Oroville Dam Joint Intervention
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Central Valley Project Overview July 2013 Central Valley of California
Central Valley Project Overview July 2013 Central Valley of California TRINITY DAM FOLSOM DAM LV SL Hydrologic Constraints • Majority of water supply in the north • Most of the precipitation is in the winter/spring • Majority of demand in the south • Most of that demand is in the summer Geographic Constraints Sacramento/San Joaquin Delta Avg Annual Inflow in MAF (Billion Cu Meters) (5.3) 4.3 (1.7) 1.4 (1.1) 0.9 21.2 (26.2) Sacramento Delta Precip Eastside Streams San Joaquin California Water Projects • State Water Project • Central Valley Project • Local Water Projects Trinity CVP Shasta Major Storage Folsom Facilities New Melones Friant San Luis Trinity CVP Shasta Conveyance Folsom Facilities New Melones Friant San Luis CVP Features Summary • 18 Dams and Reservoirs • 500 Miles (800 Kilometers) of Canals • 11 Powerplants • 10 Pumping Plants • 20 Percent of State’s Developed Water Supply (about 7 million acre-feet, 8.6 billion cu meters) • 30 Percent of the State’s Agricultural Supply (about 3 mil acres of farm land, 1.2 mil hectares) • 13 Percent of State’s M&I Supply (about 2 million people served) CVP Authorized Purposes • Flood Control • River Regulation (Navigation) • Fish and Wildlife Needs • Municipal & Agricultural Water Supplies • Power Generation • Recreation TRINITY CVP - SWP FEATURES LEWISTON SHASTA SPRING CREEK POWERPLANT CARR POWERPLANT TINITY RIVER WHISKEYTOWN OROVILLE (SWP) TO SAN FRANCISCO BAY DELTA FOLSOM BANKS PP (SWP) JONES PP NEW MELONES O’NEILL TO SAN FELIPE SAN LUIS FRIANT TRINITY CVP - SWP FEATURES LEWISTON SHASTA -
Two-Dimensional Hydraulic Model of Folsom Dam
Michael Pantell, E.I.T. Peterson Brustad Inc. • Model Folsom Dam Flood Scenarios • During Probable Maximum Flood (PMF) • Varying Folsom Dam Outflows • Multiple Breach Locations and Methods • Results • Floodplain Depths • Mortality • Property Damage • Why? • Information not Available to public • To Obtain Masters Degree Built in 1956 Owned by USBR Storage Approx. 1 Mil Ac-ft 12 structures Concrete Main dam Earthen 2 Wing Dams 1 Auxiliary Dam Reference: USBR “Folsom Dam Facility Map” 8 Dikes Sacramento Folsom River Reservoir Sacramento American River Probable Maximum Flood American River 1000000 900000 Peak ≈ 900,000 cfs Basin 800000 700000 PMF 600000 ) cfs Developed by 500000 Flow ( USACE 400000 300000 Project Design 200000 Flood 100000 0 0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 Approx. 25,000 Time (hours) year event Auxiliary Spillway Powerhouse Folsom Dam Flow = 6900 cfs 8 Tainter Gates 5- Main 3- Emergency Auxiliary Spillway Designed to PMF event Dam Outflow 500 PMF Event 490 Overtopping 480 Elevation 470 460 450 440 430 420 410 400 Elevation (NAVD88 feet) Elevation 390 380 370 360 350 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000 550000 600000 650000 700000 750000 800000 850000 900000 950000 1000000 Outflow (CFS) Without Spillway With Spillway Mechanisms Overtopping Piping Earthquake Etc Right Wing Dam Northern Breach Mormon Auxiliary Dam Southern Breach Tallest and longest earthen structures North Earthen structure South Earthen structure LargerMacDonald Breach Von Thun = Longer & MacDonald Formation Von TimeThun & ∝ MacDonald, et. al.et. al. Gillette et. al. Gillette Large Breach Width Long- ft Formation3047 Time 374 3916 331 Von Thun & Gillete Height Small- ft Breach 47 47 76 76 Short Formation Time Formation 4.4 0.8 4.1 0.7 Time (hrs) HEC RAS 5.0 2D Mesh 150 m x 150 m Terrain CVFED 1 m resolution Manning’s n Based on CVFED Land Use Jonkman et. -
News Release
