San Diego, CA For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics 370 L'Enfant Promenade, S.W., Washington, D.C. 20024 Possibilities for Magnetic Control of Fission Plasma Propulsion R. A. Gerwin*, D. I. Poston**, and R. A. Nebel* Los Alamos National Laboratory, Los Alamos, New Mexico Abstract Magnetic fusion energy research suggests the use of some magnetoplasma configurations to address certain critical issues in the gas-core fission approach to nuclear-thermal propulsion. The general framework of such an investigation that was outlined in a previous paper is directed here at the spheromak configuration in greater detail. In some unoptimized examples, we explore the compatibility of gas-core fission reactor criticality conditions with the dynamo action needed to non-inductively sustain the spheromak. The Lundquist number S is identified as a figure of merit, and is estimated by modeling to be as large as 100 in near-critical uranium (233U) plasmas of several-meter dimensions diluted with lithium (7Li) when the spheromak power consumption is treated as a constraint; whereas S as small as 200 is observed to be still able to preserve MHD dynamo activity in 3D resistive MHD simulations. Further optimization studies are required to ascertain whether these two values can be made to coincide. Introduction The gas-core fission approach to nuclear thermal propulsion has long attracted interest because the absence of solid structures within the reactor (fuel rods and heat transfer walls) allows higher temperature operation, and concomitantly increased specific impulse from the heated propellant in an inherently high thrust device.1"4 The simplest version of this approach to nuclear-thermal propulsion is illustrated in Fig. 1-a. However, comprehensive self-consistent simulations1 indicated that ideally separate fuel and propellant volumes are subject to dynamical mixing, thereby impeding the smooth flow of propellant to the nozzle and diluting and cooling the fissionable fuel core. Moreover, even a slight rocket acceleration was found to cause the fuel to displace the propellant in the neighborhood of the nozzle, leading to a rapid loss of fuel and a global deterioration of the propellant flow field. To address these critical issues, a general framework has been outlined for exploring the feasibility of magnetic control of gas-core fission plasmas (the fuel) by means of the simplest steady state configurations, namely, magnetic mirrors and spheromaks.5 Theoretical indications were there provided to the effect that magnetic fields can stiffen the fuel-propellant interface against Kelvin - Helmholtz type instabilities, and that, for magnetic mirrors in compact systems, bad-curvature regions that drive Rayleigh - Taylor type instabilities need not occur. Magnetic pressure balance of the core plasma is not feasible for these highly resistive high-pressure plasmas, which must be contained by the propellant or the wall; nevertheless, active magnetic guiding of the plasma-fuel flow was shown to be feasible for moderate field strengths of order 0.1 T, even in highly resistive uranium plasmas of a few eV temperature and including the effect of rocket accelerations of order go. Magnetic guiding can be resistively effected by the cross-field-flow-induced generation of a magnetic body force in the direction opposite to that flow. Active magnetic guiding of deliberately generated parallel flow of the fuel provides a lever with which to mitigate un-controlled fuel- propellant dynamical mixing, for instance if each species were to have its own nozzle, one on axis and one annular; but then magnetic deflection would have to be invoked to recycle the fuel. Assuming that the fuel leaves through a nozzle with choked flow, an example was presented for which a nozzle area ratio to the main reactor chamber of 10'3 implied a magnetic field in the nozzle throat near one megagauss (much more than is needed for magnetic deflection but which is required by the magnetic mirror geometry), as well as the necessity to magnetically recycle several kg/s of fuel. Here, a reduction in the recycling rate by the utilization of thinner nozzles implies the occurrence of multi-megagauss fields in the mirror-nozzle throat. In contrast, a spheromak concept also was suggested there,5 which does not envision a primary outflow of fuel through a nozzle. Instead, it was pointed out that cross-field flow of plasma is subject to a resistive Presented as paper AIAA-95-2903 at the 31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 10-12, 1995, San Diego, CA. Copyright © 1995 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. * Staff Member, Theory Division ** Staff Member, Technology and Safety Assesment Division friction (as described above), leading to the idea of pellet injection of fuel into the toroidal core of the spheromak, with enhanced retention of ionized fuel in the core due to this resistive friction. A schematic