AGRAVELBUDGETFORTHELOWERAMERICANRIVER DavidFairman B.S.,Universityof,Davis,1996 THESIS Submittedinpartialsatisfactionof therequirementsforthedegreeof MASTEROFSCIENCE in GEOLOGY at CALIFORNIASTATEUNIVERSITY,SACRAMENTO SPRING 2007

AGRAVELBUDGETFORTHELOWERAMERICANRIVER AThesis by DavidFairman Approvedby: ,CommitteeChair Dr.TimothyC.Horner ,SecondReader Dr.DavidEvans ,ThirdReader Dr.KevinCornwell Date:

ii

Student:DavidFairman IcertifythatthisstudenthasmettherequirementsforformatcontainedintheUniversity formatmanual,andthatthisthesisissuitableforshelvingintheLibraryandcreditisto beawardedforthethesis. Dr.TimothyC.Horner,GraduateCoordinator Date DepartmentofGeology

iii

ABSTRACT

of AGRAVELBUDGETFORTHELOWERAMERICANRIVER by DavidFairman ThegravelsoftheLowerAmericanRiver(LAR)providespawninghabitatfor

ChinookSalmonandSteelheadTrout.Tosustainorenhancepopulationsofthesefish, gravelofappropriatequantityandqualityneedstobemaintained.Historicperturbations

–includingmining,levees,and–havechangedthesedimentloadsandtransport conditionsoftheriver;andthevolumeofgravelhasdeclinedsincetheconstructionof

FolsomandNimbusDamsinthe1950’s.Thisstudyexaminesgeomorphicchangestothe riversinceconstruction,theeffectsofdischargeongraveldepletion,thedepthsof gravelontheLAR,andusesthisinformationtoconstructagravelbudgettoassessthe ratesandsignificanceofgravellosses.

PhotosandmapsindicatethattheoverallplanformoftheLARhaschangedlittle since1865.AtGoethePark,oneofthefewlocationsthathaveshownsignificant planformchange,thechannelhasstraightenedandbecomemorebraided.Longitudinal profilesindicateasteepgradient(knickpoint)whichmayberesponsibleforthese planformchanges.Intheupper17km,wheremostnaturalspawningtakesplace,some gravelbarshaveshowndownstreammigrationbetween1957and2002.AtSailorBar,a gravelbarwithanestimatedvolumeofmorethan20,000m 3moved650mdownstream, whileatLowerSunrise,a10,700m 3gravelbarmoved115mdownstream. iv

Periodicmovementofbedmaterialmayprovidebenefitstospawninghabitat

(Horner2005),butbedmobilityontheLARisgenerallylimitedtolargefloodevents.A tracerrockstudyshowedmovementofgrainsaslargeas8.9–10.8cmafterflowsof

26,500cfs.AyresAssociates(2001)producedatwodimensionalhydraulicmodel indicatingthatbedmaterialisgenerallyimmobilebelow50,000cfsandthattheextentof mobilityincreasesathigherflows.Todistinguishbetweenflowsthatbarelyexceedthe incipientmotionofthebedandthoseresultinginlossoflargevolumesofgravel,yearly crosssectionswereplottedfromrecordsattheFairOaksGauge.Significantchannel wideningordeepening(volumeloss)occurredafterallfloodeventsgreaterthan

100,000cfswithlittlevolumelossoccurringbelow100,000cfs.Thisindicatesthatflows between50,000and100,000cfsmaymobilize(andenhance)bedmaterialwithout significantvolumeloss.

Usinghistoricphotos,crosssections,andlongitudinalprofiles,gravelinputsand netgravellossfromthechannelwereestimated,andgraveloutputbydownstream transportwascalculatedfromthetwo.WithsupplyfromupstreamcutoffbyNimbus

DamandnotributariesofconsequenceontheLAR,gravelinputsarelimitedtobank erosion.Anestimated440,000m 3ofgravelhasbeenerodedfrombanksintheupper

17kmoftheLARbetween1957and2002.Netgravellossfromthechannelisestimated at1,600,000m 3between1962and1998.Itisestimatedthat2,000,000m 3ofgravelhas beentransportedoutoftheupper17kmoftheLARbetweenabout1960and2000.

Gravelthicknessandtheextentofbedrockcontroloftheriverwereevaluatedby mappingbedrockoutcropsinthechannelandestimatinggravelthicknessusingseismic v refraction.Morethantenbedrockoutcropswereidentifiedontheactivechannelbottom intheupper17kmoftheLAR,buttheseoutcropsrepresentlessthan1%ofthechannel bottom.Seismicsurveysoffourgravelbarsindicatethicknessesgreaterthan7m.The variabilityofdepthssuggeststhatthebedrocksurfacevariesandleavestheextentof bedrockcontrolasalargelyunansweredquestion.

Horner(2005)hasdeterminedthatfactorssuchasgrainsizedistributionsand subsurfaceflowduetogeomorphicfeatures(suchasriffles)maybelimitingtheavailable spawninghabitat.Thelackofgravelsupplyfromupstreamhaslikelyimpactedthese variablesbycoarseningofthebedbelowNimbusDamandreducingthecomplexityof channelfeaturessuchasgravelbarsandrifflepoolsequences.Futureattemptsto enhancespawninggravelsontheLARneedtoconsiderthequalityofthegraveland complexityofgeomorphicfeatures,aswellasgravelquantity.

,CommitteeChair Dr.TimothyC.Horner

vi

DEDICATION

Thisthesisisdedicatedtomymother,MarjorieMiller,andinlovingmemoryof myfather,JeromeFairman.

vii

ACKNOWLEDGMENTS

ThisresearchwasfundedbytheBureauofReclamationandtheCentralValley

ProjectImprovementAct(CVPIA).