CALIFORNIA DEPARTMENT OF PARKS AND RECREATION Divisions of Boating and Waterways, Historic Preservation and Off-Highway Vehicles News Release For Immediate Release Contact: Apr. 5, 2017 Aaron Wright Sector Superintendent [email protected] (530) 538-2200 Summer Recreation at Lake Oroville State Recreation Area OROVILLE, Calif. -- The emergency effort to repair the Lake Oroville spillways will not interfere with most outdoor recreation this summer at the lake, and with the exception of the Spillway Boat Launch Ramp, all boat launch ramps are open, announced California State Parks (DPR) and the Department of Water Resources. All campgrounds also are open and floating campsites are back on the lake and available for rental. Some areas near the dam will continue to be off-limits to visitors as crews work to repair or replace spillways damaged in February during high runoff. Outdoor activities available at Lake Oroville this summer include: Campgrounds: All campgrounds are now open with site-specific reservations available at Bidwell Canyon, Loafer Creek and Lime Saddle. Campers without reservations are still welcome on a day-to-day basis to any campsites that have not been previously reserved. Campground showers have been equipped with token machines. Each site will have a unique, collectable token which can also be used at other participating state parks. Trails: Lake Oroville has a number of trails for hiking, biking and equestrian use. Trails around the Diversion Pool and Hyatt Power Plant likely will be closed throughout the summer, although DPR may make changes to other trails to accommodate more hikers and help compensate for the closures. -
Folsom Dam Joint Federal Project
-BUREAU OF - RECLAMATION Folsom Dam Joint Federal Project Background Folsom Dam was authorized in 1944 as a 355,000 acre-foot flood control unit and then reauthorized in 1949 as an almost 1 million acre-foot multiple-purpose facility. The U.S. Army Corps of Engineers (Corps) completed construction in 1956 and then transferred the dam to the Bureau of Reclamation for coordinated operation as an integral part of the federal Central Valley Project. Folsom Dam regulates flows in the American River for flood control, and releases from Folsom Reservoir are used for municipal and industrial water supply, agricultural water supply, power, fish and wildlife management, recreation, navigation and water quality purposes. Recreation at Folsom Reservoir is managed by the California Department of Parks and Recreation under an agreement with Reclamation. The Folsom Facility Managed by the Central California Area Office (CCAO), the Folsom Facility comprises Folsom Dam and Reservoir, left and right earthfill wing dams, Mormon Island Auxiliary Dam and eight earthfill dikes that protect the surrounding communities and the cities of Folsom and Granite Bay. The Sacramento metropolitan area sits in a valley at the confluence of the American and Sacramento Rivers; the valley is a huge floodplain which has flooded countless times over the centuries, and Folsom Dam is the area’s key flood control structure. The Folsom Dam spillway is divided into eight sections, each controlled by a 42-by 50-foot radial gate. The spillway capacity is 567,000 cubic feet per second. Reclamation’s Safety of Dams Program Under the Safety of Dams Program, Reclamation is working to reduce hydrologic (flood), seismic (earthquake) and static (seepage) risks at the Folsom Facility. -
System Reoperation Study
System Reoperation Study Phase III Report: Assessment of Reoperation Strategies California Department of Water Resources August 2017 System Reoperation Study Phase III Report This page is intentionally left blank. August 2017 | 2 Table of Contents Chapter 1. Introduction .......................................................................................................................................................................................1 -1 1.1 Study Authorization ....................................................................................................................................................................................1 -1 1.2 Study Area ..................................................................................................................................................................................................1 -2 1.3 Planning Principles .....................................................................................................................................................................................1 -4 1.4 Related Studies and Programs...................................................................................................................................................................1 -4 1.5 Uncertainties in Future Conditions ............................................................................................................................................................. 1-6 1.5.1 Climate Change ..........................................................................................................................................................................1 -