diagram of this approach to nuclear-thermal propulsion is displayed in Fig. 1-b. A characteristic slowing- down time for the cross-field flow of resistive plasma was identified and estimated to be quite short and therefore presumably quite effective in retaining the plasma. Of course, gradual depletion of the core and recycling of the fuel ultimately would then have to be dealt with, but apparently at a much lower rate than that associated with the magnetic mirror approach. (This optimistic prospect must be subject to re• examination and possible concept modification in view of the dynamo activity that is needed to non- inductively sustain the spheromak, as discussed below.) A critical issue for the spheromak approach is its non-inductive sustainment under conditions required for fission-reactor criticality. This type of sustainment involves the injection of magnetic helicity along the open magnetic field lines, and is thought to be mediated by the excitation and saturation of global magnetohydrodynamic symmetry-breaking instabilities.6,7 The presence of plasma resistivity, no matter how small, allows the MHD instabilities to cause changes of magnetic field line topology necessary to access states of lower magnetic energy.8 However, resistivity also produces resistive diffusion of the MHD mode structures, weakening their activity; and resistivity is also responsible for unwanted evolution of the mean axisymmetric equilibrium state of the plasma. (Since there can be no steadily applied voltage along the toroidal magnetic axis of the spheromak, its pure axisymmetric embodiment would necessarily decay away in the absence of any other effects.) The latter is combatted by axisymmetric contributions to the Lorentz electric field from second-order products of non-symmetric MHD fluctuations, and this is known as sustainment by the dynamo effect.' The competition between the time scale for MHD activity (nominally a radial Alfven time, r/V^) and a nominal resistive diffusion time scale, ?/D, where D is the resistive diffusivity TJ / JJ.0 , is characterized by the ratio of the latter time to the former. This leads to the Lundquist number, S = rV/D, which is like a magnetic Reynolds number but with the plasma flow velocity replaced by the Alfven velocity. In magnetic fusion energy research, one generally is interested in very large values of 5, lOMO8 , and even higher values. In the case of interest here, however, our concern is that S will be so small as a result of the high plasma resistivity that MHD instabilities will be resistively damped, to the point that they cannot contribute to the dynamo activity needed to counter the rapid resistive decay of the spheromak configuration. In this paper, we shall estimate values of S obtainable from non-optimized examples of gas-core fission propulsion configurations, and shall compare them to the lowest S value observed to produce dynamo sustainment in a non-optimized three-dimensional resistive MHD simulation.
Recommended publications
  • RTM Perspectives June 27, 2016
    Fusion Finally Coming of Age? Manny Frishberg, Contributing Editor RTM Perspectives June 27, 2016 Harnessing nuclear fusion, the force that powers the sun, has been a pipe dream since the first hydrogen bombs were exploded. Fusion promises unlimited clean energy, but the reality has hovered just out of reach, 20 years away, scientists have said for more than six decades—until now. Researchers at Lawrence Livermore Labs, the University of Washington, and private companies like Lockheed Martin and Canada’s General Fusion now foresee the advent of viable, economical fusion energy in as little as 10 years. Powered by new developments in materials, control systems, and other technologies, new reactor designs are testing old theories and finding new ways to create stable, sustainable reactions. Nuclear power plants create energy by breaking apart uranium and plutonium atoms; by contrast, fusion plants squeeze together atoms (typically hydrogen) at temperatures of 1 to 2 million degrees C to form new, heavier elements, essentially creating a miniature star in a bottle. Achieving fusion requires confining plasma to create astronomical levels of pressure and heat. Two approaches to confining the plasma have dominated: magnetic and inertial confinement. Magnetic confinement uses the electrical conductivity of the plasma to contain it with magnetic fields. Inertial confinement fires an array of powerful lasers or particle beams at the hydrogen atoms to pressurize and superheat them. Both approaches require huge amounts of energy, and they struggle to get more energy back out of the system. Most efforts to date have relied on some form of magnetic confinement. For instance, the International Thermonuclear Experimental Reactor, or ITER, being built in southern France by a coalition that includes the European Union, China, India, Japan, South Korea, Russia, and the United States, is a tokamak reactor.