• TimHorner,CSUS

• DaveEvans,CSUS

• KevinCornwell,CSUS

• MattSilver,CSUS

• KamalaBrown,CSUS

• JohnHannon,BureauofReclamation

• RodHall,WaterForum

• TobyMinear,UCBerkeley

• TomHaltom,USGS

• ChrisBowles,PWA

• TomSmith,AyresAssociates

• JoeCountryman,MBKEngineers

• RobTitus,DepartmentofFishandGame

• KrisVyverberg,DepartmentofFishandGame

• TheronRoschen,SacramentoCounty

• KadyFerris,WaterResourcesCenterArchives

viii

TABLEOFCONTENTS

ABSTRACT...... iv

DEDICATION ...... vii

ACKNOWLEDGMENTS...... viii

TABLEOFCONTENTS...... ix

LISTOFTABLES ...... xi

LISTOFFIGURES...... xii

Chapter1: Introduction...... 1 1.1 Purpose...... 1 1.2 Definitionofagravelbudget ...... 2 1.3 Background ...... 4 1.3.1 HydraulicminingsedimentintheSierraNevada ...... 4 1.3.2 Downstreameffectsofdams...... 6 1.4 Studyareaandgeologic/hydrologicsetting ...... 13 1.5 Humanhistory...... 16 1.6 FiguresandTables ...... 18 Chapter2: GeomorphictrendsontheLowerAmericanRiver ...... 31 2.1 Introduction...... 31 2.2 Methods...... 32 2.3 Results...... 34 2.4 Discussion ...... 38 2.5 FiguresandTables ...... 40 Chapter3: GravelmobilityandtheeffectsofFolsomandNimbusDams...... 57 3.1 Introduction...... 57 3.2 Method ...... 59 3.3 Results...... 60 3.4 Discussion ...... 62 3.5 FiguresandTables ...... 63 Chapter4: Volumetricestimateofgravelinputs ...... 81 4.1 Introduction...... 81 4.2 Method ...... 83 4.3 Results...... 85 ix

4.4 Discussion ...... 89 4.5 FiguresandTables ...... 91 Chapter5: Volumetricestimateofgravelloss...... 107 5.1 Introduction...... 107 5.2 Method ...... 109 5.3 Results...... 112 5.4 Discussion ...... 113 5.5 FiguresandTables ...... 115 Chapter6: Estimatingbedrockdepths...... 126 6.1 Introduction...... 126 6.2 Method ...... 126 6.3 Results...... 128 6.4 Discussion ...... 130 6.5 FiguresandTables ...... 131 Chapter7: AnalysisandConclusions ...... 144 7.1 SummaryofResults ...... 144 7.2 Discussion ...... 146 7.3 Recommendationsforfuturehabitatenhancements ...... 148 7.4 FiguresandTables ...... 151 REFERENCES...... 155

x

LISTOFTABLES

Table21 Availablehistoricdata...... 55

Table22 Changesinchannelwidth ...... 56

Table23 Gravelmovementresults(barmigration) ...... 56

Table31 Tracerrocksizeranges...... 80

Table41 Potentialsedimentsourcesforrivers ...... 106

Table42 GravelinputcalculationfortheLowerAmericanRiver...... 106

Table51 NetgravelvolumelossesontheLowerAmericanRiver...... 124

Table52 RatesofgravellossontheLowerAmericanRiver ...... 125

Table61 Resultsofseismicsurveys...... 143

xi

LISTOFFIGURES

Figure11 Conceptualdiagramofgravelbudget ...... 18

Figure12 Channelaggradationduetominingsedimentinvalleyrivers...... 19

Figure13 Gilbert’s(1917)modelpredictingthereturnofchannelstopremining elevations...... 20

Figure14 SedimenttrappingcurvedevelopedbyBrune(1953)...... 20

Figure15 TheLane(1955)modelpredictingwhenaggradationandwhendegradation willoccur...... 21

Figure16 LocationmapoftheLAR ...... 22

Figure17 HydrographofyearlypeakflowsontheLAR...... 23

Figure18 Floodfrequencycurvesforbeforeandafterdamconstruction ...... 24

Figure19 HydrographofminimumstreamflowsontheLAR ...... 25

Figure110 MapofleveesontheLAR ...... 26

Figure111 PhotographofhydraulicminingintheSierraNevada...... 27

Figure112 Aerialphoto(1949)oftheLARnearthecurrentlocationofNimbusDam showingdredgetailingsinandaroundthechannel ...... 28

Figure113 ObliqueaerialphotoofNimbusDamandFishHatchery(1976) ...... 29

Figure114 RepairoffishdiversionstructureatNimbusFishHatchery(1982) ...... 30

Figure21 RanchoSurveyfrom1865 ...... 40

Figure22 MapofLARshowingchangesinplanformfrom1865to2002...... 41

Figure23 MapshowingchangesinplanformnearGoethePark ...... 42

Figure24 Aerialphotosshowingchannelchangesbetween1964and1966between GoetheandAnselHoffmanParks...... 43

Figure25 MapoftheLARshowingthelocationsofthethreegeologicmaps...... 44

xii

Figure26 Geologicmapofreach3 ...... 45

Figure27 Geologicmapoftheupstreamportionofreach3anddownstreamportionof reach4 ...... 46

Figure28 Geologicmapofreach4 ...... 47

Figure29 ChannelshapenearGoetheParkshowinganincreaseinbraidingbetween 1957and2002...... 48

Figure210 LongitudinalprofileoftheLARshowingincisionsince1906...... 49

Figure211 Mapofreach4showinglocationsofbarmigration ...... 50

Figure212 PhotoofUpperSunriseshowinglocationofgravelbarislandin1957 ...... 51

Figure213 PhotoofUpperSunriseshowinglocationofgravelbarislandin2002 ...... 51

Figure214 PhotoofSailorBarfrom1957showinglocationofsourcesediment ...... 52

Figure215 PhotoofSailorBarfrom2002showingdistanceofgraveltransport...... 52

Figure216 BathymetriccontoursatSailorBarshowingislandthickness...... 53

Figure217 PhotoofLowerSunrisefrom1957showinglocationofsourcesediment .. 54

Figure218 PhotoofLowerSunrisefrom2002showingdistanceofgraveltransport... 54

Figure219 BathymetriccontoursatLowerSunriseshowingislandthickness...... 55

Figure31 HydrographoftheLARshowingthefloodcontrolreleasesinDecember 2005toJanuary2006 ...... 63