Insights Into the Oroville Dam 2017 Spillway Incident
geosciences Communication Insights into the Oroville Dam 2017 Spillway Incident Aristotelis Koskinas 1, Aristoteles Tegos 1,2,*, Penelope Tsira 1, Panayiotis Dimitriadis 1 , Theano Iliopoulou 1, Panos Papanicolaou 1, Demetris Koutsoyiannis 1 and Tracey Williamson 3 1 Department of Water Resources and Environmental Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou, GR-15780 Zographou Athens, Greece; [email protected] (A.K.); [email protected] (P.T.); [email protected] (P.D.); [email protected] (T.I.); [email protected] (P.P.); [email protected] (D.K.) 2 Arup Group Limited, 50 Ringsend Rd, Grand Canal Dock, D04 T6X0 Dublin 4, Ireland 3 Arup, 4 Pierhead Street, Cardiff CF10 4QP, UK; [email protected] * Correspondence: [email protected] Received: 9 December 2018; Accepted: 7 January 2019; Published: 11 January 2019 Abstract: In February 2017, a failure occurring in Oroville Dam’s main spillway risked causing severe damages downstream. A unique aspect of this incident was the fact that it happened during a flood scenario well within its design and operational procedures, prompting research into its causes and determining methods to prevent similar events from reoccurring. In this study, a hydroclimatic analysis of Oroville Dam’s catchment is conducted, along with a review of related design and operational manuals. The data available allows for the comparison of older flood-frequency analyses to new alternative methods proposed in this paper and relevant literature. Based on summary characteristics -
Sacramento River Flood Control System
A p pp pr ro x im a te ly 5 0 M il Sacramento River le es Shasta Dam and Lake ek s rre N Operating Agency: USBR C o rt rr reek th Dam Elevation: 1,077.5 ft llde Cre 70 I E eer GrossMoulton Pool Area: 29,500 Weir ac AB D Gross Pool Capacity: 4,552,000 ac-ft Flood Control System Medford !( OREGON IDAHOIDAHO l l a a n n a a C C !( Redding kk ee PLUMAS CO a e a s rr s u C u s l l Reno s o !( ome o 99 h C AB Th C NEVADA - - ^_ a a Sacramento m TEHAMA CO aa hh ee !( TT San Francisco !( Fresno Las Vegas !( kk ee e e !( rr Bakersfield 5 CC %&'( PACIFIC oo 5 ! Los Angeles cc !( S ii OCEAN a hh c CC r a S to m San Diego on gg !( ny ii en C BB re kk ee ee k t ee Black Butte o rr C Reservoir R i dd 70 v uu Paradise AB Oroville Dam - Lake Oroville Hamilton e M Operating Agency: CA Dept of Water Resources r Dam Elevation: 922 ft City Chico Gross Pool Area: 15,800 ac Gross Pool Capacity: 3,538,000 ac-ft M & T Overflow Area Black Butte Dam and Lake Operating Agency: USACE Dam Elevation: 515 ft Tisdale Weir Gross Pool Area: 4,378 ac 3 B's GrossMoulton Pool Capacity: 136,193Weir ac-ft Overflow Area BUTTE CO New Bullards Bar Dam and Lake Operating Agency: Yuba County Water Agency Dam Elevation: 1965 ft Gross Pool Area: 4,790 ac Goose Lake Gross Pool Capacity: 966,000 ac-ft Overflow Area Lake AB149 kk ee rree Oroville Tisdale Weir C GLENN CO ee tttt uu BB 5 ! Oroville New Bullards Bar Reservoir AB49 ll Moulton Weir aa nn Constructed: 1932 Butte aa CC Length: 500 feet Thermalito Design capacity of weir: 40,000 cfs Design capacity of river d/s of weir: 110,000 cfs Afterbay Moulton Weir e ke rro he 5 C ! Basin e kk Cre 5 ! tt 5 ! u Butte Basin and Butte Sink oncu H Flow from the 3 overflow areas upstream Colusa Weir of the project levees, from Moulton Weir, Constructed: 1933 and from Colusa Weir flows into the Length: 1,650 feet Butte Basin and Sink. -
Chapter 1 Purpose and Need
