The Endocrine System Glands and Hormones
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
LZP25 Introduction What Is Diabetes? Dephosphorylation by PTP1B
PTP1B Inhibitors for Type 2 Diabetes Treatment Amya Dorsey, Tariq McKinney, Hanh Nquyen, Melissa Anguiano, Brittany Slater, Kelly Birmingham, April Carmicheal, Babatunde Otukaya Advisors: Mr. Mark Zachar & Mr. Justin Spaeth, Messmer High School, Milwaukee WI Mentor: Dr. George Wilkinson, Senior Research Scientist at Concordia University, WI Introduction Dephosphorylation by PTP1B LZP25 People with diabetes have difficulty regulating their blood sugar, leading to the PTP1B affects blood sugar regulation by dephosphorylating the insulin receptor ● The PTP1B inhibiting compound damage of heart, kidney, nerves, and other tissues. Normally, insulin binds to its and reducing its activity. Structurally, PTP1B has a highly positive binding LZP25 has a polar negative charge surface receptor to trigger removal of sugar from the blood. In type II diabetics, pocket which binds to the highly negative phosphate groups on the which can bind to the PTP1B active insulin no longer sufficiently triggers sugar removal from the blood. Protein phosphorylated insulin receptor. A loop in PTP1B called the WPD loop then site pocket tyrosine phosphatase- 1B (PTP1B) affects regulation of blood sugar, because it closes over the phosphate as PTP1b removes it from the insulin receptor. ● LZP25 prevents a part of the enzyme Blocking PTP1B using a drug with LZP25, an inhibiting compound, could dephosphorylates the insulin receptor and reduces its activity. Studying PTP1B can active site from closing, inhibiting increase insulin effectiveness by leaving the phosphorylation groups on the help us understand whether inhibitors of this phosphatase could slow PTP1B insulin receptor longer. Figure 6 dephosphorylation of the insulin receptor, improving the blood sugar regulation in ● Inhibited PTP1B in the insulin pathway Type II diabetics. -
Blood Sugar (Or Glucose Levels in the Blood) Is the Primary Source of Energy for the Body's Cells
Blood sugar (or glucose levels in the blood) is the primary source of energy for the body's cells. Carbohydrates in the food we eat are digested and absorbed as glucose, then transported through the bloodstream, supplying energy to every cell in the body. The body is continually monitoring the levels of glucose (blood sugar) in the blood to ensure that it doesn’t spike too high or dip too low. The goal is to maintaining a condition of internal stability necessary for optimal function. Keeping blood sugar in balance is important for: Energy levels, including optimal sleep Brain health, including moods and mental focus. Hormonal balance Weight loss Optimal health, including the optimal function of every organ Diet is a primary tool for controlling blood sugar, ideally limiting the intake of foods that spike blood sugar, like sugar and carbohydrates. Increasing the intake of healthy fats, and supporting the body’s ability to digest and assimilate fats, can also help curb hunger cravings and sustain blood sugar levels for longer periods of time. Essential Oils that Support the Organs of Blood Sugar Regulation – Pancreas, Liver, Adrenals - can also help to bring the body into optimal balance: Pancreas: The digestive system breaks down the carbohydrates from food into glucose which goes straight into the bloodstream, causing blood sugar concentrations to rise. The pancreas releases insulin to transport the glucose into the cells. As more and more cells receive glucose, blood sugar levels come down to normal again. Excess glucose is stored as glycogen (stored glucose) in the liver and muscles. -
Does Blood Glucose Regulation Require Oxygen