Figure32 Changesintheshorelinesduringa36,000cfseventinDecember2005to January2006 ...... 64

Figure33 Locationsoftracerrockdeploymentlines,February4,2005...... 65

Figure34 HydrographoftheLARduringthe2005tracerrockexperiment...... 66

Figure35 TracerrocksfoundatSailorBar ...... 67

Figure36 TracerrocksfoundatLowerSunriseupstreamsite...... 68

Figure37 TracerrocksfoundatLowerSunrisedownstreamsite...... 69

xiii

Figure38 TracerrocksfoundatLowerSunrisesidechannelsite...... 70

Figure39 TracerrocksfoundatSacramentoBarupstreamsite...... 71

Figure310 TracerrocksfoundatSacramentoBardownstreamsite...... 72

Figure311 LocationsofFairOaksgauge ...... 73

Figure312 FloodfrequencycurvefortheLARbeforeandafterdamconstruction...... 74

Figure313 HydrographoftheLARshowingeventsthatcauseddeepeningorwidening attheFairOaksGauge...... 75

Figure314 FairOakscrosssectionsbeforetheemplacementofthedams ...... 76

Figure315 FairOakscrosssectionsaftertheemplacementofthedams ...... 77

Figure316 FairOakscrosssectionsfromthelate1960stotheearly1980s ...... 78

Figure317 Rockfillbeingplacedupstreamoffishweirtofacilitaterepair...... 79

Figure318 FairOakscrosssectionsfromthemid1980stopresent ...... 80

Figure41 Locationsofsignificantbankerosioninreach4 ...... 91

Figure42 Locationsofsignificantbankerosioninreach3 ...... 92

Figure43 LongitudinalprofileoftheLAR ...... 93

Figure44 Brune(1953)sedimenttrappingcurve...... 94

Figure45 BankerosionattheFishHatchery ...... 95

Figure46 PhotoshowingtechniqueforbankheightmeasurementsusingaJacob’s Staff...... 96

Figure47 Diagramshowinggeometryofbankerosion ...... 97

Figure48 BankerosionatSailorBar ...... 98

Figure49 BankerosionatUpperSunrise...... 99

Figure410 BankerosionatLowerSunrise ...... 100

Figure411 BankerosionatSanJuan ...... 101

xiv

Figure412 BankerosionatLowerRossmoor...... 102

Figure413 BankerosionatHaganPark...... 103

Figure414 BankerosionatUpperGoethe ...... 104

Figure415 BankerosionatLowerGoethe...... 105

Figure51 LocationmapoftheLARshowinglocationofcrosssectionsusedto measuregravelloss ...... 115

Figure52 Crosssectionsshowingerosionbetween1906and1998inreach1 ...... 116

Figure53 Crosssectionsshowingerosionbetween1906and1998inreach2 ...... 117

Figure54 Crosssectionsshowingerosionbetween1906and1998inreach3 ...... 118

Figure55 Crosssectionsshowingerosionbetween1906and1998inreach4 ...... 119

Figure56 Crosssectionsshowingerosionbetween1962and1998inreach1 ...... 120

Figure57 Crosssectionsshowingerosionbetween1962and1998inreach2 ...... 121

Figure58 Crosssectionsshowingerosionbetween1962and1998inreach3 ...... 122

Figure59 Crosssectionsshowingerosionbetween1962and1998inreach4 ...... 123

Figure510 Longitudinalprofilesusedtocorrectthesedimentvolumeeroded ...... 124

Figure61 LocationmapoftheseismicsurveysontheLAR ...... 131

Figure62 Installationofthegeophonearray...... 132

Figure63 Seismicwavegeneration...... 133

Figure64 Interpretationmodelforseismicsurveys ...... 134

Figure65 LocationmapforseismicsurveysatNimbusBasin ...... 135

Figure66 SeismicsurveyresultsforNimbusBasin ...... 136

Figure67 LocationmapforseismicsurveyatSailorBar ...... 137

Figure68 SeismicsurveyresultsforSailorBar...... 138

Figure69 LocationmapforseismicsurveyatUpperUpperSunrise ...... 139 xv

Figure610 SeismicsurveyresultsforUpperUpperSunrise ...... 140

Figure611 LocationmapforseismicsurveysatLowerSunrise ...... 141

Figure612 SeismicsurveyresultsforLowerSunrise...... 142

Figure71 Completedgravelbudget ...... 151

Figure72 GeometryofgravelbarsandhighlyusedhabitatatLowerSunrise ...... 152

Figure73 SiteforpotentialhabitatenhancementatSailorBar...... 153

Figure74 SiteforpotentialhabitatenhancementatSacramentoBar ...... 154

xvi 1

Chapter1: Introduction

1.1 Purpose

FolsomandNimbusDams(completedin1955)haveblockedaccessby anadromousfishtolargeamountsofspawninghabitatintheupperreachesofthe

AmericanRiverwatershed.Inaddition,thesedamshavecutoffthesupplyofgravelto thelowerreachesthatarestillaccessibleforspawning.Despitetheseconstraints,the

LowerAmericanRiver(LAR)hassupportedlargepopulationsofnaturallyspawned salmon(HannonandDeason2005).Effortsarebeingmadebyrivermanagerstoensure thatthissectionofrivercontinuestoprovidehabitatofsuitablequantityandquality.

Attemptshavebeenmadetoimprovehabitat,includingagravelenhancement experimentcompletedinthefallof1999(Vyverberg,etal.1997).Thisworkinvolved rippingandgraveladditionatthreesites.Horner(2005)hasspentthelastfouryears evaluatingthequalityofgravelsattheseandotherlocations.However,thequantityof naturalgravelsupplyandtherateofdepletionofthissupplyontheLARremainlargely unknown.Thesevalueswillbecomeincreasinglyimportantasmanagersdevelop practicesthatwillsustainnaturalspawningonthisimportantstretchofriver.