    [Show full text]
  • An Overview of the HIT-SI Research Program and Its Implications for Magnetic Fusion Energy
    An overview of the HIT-SI research program and its implications for magnetic fusion energy Derek Sutherland, Tom Jarboe, and The HIT-SI Research Group University of Washington 36th Annual Fusion Power Associates Meeting – Strategies to Fusion Power December 16-17, 2015, Washington, D.C. Motivation • Spheromaks configurations are attractive for fusion power applications. • Previous spheromak experiments relied on coaxial helicity injection, which precluded good confinement during sustainment. • Fully inductive, non-axisymmetric helicity injection may allow us to overcome the limitations of past spheromak experiments. • Promising experimental results and an attractive reactor vision motivate continued exploration of this possible path to fusion power. Outline • Coaxial helicity injection NSTX and SSPX • Overview of the HIT-SI experiment • Motivating experimental results • Leading theoretical explanation • Reactor vision and comparisons • Conclusions and next steps Coaxial helicity injection (CHI) has been used successfully on NSTX to aid in non-inductive startup Figures: Raman, R., et al., Nucl. Fusion 53 (2013) 073017 • Reducing the need for inductive flux swing in an ST is important due to central solenoid flux-swing limitations. • Biasing the lower divertor plates with ambient magnetic field from coil sets in NSTX allows for the injection of magnetic helicity. • A ST plasma configuration is formed via CHI that is then augmented with other current drive methods to reach desired operating point, reducing or eliminating the need for a central solenoid. • Demonstrated on HIT-II at the University of Washington and successfully scaled to NSTX. Though CHI is useful on startup in NSTX, Cowling’s theorem removes the possibility of a steady-state, axisymmetric dynamo of interest for reactor applications • Cowling* argued that it is impossible to have a steady-state axisymmetric MHD dynamo (sustain current on magnetic axis against resistive dissipation).
    [Show full text]
  • Small-Scale Fusion Tackles Energy, Space Applications
    NEWS FEATURE NEWS FEATURE Small-scalefusiontacklesenergy,spaceapplications Efforts are underway to exploit a strategy that could generate fusion with relative ease. M. Mitchell Waldrop, Science Writer On July 14, 2015, nine years and five billion kilometers Cohen explains, referring to the ionized plasma inside after liftoff, NASA’s New Horizons spacecraft passed the tube that’s emitting the flashes. So there are no the dwarf planet Pluto and its outsized moon Charon actual fusion reactions taking place; that’s not in his at almost 14 kilometers per second—roughly 20 times research plan until the mid-2020s, when he hopes to faster than a rifle bullet. be working with a more advanced prototype at least The images and data that New Horizons pains- three times larger than this one. takingly radioed back to Earth in the weeks that If that hope pans out and his future machine does followed revealed a pair of worlds that were far more indeed produce more greenhouse gas–free fusion en- varied and geologically active than anyone had ergy than it consumes, Cohen and his team will have thought possible. The revelations were breathtak- beaten the standard timetable for fusion by about a ing—and yet tinged with melancholy, because New decade—using a reactor that’s just a tiny fraction of Horizons was almost certain to be both the first and the size and cost of the huge, donut-shaped “tokamak” the last spacecraft to visit this fascinating world in devices that have long devoured most of the research our lifetimes. funding in this field.