Does Blood Glucose Regulation Require Oxygen garrisonTrial or antiseptic, some imbalances? Forrester neverThenar bobs Virge any complying embalmment! surprisedly, How well-affected he hyphenate is hisPaten clock-watchers when strange very and antagonistically. untrue Johannes Angiotensin II stimulates release when these hormones. Modeling of an electric desalting plant for the preparation of heavy oils. Sugar levels may have my-lived red blood cells than contend with poor glucose regulation. Most widely throughout your blood. If significant numbers of blood vessels are damaged, this can have a negative effect on the functioning of the body. If blood glucose regulation of glycogen stores become acidic juices and require closer look for. To deplete this website, please enable javascript in your browser. This establish a reminder that both timing and matter of carbohydrate ingestion matter. With blood sugar measurements, diabetics could use their watch will stay healthy without finger pricks. Hyperglycemia in turn detrimentally affects the kidneys by damaging glomeruli, ultimately causing microalbuminuria and nephropathy. American journal demonstrate relatively large vapor phase and glucose does regulation of relative lactic acidemia in the oil enters the solute dissolved, hoppeler h j sport sci. Use a medical identification necklace or bracelet and wallet card. Manual for students of chemical science, training in spec. New york times, cookies are the atomic energy is my blood tests to blood oxygen delivery of hyperglycemia, fumed fps and elevated. It is called hyperosmolar coma. Care varies depending on standards of acceptable risk and availability of local resources. Boyle PJ, Schwartz NS, Shah SD, Clutter WE, Cryer PE. Throughout the body, cells use glucose as a source of immediate energy. -
Comparative Study of Variations in Blood Glucose Concentration in Different Phases of Menstrual Cycle in Young Healthy Women Aged 18-22 Years
IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861.Volume 9, Issue 2 (Jul.- Aug. 2013), PP 09-11 www.iosrjournals.org Comparative Study of Variations in Blood Glucose Concentration in Different Phases of Menstrual Cycle in Young Healthy Women Aged 18-22 Years. 1 Y. S. Usha Rani M. D., 2 P. Manjunath D. N. B., 3 R. D. Desai M. D. 1 Lecturer, Department of Physiology, Mysore Medical College &Research Institute, Mysore, Karnataka, India. 2 Consultant Physician, Department of General Medicine, Mysore Medical College &Research Institute , Mysore, Karnataka, India. 3 Professor, Department of Physiology, Navodaya Medical College, Raichur, Karnataka, India. Abstract: Hormones- estrogen and progesterone control the menstrual cycle in women. These hormones also affect the blood glucose. Many women notice fluctuations in blood glucose at certain times in their monthly cycle, such as an increase in blood glucose a few days prior to the beginning of their period and then a decrease once the period begins. This increase usually occurs after ovulation and before menstruation. These changes are caused by the hormones, estrogen and progesterone. When these hormones are at their highest level just before the menstruation, they affect another important hormone, insulin, which may in turn cause the blood glucose to rise. The study was carried out to know whether or not there are any consistent variations in the blood glucose levels in women with different phases of menstrual cycle and to compare the variations in blood glucose levels in different phases of menstruation between individuals. This study included 50 healthy women aged 18-22 years with regular menstrual cycles of 23-32 days who were non smokers and non alcoholics. -
Essential Nutrients for Hormones
Essential Nutrients for Hormones E S S E N T I A L N U T R I E N T S F O R H O R M O N E S Essential Nutrients for Anxiety Folate: Aids in production of neurotransmitters such as dopamine and serotonin, which have a calming effect on mood. InositoI: A neurochemical messenger in the brain, inositol (vitamin B8) affects dopamine and serotonin receptors; Trials confirm it is very effective in reducing panic attacks. Choline: Precursor to the neurotransmitter acetylcholine, which affects focus and mood; Low levels of choline linked to anxiety. Serine: Exerts a calming effect by buffering the adrenal response to physical or emotional stress; Lowered anxiety scores of patients with post traumatic stress disorder. Copper: Integral part of certain chemicals in the brain (such as endorphins) that calm anxious feelings; Anxiety-like behavior may be exacerbated with copper deficiency, Magnesium: Regulates the HPA(hypothalamic-pituitary adrenal) axis which controls physical and psychological reactions to stress; Deficiency can induce anxiety and emotional hyper-reactivity. Selenium: Repletion of selenium to normal levels reduced anxiety scores in clinical trials; Some suggest the mechanism of action is due to its role in key regulatory proteins (selenoproteins). Zinc: Reduces anxiety in clinical trials, possibly due to its interaction with NMDA (N-methyl-D- aspartate) receptors in the brain which regulate mood. Vitamin B6: Cofactor in synthesis of calming neurotransmitters such as GABA(gamma- aminobutyric acid), serotonin and dopamine. Vitamin B3: One of the symptoms of severe B3 deficiency (pellagra) is anxiety; Pharmacological doses of B3 may enhance the calming effects of GABA in the brain; Converts tryptophan to serotonin. -