ThepurposeofthisstudyistoassessthenatureofgravelsupplyontheLARby constructingagravelbudget,oraccountingforadditionandremovalofspawninggravel.

Thegravelbudgetwillquantifythevolumeofgravelinputs,outputs,andnetchange withintheriverchanneloverthelastfiftyyears.Thisstudywilladdressthefollowing questions:

2

• Howhaschannelmorphologychangedsincetheonsetofdetailedmappingand

recordkeeping?

• IsspawninggravelbeinglostfromtheLAR?Ifso,howfast?

• WherearethegravelsourcesontheLAR?Howsuccessfulisgravelrecruitment?

• ArethereareasofgraveldeficitontheLAR?

• ShouldgravelbeaddedtotheLAR,andifso,where?

Inaddition,somerelatedissuesareaddressed.First,thedatacollectedforthe quantitativeassessmentofthegravelbudgetwillbeexaminedqualitativelytodescribe thenatureofhistoricchangestotheLAR.Geomorphicchangesandtrendsaredescribed inlightofthehumaninducedchangestothechanneloverthelast150years.Second, gravelmobilityisexamined.Existingdataontheincipientmotionofbedmaterialis described,andadifferentapproachtomobilityandchannelscourisemployedwhich looksatthechangetoyearlycrosssectionsattheFairOaksstreamgaugingstation.

Finally,thedepthofgravelontheLARisinvestigatedusingseismicrefraction.

1.2 Definitionofagravelbudget

Agravelbudgetdiffersfromasedimentbudgetonlybytheconstrainton sedimentsize.FollowingtheUnifiedSoilClassification(USC)system,gravelisdefined assedimentwithadiameterbetween4.75and75mm,cobblesbetween75and300mm, andbouldersgreaterthan300mm.BedmaterialintheLARisnotalwayswellsortedand oftenrangesfromfinesiltsandclaystoboulders.Themediangraindiameter(D 50 )is important,andChinookSalmontendtoselectgravelwithaD50 between7mmand

100mm(Plattsetal.1979;ReiserandBjornn1979;Kondolf1988).Somelocationson 3 theLARcontainexcesscoarsematerial(armoredbedsthatcan’tbeexcavatedby salmonids)orexcessfinematerial(whichinhibitsdeliveryofoxygentoembryos)despite thefactthatthemajorityofthematerialwouldotherwisebesuitableforspawning

(Vyverbergetal.1994;Horner2005).Becauseofthisvariabilityinbedloadandgrain size,itisimportanttodistinguishbetweenprimarilycoarse(gravel,cobbles,and boulders)andprimarilyfine(sands,silts,andclays)bedmaterial.Thisdistinctionis madeeasierbythefactthatriverswithD 50 valuesbetween1mmand10mmarerare

(Parker1980).Therefore,gravelinthisstudyisconsideredanymaterialwithamedian diameter(D 50 )greaterthan7mm.

ReidandDunne(1996)givedetaileddescriptionsofhowtoquantifysediment productionandtransportfortraditionalsedimentbudgets.Limitingthebudgettogravel eliminatestheneedtoevaluatemanyoftheseprocessesbecausegravelcanonlybe transportedasbedload.Gravelinputisthereforelimitedtoareasnearthechanneland transportconditionsaboveacertainthreshold(usuallyonlyexceededduringrare,large flowevents).Inaddition,therearenotributariesthatarecapableoftransportinggravel intotheLAR,furtherlimitingpotentiallocationsofgravelsupply.

Figure11isaconceptualdiagramshowingtherelationshipbetweengravel inputs,outputs,andstoragewithinastream.Thevolumeofstoragewillchangeovertime ifthereisadifferencebetweeninputsandoutputs.Therefore,thechangeinstorage(S) overatimeperiod(t)iscalculatedbytheformulaS/t=gravelinput–graveloutput, wheregravelinputandoutputarethevolumesofgraveltransportedintoandoutofthe reachforthespecifiedtimeperiod.Thetwocomponentsthatarethemostpracticaland 4 importanttomeasureforthisstudyaregravelinputsandS,andthereforethebudget willbecompletedbymeasuringthesetwocomponentsandcalculatinggraveloutputby thedifference(graveloutput=S/t–gravelinput).Graveloutputisdifficultto measure,andwillnotbeaddresseddirectlyinthisstudy.

Totalgravelstoragevolumecouldbeestimatedwithaccurateinformationabout thedepthtobedrockthroughouttheLAR.However,seismicrefractionwasusedto measuregravelthicknessatfourlocalitiesontheLAR,andthebedrocksurfaceappears tobequiteinconsistent,makinganaccuratedeterminationofgravelstoragevolume difficulttomake.Asaresultthisstudydoesnotattempttomeasuregravelstorage directly,butusesstreamcrosssectionsandprofilestoestimatethechangeinstorage

(S).

1.3 Background

1.3.1 Hydraulic mining sediment in the Sierra Nevada

Gilbert(1917)producedthefirstcomprehensivestudyofminingdebrisinthe

SierraNevada.Bymeasuringthevolumeofsedimentmissingfromminingsites,he estimatedthat1,189millioncubicmeters(1,555millioncubicyards)ofsedimentwere producedbyminingthroughoutCalifornia.Ofthis,196millionm 3(257millionyd 3) wereproducedintheAmericanRiverBasin.

Gilbertpredictedthatsomematerialwouldbedepositedinoverbankareasand permanentlystored,butmuchofthedebriswascontainedwithinthechannel.He documented3m(10ft)ofchannelaggradationintheSacramentoRiveratSacramento, butpredictedareturntopremininglevelswithtime(Figure12).Hismodeldescribeda 5 sedimentwavemovingthroughtheriversystem,growinglongerandflatterasit progressed.Heobservedthattheapexofthewaveappearedtohavepassedthemouthof theAmericanRiverbyabout1896(Figure12).Therefore,returntopreminingbed elevationswouldbeexpectedbythemidtwentiethcenturyasthissymmetricalwaveof sedimentpassed(Figure13).Thistimeframewasbasedonobservationsinthelowlands andwasprobablylimitedtofinesediment.Coarsesedimenthadadifferentfate.