    [Show full text]
  • Non-Electric Applications of Fusion
    Non-Electric Applications of Fusion Final Report to FESAC, July 31, 2003 Executive Summary This report examines the possibility of non-electric applications of fusion. In particular, FESAC was asked to consider “whether the Fusion Energy Sciences program should broaden its scope and activities to include non-electric applications of intermediate-term fusion devices.” During this process, FESAC was asked to consider the following questions: • What are the most promising opportunities for using intermediate-term fusion devices to contribute to the Department of Energy missions beyond the production of electricity? • What steps should the program take to incorporate these opportunities into plans for fusion research? • Are there any possible negative impacts to pursuing these opportunities and are there ways to mitigate these possible impacts? The panel adopted the following three criteria to evaluate all of the non-electric applications considered: 1. Will the application be viewed as necessary to solve a "national problem" or will the application be viewed as a solution by the funding entity? 2. What are the technical requirements on fusion imposed by this application with respect to the present state of fusion and the technical requirements imposed by electricity production? What R&D is required to meet these requirements and is it "on the path" to electricity production? 3. What is the competition for this application, and what is the likelihood that fusion can beat it? It is the opinion of this panel that the most promising opportunities for non-electric applications of fusion fall into four categories: 1. Near-Term Applications 2. Transmutation 3. Hydrogen Production 4.
    [Show full text]
  • September 2005
    September 2005 National Nuclear Security Administration’s Lawrence Livermore National Laboratory Also in this issue: • The World’s Most Famous Equation • Analytic Solutions Help Verify Codes • Explaining a Mysterious Astronomical Feature About the Cover For several decades, Laboratory researchers have been examining both magnetic and inertial confi nement methods for generating fusion energy. As the article beginning on p. 4 describes, the magnetized plasmas of Livermoreʼs Sustained Spheromak Physics Experiment (SSPX) represent one possible route to a source of abundant, inexpensive, and environmentally benign energy. Shown on the cover is a high-speed photograph of a spheromak plasma forming inside SSPX. Cover design: Amy Henke Amy design: Cover About the Review Lawrence Livermore National Laboratory is operated by the University of California for the Department of Energyʼs National Nuclear Security Administration. At Livermore, we focus science and technology on ensuring our nationʼs security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published 10 times a year to communicate, to a broad audience, the Laboratoryʼs scientifi c and technological accomplishments in fulfi lling its primary missions. The publicationʼs goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world. Please address any correspondence (including name and address changes) to S&TR, Mail Stop L-664, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551, or telephone (925) 423-3432. Our e-mail address is [email protected]. S&TR is available on the World Wide Web at www.llnl.gov/str.
    [Show full text]
  • System Studies of Fission-Fusion Hybrid Molten Salt Reactors
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2013 SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS Robert D. Woolley University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Nuclear Engineering Commons Recommended Citation Woolley, Robert D., "SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/2628 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Robert D. Woolley entitled "SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Nuclear Engineering. Laurence F. Miller, Major Professor We have read this dissertation and recommend its acceptance: Ronald E. Pevey, Arthur E. Ruggles, Robert M. Counce Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Robert D.
    [Show full text]
  • The Dynomak: an Advanced Fusion Reactor Concept with Imposed-Dynamo Current Drive and Next-Generation Nuclear Power Technologies
    1 FIP/P8-24 The dynomak: An advanced fusion reactor concept with imposed-dynamo current drive and next-generation nuclear power technologies D.A. Sutherland, T.R. Jarboe, K.D. Morgan, G. Marklin and B.A. Nelson University of Washington, Seattle, WA, USA. Corresponding Author: [email protected] Abstract: A high-β spheromak reactor concept called the dynomak has been designed with an overnight capital cost that is competitive with conventional power sources. This reactor concept uti- lizes recently discovered imposed-dynamo current drive (IDCD) and a molten salt (FLiBe) blanket system for first wall cooling, neutron moderation and tritium breeding. Currently available materials and ITER developed cryogenic pumping systems were implemented in this design from the basis of technological feasibility. A tritium breeding ratio (TBR) of greater than 1.1 has been calculated using a Monte Carlo N-Particle (MCNP5) neutron transport simulation. High temperature superconducting tapes (YBCO) were used for the equilibrium coil set, substantially reducing the recirculating power fraction when compared to previous spheromak reactor studies. Using zirconium hydride for neutron shielding, a limiting equilibrium coil lifetime of at least thirty full-power years has been achieved. The primary FLiBe loop was coupled to a supercritical carbon dioxide Brayton cycle due to attractive economics and high thermal efficiencies. With these advancements, an electrical output of 1000 MW from a thermal output of 2486 MW was achieved, yielding an overall plant efficiency of approximately 40%. 1 Introduction An advanced spheromak reactor concept called the dynomak was formulated around the recently discovered imposed-dynamo current drive (IDCD) mechanism on the HIT-SI ex- periment at the University of Washington [1].