The Cortisol Connection
cortisol:Layout 1 5/22/07 7:53 PM Page 1 HEALTH / STRESS / WEIGHT LOSS TALBOTT 2nd THE ABCs OF CORTISOL CONTROL ... “Proper diet and regular exercise are still important pieces of the weight-loss puzzle, IT’S A HEALTH REVOLUTION! but they are not the only considerations. We also need to consider the brain (sleep, Edition stress, mood) and hormone levels (cortisol and testosterone) for the most complete approach to truly effective weight loss….The missing pieces of the puzzle for most people are stress control and hormone control….” — from the book So – how can you really lower your stress levels, lose weight, keep it off The Cortisol The Cortisol and protect your health? The first edition of The Cortisol Connection signaled a revolution in our understanding of the effects of stress hormones like cortisol, and explained the relationship between chronic stress, high levels Connection BISAC: HEA019000 — HEALTH & FITNESS / Weight Loss / Weight & FITNESS HEA019000 — HEALTH BISAC: of cortisol and the breakdown of the body’s health reserves. In his carefully designed SENSE Program (Chapter 9), Dr. Shawn Talbott presented simple guidelines for reducing stress, lowering ▲ explains how cortisol, the cortisol levels, improving long-term health and reaching and main- major stress hormone, taining desired weight. SHAWN TALBOTT, PH.D., WHY STRESS contributes to weight gain, FACSM, is trained in Research in the last five years has shown that there is more, depression, osteoporosis and sports medicine, health and this new edition contains 25 percent new material, including management and nutri- MAKES YOU FAT hypertension ➺ new biochemistry research, an updated stress self-test and tional biochemistry. -
Endocrine Pathology Crines… Molecular Signaling Endocrine Pathology Endocrine Pathology
Endocrine Pathology Crines… Molecular signaling Autocrine Paracrine Endocrine Endocrine Pathology Endocrine Pathology Cell signaling system Too much hormone activity Surface receptors Too little hormone activity cAMP and tyrosine kinase system Autoimmune destruction Cytoplasmic receptors Inflammatory destruction Penetrate cell membrane Tumor or vascular destruction Gene activation -> transcription -> translation Space occupying lesions (tumors) Intranuclear receptors Malignant Gene activation -> transcription -> translation Benign 1 Endocrine Pathology Endocrine Pathology All parts of the endocrine system interconnect. All parts of the endocrine system interconnect Pituitary Pathology Too much Too little Especially space occupying lesions The Basics Pituitary Vascular Signaling proteins Anterior are release in hypothalmus. Comes from GI Travel by blood to Controlled by hypothalmus anterior pituitary Cause release of Posterior many activating Hormones orginate hormones further up. System of amplification 2 Pituitary Control Space Occupying Lesions Tumors Embryonic rests Squeeze gland out of existence. Generalized failure Visual field changes Visual Fields Loss of temporal fields. Nasal retina Damage to decusating optic nerve fibers 3 Acromegaly Pituitary Adenomas Rare Growth hormone excess after closing Make nothing or of epiphyses. Prolactin Periosteal bone ACTH, GH,TSH are very rare growth. More often end up with pituitary Diabetes failure. Prognathism Squeeze the daylights out of the -
11 Hormonal Coordination Table 1 the Main Roles of Hormones Produced by the Different Endocrine Glands