Thesedimentproducedasminingdebriswassegregated,withthefineclay,silt, andsandquicklytransportedtothelowlandsandbaybystreamflow.Coarsesediment laggedbehindandwasonlytransportedbylargeflows.Gilbertobservedthatmanyofthe miningdumpsliedirectlyonhillsidesand“…arewashedonlybyrain,andnoimportant fractionofit[is]removed.”(Gilbert1917,p.27)Thecoarsesedimentthatisaccessibleto streamsfortransportisonlymovedbylargeflowsandisdepositedeitherinupland creeksandvalleysoratthefootofthemountainswherethegradientdecreasesandthe riverreleasesontoitsalluvialplain.Gilbertcallsthesepiedmontdeposits.Whenthis coarsesedimentwasdeposited,Gilbertobservedthetendencyoftherivertoinciseinto thecoarsermaterialproducingterraces.Hepostulatedthatwhentheseterraceswere formedandthebedofthemainchannelreturnedtopreminingelevation,theterraces wouldbepermanentlyemplacedandceasetobemobilized.

MorerecentworkbyJames(1993)hasshownthatcurrentsedimentloadsarestill greaterthanpremininglevels.Rivershavecontinuedtoreworktheterracedeposits throughthetwentiethcentury.Jamesdocumentederosionofseveralmetersofmining sedimentontheBearRiverduringthelargefloodeventof1986,aneventthatnotonly 6 increasedcoarsesedimentloads,butdeliveredanddepositedfinesedimenttothebypass systeminthevalley(Springbornetal.2005).Thissustainedreworkingofmining sedimentcausedJamestopostulatethatGilbert’ssedimentwavemodelshouldnotbe symmetricalbutrightskewedwithrespecttotime.

1.3.2 Downstream effects of dams

Damshaveavarietyofdownstreameffectsonrivers.Theseeffectscanbe physical(e.g.watertemperatureandchangesindischargeandsedimentsupply), chemical(e.g.nutrientabundancesandcontaminants),andbiological(e.g.changestoin streamandriparianhabitat).Allthreeoftheseeffectsinteractwithoneanotherand shouldnotbestudiedinisolation.Withthatsaid,thisstudywillfocusonthephysical responsesofthedownstreamchannel,withemphasisonsedimenttransportand geomorphology.

Thegeomorphicresponseofriversdownstreamofdamscanvarywidely.

Channelscandegradeoraggrade,widenornarrow,coarsenorfine,becomemorebraided ormoremeandering,andmaychangetheirresponseoverthetimeandspaceof adjustment.Thisprecludessweepinggeneralizationsofhowriversrespond,andperhaps theonlygeneralizationthatcanbemadeisthatchangeswillbevaried(Phillips2003).

Thethrustofthissectionwillbetopointoutsomeoftheimportantfactorstostream adjustmentanddescribesome“typical”adjustmentscenarioswithparticularemphasison gravelbedriversthataresimilartotheLAR.

7

Causes

Howdodamscausechangesinsedimentregimesdownstream?Theanswertothis questionisrefreshinglysimple:theychangeflowandtrapsediment.Thewaysinwhich streamsresponddownstreamdependtoalargeextentonthenatureofthesetwochanges.

Flow

Forthemostpart,damsreducehighflowsandincreaselowflows.Theyalso changethetimingofflowsthroughoutthedayoryear.Specificsofchangestoflow regimedependonthesizeandpurposeofthedam.Floodcontrol,waterstorage, hydropower,sedimentcontrol,andrecreationarejustsomeofthereasonsdamsarebuilt.

Most,however,havemultiplepurposes,andthisprecludesallbutthebroadest generalizationsaboutthechangestoflow.

Sediment

Damstrapsediment.Withveryfewexceptionsthisstatementistrue,especially withlargedamsthatcommonlyhavetrappingefficienciesgreaterthan99%(Williams andWolman1984).Brune(1953)developedamodelfortrappingefficiencybasedonthe ratioofcapacitytomeanannualinfloworC/I(Figure14)(Grant2003;

USACE1989).Damsthathaveacapacityequalorgreaterthanthemeanannualinflow willtrapvirtuallyallsediment.Onlyextremelysmalldams(C/I<0.004)have efficienciesthatapproachzero,andatlowefficienciessmalldamsthathavenotfilled withsedimentarelikelytopreferentiallytrapcoarsesediment(finesedimenttakesmore timetodropfromsuspension)producinganimpactondownstreamsedimentdistribution.

9

River bed type

Riverbedtypeisoneofthekeyvariablesthatwilldeterminegeomorphic response.Bedrock,gravelbed,andsandbedriversbehaveverydifferentlyandtherefore willrespondverydifferentlywhendisturbed.Distinguishingamongthesetypesis straightforward.Bedrockriversareeasilyrecognized,andverylittleoverlapexists betweengravelandsandbedriversbecausebedswithmediangrainsizesof110mmare rare(Parker1980).

Bedrockriverstypicallyoccurinlowordermountainwatershedsandmayhave limitedsedimentsupply.Verycoarsesedimentduetomasswastingeventsmay constitutesignificantproportionsofsedimentinput.Theselargebouldersaretypically onlymovedbyextremelylargeevents.Thedegreetowhichadamlimitstheselarge flowswilldeterminehowwelltheselargebouldersaremovedthroughthechannel.Graf

(1980)foundthatdamconstructionresultsinanincreaseinthenumberandseverityof downstreamrapidsduetoreducedlargeflowsandunchangedinputsoflargeboulders fromtributaries.Whetherthisideacanbeextrapolatedtoallbedrockstreamsisdoubtful, buttheideaofdamslimiting“flushingflows”isimportant.Regardless,bedrockstreams haveuniquecharacteristicsandwillprobablynothaveresponsestypicalofalluvial streamssuchasscourandbankerosionimmediatelydownstreamofthedam.