TESTIMONY OF STEPHEN GRINNELL, P.E., YUNG-HSIN SUN, Ph.D., AND STUART ROBERTSON, P.E. YUBA RIVER INDEX: WATER YEAR CLASSIFICATIONS FOR YUBA RIVER PREPARED FOR YUBA COUNTY WATER AGENCY PREPARED BY BOOKMAN-EDMONSTON ENGINEERING, INC. Unpublished Work © November 2000 TABLE OF CONTENTS INTRODUCTION...............................................................................................................................................1 SACRAMENTO VALLEY INDEX AND SAN JOAQUIN RIVER INDEX .................................................1 NEED FOR YUBA RIVER INDEX ..................................................................................................................2 DISTRIBUTION OF YUBA RIVER ANNUAL UNIMPAIRED FLOWS...........................................................................3 FUNCTIONS AND PURPOSES OF EXISTING FACILITIES..........................................................................................4 YUBA RIVER INDEX........................................................................................................................................6 INDEX DESIGN ...................................................................................................................................................6 INDEX DEFINITION .............................................................................................................................................7 WATER YEAR CLASSIFICATIONS OF YUBA RIVER ..............................................................................................8 -
A Gravel Budget for the Lower American River
A GRAVEL BUDGET FOR THE LOWER AMERICANRIVER David Fairman B.S., University of California, Davis, 1996 THESIS Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in GEOLOGY at CALIFORNIA STATE UNIVERSITY, SACRAMENTO SPRING 2007 A GRAVEL BUDGET FOR THE LOWER AMERICANRIVER A Thesis by David Fairman Approved by: , Committee Chair Dr. Timothy C. Horner , Second Reader Dr. David Evans , Third Reader Dr. Kevin Cornwell Date: ii Student: David Fairman I certify that this student has met the requirements for format contained in the University format manual, and that this thesis is suitable for shelving in the Library and credit is to be awarded for the thesis. Dr. Timothy C. Horner, Graduate Coordinator Date Department of Geology iii ABSTRACT of A GRAVEL BUDGET FOR THE LOWER AMERICANRIVER by David Fairman The gravels of the Lower American River (LAR) provide spawning habitat for Chinook Salmon and Steelhead Trout. To sustain or enhance populations of these fish, gravel of appropriate quantity and quality needs to be maintained. Historic perturbations – including mining, levees, and dams – have changed the sediment loads and transport conditions of the river; and the volume of gravel has declined since the construction of Folsom and Nimbus Dams in the 1950’s. This study examines geomorphic changes to the river since dam construction, the effects of discharge on gravel depletion, the depths of gravel on the LAR, and uses this information to construct a gravel budget to assess the rates and significance of gravel losses. Photos and maps indicate that the overall planform of the LAR has changed little since 1865. -
(Entosphenus Tridentatus), California – Sacramento Regional Management Unit
U.S. Fish & Wildlife Service Arcata Fisheries Technical Report TR 2018-34 Regional Implementation Plan for Measures to Conserve Pacific Lamprey (Entosphenus tridentatus), California – Sacramento Regional Management Unit Damon H. Goodman and Stewart B. Reid U.S. Fish and Wildlife Service Arcata Fish and Wildlife Office 1655 Heindon Road Arcata, CA 95521 (707) 822-7201 May 2018 Funding for this study was provided by the U.S. Fish and Wildlife Service’s Pacific Southwest Region Fish and Aquatic Conservation Program Office, with additional support provided by the Arcata Fish and Wildlife Office. This plan was developed as part of the Pacific Lamprey Conservation Initiative using information collected through: (1) regional stakeholder meetings hosted throughout the Sacramento Regional Management Unit in 2015-2017, (2) subsequent discussions with various stakeholders, and (3) the authors' experience. New information, as it becomes available, will be