B 11 Hormonal ■ B11 Hormonal coordination Table 1 The main roles of hormones produced by the different endocrine glands Endocrine gland Role of the hormones coordination Pituitary Controls growth in children Stimulates the thyroid gland to make thyroxine to control the rate of metabolism 11.1 Principles of hormonal control In women – stimulates the ovaries to produce and release eggs and make the female sex hormone oestrogen Learning objectives In Chapter B 10 you discovered how the nervous system acts to coordinate In men – stimulates the testes to make sperm and the male sex After this topic, you should know: and control your body, reacting in seconds to changes in your internal and hormone testosterone external environments. However, it is very important that your body acts as Thyroid Controls the metabolic rate of the body ● what a hormone is a coordinated whole, not just from minute to minute but from day to day Pancreas Controls the levels of glucose in the blood Figure 2 It isn’t just humans who need ● the main organs of the endocrine and year to year throughout your life. You have a second coordination and hormones – without the hormones from system Adrenal Prepares the body for stressful situations – ‘fight or flight’ response control system to help with this – the endocrine system. their thyroid glands, these tadpoles will ● the role of the pituitary gland. Ovaries Controls the development of the female secondary sexual characteristics and is involved in the menstrual cycle never become frogs The endocrine system Testes Controls the development of the male secondary sexual The endocrine system is made up of glands that secrete chemicals called characteristics and is involved in the production of sperm hormones directly into the bloodstream. -
BLOOD SUGAR SUPPORT Balanse Is a Natural and Synergistic Formula for Maintaining Secrete Glucagon, a Hormone That Triggers the Release of Balanced Blood Sugar
*Provides Key Nutrients for Blood Sugar *Helps Maintain Healthy Blood Sugar Levels *Regulation Supports Normal Cellular Metabolism BLOOD SUGAR SUPPORT balanSE is a natural and synergistic formula for maintaining secrete glucagon, a hormone that triggers the release of balanced blood sugar. Through enhanced signaling stored glucose (glycogen) from the liver and skeletal muscles. at the cellular level, balanSE's blend of natural extracts Conversely, when blood sugar levels are elevated, beta cells in and vitamins support healthy blood glucose levels. the Islets of Langerhans secrete the hormone insulin. Insulin balanSE's unique and effective formulation contains five causes liver cells, muscle cells and fat cells to take up glucose ingredients provided at targeted doses for maximum from the bloodstream. The delicate balance of blood sugar efficacy. Alpha lipoic acid (ALA) is a potent antioxidant that levels is crucial for regulating the body’s production of energy. supports insulin regulation, glucose utilization, and Micronutrients such as chromium, biotin and vanadyl sulfate cellular metabolism. Cinnulin®, a patented 20:1 are required to support enzymatic reactions and cellular aqueous cinnamon extract, supports both balanced signaling systems that maintain the body’s homeostasis. glucose metabolism and healthy blood lipid levels. Diaxinol’s blend of ingredients helps support the body’s Chromium is added to support glucose tolerance factor glucose and lipid-regulating mechanisms in order to help (GTF) production, a critical component -
Endocrine System with Special Reference to Thyroid Gland
Odisha Review December - 2012 Endocrine System With Special Reference to Thyroid Gland Soma Mishra Endocrine system consisting of a group of ductless glands viz. pituitary, thyroid, parathyroid, pineal, thymus, gonads, pancreas, adrenal etc. plays a very vital role in governing human behavior. Thyroid is one of the most important glands that control body’s metabolism and calcium level. It secretes iodothyronines that are (tri-iodo- thyronine, thyroxine) and calcitonin. Its secretion is mainly regulated by TRH (thyrotropin releasing hormone) and TSH (thyroid stimulating hormone). It helps in growth (physical, sexual, mental) – development- metamorphosis and calorigenesis- metabolism. The status of thyroid gland may be Euthyroid or Hypothyroid or Hyperthyroid. Hypothyroidism includes cretinism in children and myxoedema in adults. Common causes of hyperthyroid state are Grave’s disease, multinodular goiter, thyroiditis, etc. Any enlargement of thyroid gland, regardless of cause, is called goiter. Some common investigations for Introduction thyroid diseases are estimation of serum T3, T4 The endocrine system or hormonal system and TSH, cholesterol, radioiodine uptake, thyroid is a complex system composed of a group of imaging, etc. Common drug used in ductless glands known as endocrine glands that hypothyroidism is eltroxin, hyperthyroidism is pour their secretions i.e. hormones directly into carbimazole and iodine supplementation in goiter. blood for passage to different body organs known This paper presents a full picture of thyroid gland, as target organs in order to control their its functioning, disorders, and treatments which is functioning, metabolism, cell permeability, growth, very significant for human survival. differentiation and stress conditions. 