Phillips(2003)studiedtheSabineRiver,asandbedriverontheTexasLouisiana border.DespitethefactthatToledoBendReservoirimpounds74%ofthebasin,hefound littledownstreamimpactexceptimmediatelydownstreamofthedam.Hecontendsthat riversthataretransportlimitedbeforeimpoundmentmayhavelimitedimpactdueto 10 sedimenttrappingeffectsofdamconstruction.Itwouldbelogicalthatchangestoflow regimeswoulddictateeffectsofthesetypesofstreams.Thefactthatimpactsduetodam constructionontheSabineRiverarelimitedillustratesanimportantdistinctionofsand bedrivers.Normaltransportconditionscanbemaintainedevenafterdamconstruction becausesandbedriverstransportbedloadsedimentoverawiderangeofdischarges

(Grant2003)andarethereforemobilemostofthetime(Parker1980).

Gravelbedriversonlytransportbedloadsedimentaboveathresholdflow(Grant

2003).Becausemanydamssuppressthelargemagnitude(i.e.abovethreshold)events, gravelbedsystemsrespondquitedifferentlytoimpoundment.Evenunalteredgravelbed systemsdevelopa“pavement”layerwithmediangrainsizes23timeslargerthanthe sedimentbelow(Parker1980).Thesizeofthepavementgrainsdictatesthethreshold flowneededforbedmovement.However,thesegrainsarenaturallymovedona

“statisticallyregularbasis”(Parker1980).Withsuppressedlargeflowsandgravelsupply limitedfromupstream,thepavementcangraduallycoarsentoanarmorandessentially becomeimmobile(Galay1983).Thedevelopmentofarmordependsonthesupplyof gravelavailablefromtributariesandbankerosiontoreplenishgraveltransported downstreamandtheabundanceofgrainstoolargetobemovedbythepostdamflow regime(Parker,1980).

Immediately downstream of the dam

Degradation(loweringofbedelevation)virtuallyalwaysoccursdirectly downstreamfromlargedams,unlessconstrainedbycoarsesedimentorbedrock

(WilliamsandWolman,1984).WilliamsandWolman(1984)wereabletoshowhow 11 degradationprogressedovertimebyusingrepeatedcrosssectionsfromgaugestations below114dams.Despitethefactthatthemodaltimetoreach95%ofmaximum degradationisslightlymorethan100years(althoughmanyreachitin10100years),the modaltimeforhalfofthedegradationtooccuris7years,withmanyreachingthis milestonein0.63years.Stateddifferently,75%oftheadjustmenthappensinthefirst

13%oftheadjustmentperiod.Thebottomlineisthatriversdegradequicklyimmediately belowthedam,untiltheyareconstrainedbybedrock,armoring,orreducedgradient

(WilliamsandWolman,1984).

Howthedegradedzonechangesspatiallyismuchmorecomplexthanthe temporal(atasite)relationshipsdiscussedabove.Thepropagationofthedegradedzone downstreamvariesamongrivers.Riverscandegradeforlongdistances(theColorado

Riverhasdegradedover120kmbelowHooverDam)andthezoneofdegradationcan continuetolengthenfor30yearsormore.InmostofthecasesstudiedbyWilliamsand

Wolman(1984),therewasnoevidencethatthezoneofdegradationhadstopped lengthening.Theultimatelengthofthedegradedzonewilldependonflow,bedmaterial, andtopography.Probablythemostimportantfactorslimitingthis,however,arethe sourcesofsedimentdownstreamofthedam.

Tributaries

Tributaryinputsofsedimentcanacttobufferthesedimentstarvedmainchannel.

Theseinputsareoftencoarserthanthemainchannelifthetributariesarelowerorderor haveasteepergradient(Galay1983).Themainchannelwillgetprogressivelyfiner downstreamfromtheconfluence(Galay1983).Degradationmaystilloccurafterthe 12 riverissuppliedwithtributarysediment,butthereisusuallynocoarseningorformation ofanarmor(Parker1980).

Aggradation or degradation

Despitethecommonnotionofdamsubiquitouslycausingdownstreamerosion, aggradationisatleastascommonasdegradationasyouprogressdownstream(Grant

2003).Predictingwhichwilloccurisacomplexissuewhichdependsonfactorssuchas sedimentloads,sedimentsize,discharge,andchannelslope.Lane(1955)cameupwitha simplemodelthatdoesagreatdealtohelpusunderstandhowdisturbingtheseaspectsof theriversystemmayinteract(Figure15).Heshowedthatsedimentloadtimessediment sizeisproportionaltodischargetimesslope(Grant2003).Brandt(2003)describesit moresimply,statingthatdegradationwilloccurwhensedimentloadislessthantransport capacityandaggradationwhensedimentloadexceedstransportcapacity.Thisshowsthat despitethelogicalnotionthatreducedsedimentloadscauseerosion,decreasedtransport capacitiesactasacounterbalance,makingaggradationascommonaserosion.

Bank erosion and channel width

WilliamsandWolman(1984)lookedat231crosssectionsbelowdamsandfound fewgeneralizationsaboutbankerosion(channelwidening).22%keptaconstantwidth,

46%widened,26%narrowed,5%widenedinitiallythennarrowed,and2%narrowed thenwidened.Clearlythereareavarietyofchannelresponsesthatprobablydependon thestabilityofthebankandchannelmaterialaswellasthenatureofflowregulation.

Collieretal.(1996)observedthatbankerosionmayhaveadelayedresponseafterdam closure,suggestingthattherivermustdegradeitsbedbeforesignificantbankerosioncan 13 begin.Xu(1990)goesfurthertopostulateathreestageresponse:1.clearwaterscour resultinginreducedgradientandwidth/depthratio,2.slowedgradientdecreaseand increasedwidth/depthratios,and3.establishmentofnewequilibrium.

Channelnarrowinglikelyresultsfromreduceddischarges,confiningtheeffective flowstoasmallerportionofthechannel.Vegetationplaysasignificantrolehere.