    [Show full text]
  • Plasma Physics and Fusion Energy
    This page intentionally left blank PLASMA PHYSICS AND FUSION ENERGY There has been an increase in worldwide interest in fusion research over the last decade due to the recognition that a large number of new, environmentally attractive, sustainable energy sources will be needed during the next century to meet the ever increasing demand for electrical energy. This has led to an international agreement to build a large, $4 billion, reactor-scale device known as the “International Thermonuclear Experimental Reactor” (ITER). Plasma Physics and Fusion Energy is based on a series of lecture notes from graduate courses in plasma physics and fusion energy at MIT. It begins with an overview of world energy needs, current methods of energy generation, and the potential role that fusion may play in the future. It covers energy issues such as fusion power production, power balance, and the design of a simple fusion reactor before discussing the basic plasma physics issues facing the development of fusion power – macroscopic equilibrium and stability, transport, and heating. This book will be of interest to graduate students and researchers in the field of applied physics and nuclear engineering. A large number of problems accumulated over two decades of teaching are included to aid understanding. Jeffrey P. Freidberg is a Professor and previous Head of the Nuclear Science and Engineering Department at MIT. He is also an Associate Director of the Plasma Science and Fusion Center, which is the main fusion research laboratory at MIT. PLASMA PHYSICS AND FUSION ENERGY Jeffrey P. Freidberg Massachusetts Institute of Technology CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521851077 © J.
    [Show full text]
  • Compact Fusion Reactors
    Compact fusion reactors Tomas Lind´en Helsinki Institute of Physics 26.03.2015 Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lockheed Martin and LPP Fusion. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given. CERN Colloquium 26th of March 2015 Tomas Lind´en (HIP) Compact fusion reactors 26.03.2015 1 / 37 Contents Contents 1 Introduction 2 Funding of fusion research 3 Basics of fusion 4 The Polywell reactor 5 Lockheed Martin CFR 6 Dense plasma focus 7 MTF 8 Other fusion concepts or companies 9 Summary Tomas Lind´en (HIP) Compact fusion reactors 26.03.2015 2 / 37 Introduction Introduction Climate disruption ! ! Pollution ! ! ! Extinctions Ecosystem Transformation Population growth and consumption There is no silver bullet to solve these issues, but energy production is "#$%&'$($#!)*&+%&+,+!*&!! central to many of these issues. -.$&'.$&$&/!0,1.&$'23+! Economically practical fusion power 4$(%!",55*6'!"2+'%1+!$&! could contribute significantly to meet +' '7%!89 !)%&',62! the future increased energy :&(*61.'$*&!(*6!;*<$#2!-.=%6+! production demands in a sustainable way.