54 December - 2012 Odisha Review The endocrine system includes the Diseases of the endocrine system result pituitary gland, thyroid gland, parathyroid glands, from too much or too little hormone secretion or adrenal gland, pancreas, ovaries and testes. -
Blood Sugar Saga (PDF, 198
Knowledge Through Entertainment Designed by Groupe-Dejour.de BLOOD SUGAR SAGA KEY OBJECTIVES CONNECTION TO SDGS 1. After this activity, students should be able to: 2. Explain that the hormones inform our body what to do or carry out bodily functions. 3. Describe how hormones and receptors work together. INTRODUCTION The endocrine system works together with the nervous system to influence many aspects of TOPICS human behavior including growth, reproduction and metabolism. The nervous system uses neurotransmitters as its chemical signals, and the endocrine system uses hormones. Relating Coordination and the Endocrine System both the systems simultaneously, it is known that there are some hormones that also act as CROSS LINKS neurotransmitters and are responsible for the regulation of emotions. For example, Oxyto- cin, Dopamine, Epinephrine/Norepinephrine, Serotonin, GABA, etc. On the other hand, the The nervous and reproductive system of the endocrine system plays a vital role in controlling the physiological processes of our body body through its hormones that are Thyroid, Estrogen, Growth Hormone, and others. KEYWORDS GUIDING QUESTIONS • Receptor: Cell or group of cells that receives 1. What are some of the changes our bodies face each day ? stimuli (sense organ). 2. How do our bodies and bodily systems respond - why is it important to react? • Hormone: A molecule released by a cell or a 3. What types of reactions can you think of ( they might suggest behavioural chan- gland in one part of the body that sends out ges, nervous reflexes, some may identify hormonal reactions). messages affecting cells in other parts of the organism. 4. -
Human Regulation
Human Regulation Coordination and Control Regulation in Humans • Controlled by 2 systems – Nervous System - electrical – Endocrine System – chemical • Both systems respond to and send messages throughout the body Human Nervous System Central and Peripheral A General Sense… An Overview of the Nervous System: Peripheral Nervous Central Nervous System System -Brain -Spinal Cord Sensory Neurons Motor Neurons -carry messages -carry signals towards spinal cord away from CNS from sensory receptors Somatic System: Autonomic System: Voluntary Nerves Visceral, Involuntary --neurons control --heart, blood vessels, skeletal muscles digestive organs, smooth muscle Sympathetic Division --“fight or flight” Parasympathetic --activated by stress Division: --Routine Nervous System Cells • Called neurons • Neurons have long axons that enable them to transmit signals. Many neurons together are called a nerve. • Each nerve has a dorsal root (info coming into the CNS) and a ventral root (info going out from CNS to body). Anatomy of a Neuron • Cell body – main part • Dendrite – receives action potential (stimulation) from other neurons • Axon – branches from cell body, where the action potential occurs • Axon terminal – end of an axon • Myelin sheath – lipid layer for protection over neurons that allows for increase in speed of signal transmission; made by Schwann cells • Nodes of Ranvier – gaps in myelin sheath along the axon, where most Na+ pumps are located • Synaptic Cleft – gap between neurons; between the axon terminal of 1 neuron and the dendrite of a 2nd neuron Anatomy of a Neuron Central Nervous System (CNS) BRAIN • About 1.4 kg, 2% of body weight • About 100 billion neurons • 12 pairs of cranial nerves are connected to the human brain – Example: Pupil reflex in response to bright light, to avoid damage to retina.