Riparianflorastabilizessedimentasitbecomesestablishedonabandonedportionsofthe channel.Withoutlargeflowsregularlywipingoutthisvegetation,thesedimentis renderedimmobile(WilliamsandWolman1984).Thisphenomenonlikelyoccurson barsandotherexposedbedformsaswell.

Planform changes

Braidingincreasesascoarsesedimentload,discharge,andslopeincrease(Brandt

2003).Becauseallthreeofthesefactorstypicallydecreaseonimpoundedrivers,the tendencyisforbraidingtodecreaseafterdamconstruction.Onmeandering,sandbed rivers,decreasedsedimentloadsfromupstreammayresultinmorebankerosionandan increasedtendencytomeander.

1.4 Studyareaandgeologic/hydrologicsetting

TheAmericanRiverWatershed(Figure16)hasanareaofover5000square kilometers(about2000squaremiles)andislocatedonthewesternslopeoftheSierra

NevadamountainseastofSacramento.Theelevationofthewatershedrangesfrom

3000m(10,000ft)peaksatthecrestoftheSierranearLakeTahoetonearsealevelatthe confluencewiththeSacramentoRiver.Thelowestreachesoftheriverevenexperience sometidalinfluence(Dillingeretal.1991). 14

TheclimateisMediterraneanwithhot,drysummersandcool,wetwinters.

Precipitationvariesgreatlyspatiallyandtemporally.Averagerainfallrangesfrom

46cm/yr(18in/yr)inSacramentoto178cm/yr(70in/yr)ontheslopesoftheupperbasin

(NRC1995).YearlypeakflowsatFairOakshaverangedfrom9,900to180,000cfs beforeconstructionofFolsomDamand1,920to134,000cfsafterdamcompletion

(Figure17).Thedamhasgreatlyreducedpeakflowsinyearswithmoderatetolowpeak flows,buthasonlyreducedpeakflowstoasmalldegreeinyearswithlargepeakflows

(Figure18).FolsomDamisoperatedforbothfloodcontrolandwatersupply,butit

“…hasalowvolumetorunoffratio,andgivenitscurrentdesignandoperationsitis incapableofstoringandthenreleasingthebulkofamajorfloodontheriver(NRC1995, p.15).”Minimumyearlyflowshavebeengreatlyalteredbydamoperations(Figure19).

AverageflowsinAugustthroughOctoberhaveincreasedfrom350to2300cfs.

ThewatershedaboveFolsomDamhasthreemajorforksthatprimarilyconsistof bedrockdominatedchannelsinsteepwalledcanyons.Fourteenpercentoftheupper basin(aboveFolsom)iscontrolledbyfive.BelowFolsom,theterrainismuch gentlerastheriverreleasesontoanalluvialplain.Themoststrikingtopographyofthe

LARisthetall(upto50m)bluffofMiocenePliocenesandstoneandsiltstonesonthe northsideoftheriver(Shlemon1967).Theterrainonthesouthsideoftheriverisgently terracedwithmorerecent(PlioPleistocenetomodern)alluvium.ThebedoftheLARis dominatedbycoarsegrainedmaterial(gravel),butgetsprogressivelyfiner(sandsand silts)asitapproachestheconfluencewiththeSacramentoRiver(Vyverbergetal.1997).

15

The37kilometers(23miles)oftheLARbelowNimbusDamisdividedintofour reaches(Figure16).Reach1isthe8.9km(5.5mi)fromtheconfluencewiththe

SacramentoRivertoParadiseBeach.Theriverislowgradientinthisreachwithdepth andvelocitiescontrolledmorebythestageoftheSacramentoRiverthanbydischarge upstream(Snideretal.1992).Thereissometidalinfluenceinthisreach.Theriveris leveedonbothsidesandthebedmaterialisprimarilysand.

Reach2is13.2km(8.2mi)longandextendsfromParadiseBeachtotheJedediah

SmithbikebridgenearGoetheParkatriverkilometer22.0(mile13.7).Thegradientis alsolowinthisreachexceptforthetwokilometersnearGoetheParkwherethereach extendsintothehighgradientknickpointthatdividesreach2fromreach3.Reach2hasa mostlysandbedwithfrequentgravelbars,especiallyintheupstreamportions.Thebanks havelevees,butmanyaresetbackfromthechannel(Figure110).

Reach3is6.9km(4.3mi)longandcoverstheareafromGoetheParktoSanJuan

Rapidatriverkilometer29.0(mile18.0).Thegradientinthisreachishigherandthebed isprimarilygravelwithsomesandbedsinareasofslackwater.Therearefewformal leveesinthisreach,butmanyofthebanksarereinforcedwithripraporothererosion controlmeasures.

Reach4includesthe8.2km(5.1mi)fromSanJuanRapidtoNimbusDamatriver km37.2(rivermile23.1).Thisreachhasthehighestgradient,coarsestbedmaterial,no sandbars,andfewbankstabilizationfeatures.Italsosupportsmostofthespawningon theLAR(HannonandDeason2005).Somespawningalsooccursinreach3,soforthe purposesofthisstudy,mostanalysisincludedreaches3and4only. 16

1.5 Humanhistory

17

AnotherminingpracticethathadsignificantimpactontheLARwastheuseof golddredgesnearandwithinthechanneloftheLAR(Figure112).Thispracticestarted in1899andcontinueduntilthe1960s,withmostoperationsstoppingduringWorldWar

IIandneverrestarting.Althoughthisminingpracticegenerallydidnotresultinanet extractionorintroductionofsedimenttotheLAR,itdiddisturbthechannelagreatdeal andthetailingspilesarestilleasilyvisibleinaerialphotographs.

ThefirstdiversiondamwasbuiltontheAmericanRiverin1852andmanyother smallstructureshavebeenbuiltovertheyears.ThepredecessortothemodernFolsom

Damwascompletedin1891,was30m(98ft)high,119m(389ft)wide,andhadsluice gatesforpassageofdebris(CSMB1890).ModernFolsomDamwasbuiltbetween1948 and1956(closedin1955),is104m(340ft)high,427m(1400ft)wide,andhasareservoir capacityofnearly1,000,000acrefeet.InconjunctionwithFolsomDam,NimbusDam

(Figure113)wasbuilt11km(7mi)downstreaminordertodiminishthedaily fluctuationsinflowrequiredforhydropowergenerationatFolsom.Thesetwodamshave eliminatedsedimentsupplyfromtheupperwatershedtotheLAR.