incorporated into subsequent revisions of this plan and posted on the U.S. Fish and Wildlife Service Arcata Fish and Wildlife Office website. Disclaimers: The mention of trade names or commercial products in this report does not constitute endorsement or recommendation for use by the Federal Government. The Arcata Fish and Wildlife Office Fisheries Program reports its study findings through two publication series. The Arcata Fisheries Data Series was established to provide timely dissemination of data to local managers and for inclusion in agency databases. The Arcata Fisheries Technical Reports publishes scientific findings from single and multi-year studies that have undergone more extensive peer review and statistical testing. Additionally, some study results are published in a variety of professional fisheries and aquatic science journals. -
April 21, 2021
ITEM NO. 15d ORIGINATING SECTION: Integrated Planning CONTACT: Sal Segura/Amparo Flores AGENDA DATE: August 18, 2021 SUBJECT: Monthly Water Inventory and Water Budget Update SUMMARY: In support of Zone 7’s mission to “deliver safe, reliable, efficient, and sustainable water…services,” for Strategic Plan Goal A – “Reliable Water Supply and Infrastructure;” this report summarizes water supply, usage and storage conditions as of the end of July 2021. An overall analysis of the annual water supply takes place in April of each year with the Annual Review of Sustainable Water Supply. Long-term water supply planning is summarized in the Urban Water Management Plan, which is updated every five years and assesses water supply reliability on a 20-year horizon. The report considers the various sources of supply and storage available to Zone 7 locally and in State Water Project facilities, as well as in remote groundwater storage banks. Figure ES 1: At-a-Glance Summaries of Water Supplies, Deliveries, and Available Water (as of July 2021) Annual Yield: Imported and Local Water Supplies vs. Delivered Water Year-To- 400,000 50,000 Date Yield 300,000 feet) - 0 Annual Imported Local Average feet - (acre 200,000 Annual Yield Water Water Yield acre Water Deliveries: 100,000 2021 feet) - 10,000 0 5,000 2013 2017 2018 2019 2020 2021 (acre 0 Water Deliveries Total Water Treated Untreated 2021 Projected Deliveries Delivered Water Water Actual Water Deliveries Water Storage Treated Water Deliveries: Treated Water Deliveries: Imported Water (via Delta) 11% 0% Surface Water 43% Local Water (Lake Del Valle) Groundwater 57% Imported Water (Stored As Groundwater) 89% JULY 2021 Zone 7 Water Inventory and Water Budget Supply and Demand (See Table 1, Table 2, Figure 1, Figure 2, Figure 3, and Figure 4) • Monthly totals: 5,150 AF delivered to customers (4,150 AF treated, 1,000 AF untreated) • The total treated water production increased by 6% compared to last month. -
CA-Waterways-Map.Pdf
O R E G O N S rk m o it F h e dl R Mid . Goose Lake S o ut k h r o F C K l O O a m a N t h r Sa e c v r er i a Riv R m d e u A A aterways n o l t o o C c R W M E V A D i v e R i r r t v i e Some of the water you use every day has probably traveled T P r S S r i n i Trinity Lake ty M a d T T R iv er great distances and over high mountain ranges before reaching E UREKA R i v e r Shasta Lake Va n your faucet. This is because water is not always where we need R EDDING Du Clear zen Whiskeytown River Creek Lake Tunnel it. In California, most of the rain and snowfall is in the north. But Lake Antelope E Almanor Lake e l most of the people live in the south. The solution is to distribute S a R c i v r e a r m Corning R k Lake Frenchman e r n o Canal F Davis Lake the water to where it is needed through delivery systems such t o h t r o A R N rk Black i Fo v e e Butte r dl id as the State Water Project (SWP). Lake M Lake k N or F Oroville h t u So G Thermalito New Bullards The SWP delivers water from Lake Oroville in the north to the T Forebay and Bar Reservoir e h Lake Oroville Afterbay F e a a Visitors Center Indian m t h r a a e Valley e iv E R R r a San Francisco Bay area, the San Joaquin Valley, and Southern b u u Y Reservoir - s s i Clear Lake R a C i n o v e l u r S R sa i California.