    [Show full text]
  • The Regulation of Fusion – a Practical and Innovation-Friendly Approach
    The Regulation of Fusion – A Practical and Innovation-Friendly Approach February 2020 Amy C. Roma and Sachin S. Desai AUTHORS Amy C. Roma Sachin S. Desai Partner, Washington, D.C. Senior Associate, Washington, D.C. T +1 202 637 6831 T +1 202 637 3671 [email protected] [email protected] The authors want to sincerely thank the many stakeholders who provided feedback on this paper, and especially William Regan for his invaluable contributions and review of the technical discussion. TABLE OF CONTENTS I. EXECUTIVE SUMMARY 1 II. THE STATE OF FUSION INNOVATION 3 A) An Introduction to Fusion Energy 3 B) A Rapid Growth in Private-Sector Fusion Innovation 4 III. U.S. REGULATION OF ATOMIC ENERGY - NOT ONE SIZE FITS ALL 7 A) The Foundation of U.S. Nuclear Regulation - The Atomic Energy Act and the NRC 7 B) The Atomic Energy Act Embraces Different Regulations for Different Situations 7 1. NRC Frameworks for Different Safety Cases 8 2. Delegation of Regulatory Authority to States 9 IV. THE REGULATION OF FUSION - A PRACTICAL AND INNOVATION- FRIENDLY APPROACH 10 A) Fusion Regulation Comes to the Fore, Raising Key Questions 10 B) A Regulatory Proposal That Recognizes the Safety Case of Fusion and the Needs of Fusion Innovators 11 1. Near-Term: Regulation of Fusion Under the Part 30 Framework is Appropriate Through Development and Demonstration 11 2. Long-Term: The NRC Should Develop an Independent Regulatory Framework for Fusion at Commercial Scale, Not Adopt a Fission Framework 12 V. CONCLUSION 14 1 Hogan Lovells I. EXECUTIVE SUMMARY Fusion, the process that powers the Sun, has long been seen Most fusion technologies are already regulated by the NRC as the “holy grail” of energy production.
    [Show full text]
  • High-Speed Imaging at the Sustained Spheromak Physics Experiment and Magnetic Diagnostics at the Caltech Spheromak Experiment
    INVESTIGATIONS OF SPHEROMAK PLASMA DYNAMICS: HIGH-SPEED IMAGING AT THE SUSTAINED SPHEROMAK PHYSICS EXPERIMENT AND MAGNETIC DIAGNOSTICS AT THE CALTECH SPHEROMAK EXPERIMENT Thesis by Carlos Alejandro Romero Talamás In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2005 (Defended September 28, 2004) ii c 2005 ° Carlos Alejandro Romero Talamás All Rights Reserved iii Acknowledgments I have many persons and organizations to thank for their help and support during my time as a Ph.D. student at Caltech. The list of those I will mention in this section might seem long, but it was thanks to them, and many more whom I might have met only brieflyor through correspondence, that I consider my experience at Caltech unique, unforgettable, and very rewarding. I am grateful to my advisor, Prof. Paul M. Bellan, for his excellent mentoring and careful advice. Whether it was in informal discussions during lunch, or meticulous deriva- tions of equations on the blackboard, Paul always showed an enthusiasm for science that was contagious. This manuscript also benefitted greatly from his help. I will continue to value his advise and friendship beyond my days as a graduate student. Thanks to those that are or have been part of Bellan’s Plasma Physics group during my time here: Steve Pracko, Shreekrishna Tripathi, Settivoine You, Gunsu Yun, Deepak Kumar, Erik Grandstet, Scott Hsu, Freddy Hansen, Eli Jorné, Dave Felt, Frank Cosso, and Eleonora Chetverikova. I thank them for their valuable help and advice when assembling an experiment or analyzing data. Special thanks to Steve for helping me proofread many documents (including parts of this manuscript), and for his patience and wisdom in helping me understand the U.S.
    [Show full text]
  • Advanced Spheromak Fusion Reactor
    UCRL-JC-124363 Advanced Spheromak Fusion Reactor T. Kenneth Fowler University of California at Berkeley '4 6 E. Bickford Hooper Lawrence Livermore National Laboratory This paper was prepared for submittal to 8th International Conference on Emerging Nuclear Energy Systems Obninsk, Russia June 24-28,1996 June 19,1996 This is a preprint of a paper intended for publication in a journal or proceeding Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced.withoutthe permission of the author. DfSTRIBUlION OF TffFS DOCUMENT UNLrMlTEO IS 4? DISCLAIMER This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information. apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark. manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California. and shall not be. used for advertising or product endorsement purposes. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
    [Show full text]