Tomitigatethereductionofavailablespawninghabitatcausedbythe constructionofNimbusandFolsomDams,theNimbusFishHatchery(Figure113)was builtintheyearsfollowingdamcompletion.Aspartofitsstructure,thereisaremovable screenthatisusedtodivertfishintothehatcheryduringspawningseason.Thisstructure isfrequentlydamagedbylargeflowevents,andhasoftenbeenreinforcedwithboulders atthesite,althoughthevolumeofsedimentaddedislikelynotasignificantsourcetothe

LAR(Figure114). 18

1.6 FiguresandTables

Gra velIn

NetGravelLoss(S)

) t r o p t s GravelStorage u n o a r l t e v m a r a e G r t Bedrock n w o d (

Figure11Conceptualdiagramofgravelbudgetcomponents.

19

Figure12Lowwaterelevationsdocumentingchannelaggradationandusedasthebasis forGilbert’s(1917)sedimentwavemodel.(fromJames1993)

20

Figure13Gilbert’s(1917)modelpredictingthereturnofchannelstopremining elevations.(A)representssedimentproductionand(D)representssedimentdelivery (fromJames1993).

Figure14SedimenttrappingcurvedevelopedbyBrune(1953)basedondamstorage capacitytoinflowratio(C/I).VerticallineistheC/IratioforFolsomDam.

21

Figure15TheLane(1955)modelhelpspredictwhenaggradationandwhendegradation willoccur.(fromGrant2003)

22

Figure16LocationmapoftheLAR.

23 AnnualPeakStreamflowatFairOaks

200,000 FolsomDam completed

150,000 .

100,000 Discharge(cfs) 50,000

0 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 Figure17HydrographofyearlypeakflowsontheLAR(dataobtainedfromtheCaliforniaDataExchangeCenter(CDEC)).

24 EffectofDamonPeakFlows 1000000 . 100000

Pre-Dam Post-Dam 10000 PeakDischarge(cfs)

1000 1 10 100 RecurrenceInterval(years) Figure18EffectofFolsomDamonpeakflows.Eventswithrecurrenceintervals(RI)greaterthan8yearshavebeenaffected lessthanthosewithRIlessthan8years(dataobtainedfromCDEC).

25 AnnualMinimumStreamflowatFairOaks

2,000 FolsomDam completed

1,500 .

1,000 Discharge(cfs) 500

0 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 Figure19HydrographofminimumstreamflowsontheLAR

26

Figure110MapofleveesontheLowerAmericanRiver(USACE1991,duplicatedfromNRC1995)

27

Figure111HydraulicminingintheSierraNevada(Photo:CentralPacificRailroad PhotographicHistoryMuseum)

28

Figure112Aerialphoto(1949)oftheLARnearthecurrentlocationofNimbusDam showingdredgetailingsinandaroundthechannel(PhotocourtesyBureauof Reclamation)

29

Figure113ObliqueaerialphotoofNimbusDamandFishHatchery(photo:J.C.Dahilig, BureauofReclamation,10/4/1976)

30

Figure114RepairofthefishdiversionstructureatNimbusFishHatchery(photo:D.M. Westphal,BureauofReclamation,8/3/1982)

31

Chapter2: GeomorphictrendsontheLowerAmericanRiver

2.1 Introduction

Riverscandisplayavarietyofresponsestoperturbations.Theycandegradeor aggrade,widenornarrow,becomecoarserorfiner,meanderorstraighten,andbraid.The responsecanalsochangeoverthetimeandspaceofadjustment.Thenatureofthese changesonvariousriverswasdescribedindetailinChapter1,butherethegeomorphic trendsoftheLowerAmericanRiver(LAR)willbeexaminedinparticular.

32

Table21showsthemapsandphotosthatwerecollectedforthisproject,withthe oldestbeingtheRanchoSurveyfrom1865.Mapswerealsoavailablefrom1900,1906, and1962,andsetsofaerialphotographswereavailablestartingin1937throughthe presentwithabout1setperdecade.Inadditiontothishistoricaldata,currentconditions wereobservedandmappedinthesummerof2006toproduceamapindicatingthe distributionofbedrockoutcrops.Thischapterwilllookatthesedataqualitativelyto determinethenatureofchannelchangesondifferentscales:fromtheentireLARto individualbarforms.Then,thecurrentdistributionofbedrockoutcropswillbeexamined inlightofthegeomorphologyoftheLAR.

2.2 Methods

Eachofthescannedimages(maporaerialphoto)wasgeoreferencedusing

ArcGISsoftware.The2002imageswerepreviouslygeoreferencedandwereusedasthe basisforreferencingallotherimagesbylinkingcontrolpoints(suchasbuildingcorners androadintersections)intheolderimagestothesamepointsonthe2002photos.

Polynomialtransformationswerethenperformed.Morecontrolpointswerepossiblewith recentimages;therefore,forimagesafter1950,secondorderpolynomialtransformations

(whichrequiredatleastsixcontrolpoints)wereperformed.Firstordertransformations wereperformedonimagesolderthan1950,whichrequiredonlythreecontrolpoints.

Experiencewiththeimageshasshownthatgeoreferencinginmorerecentimagesis accuratetowithinabout10meters,withslightlylessaccuracyforolderphotos.

33

Thegeometryofthechannelwasdigitizedusingthegeoreferencedimages.This wasdoneintwoways.ForanalysisonthescaleoftheentireLAR,thepathoftheriverin eachphotowasdigitizedbyapproximatingthemiddleofthevisiblechannelwithaline feature,whileformoredetailedanalysis(e.g.shorelinesandbarforms),polygonfeatures wereusedtolocatetheedgeofthewater,whichallowedthecentroidoffeatures(suchas gravelbars)tobelocated.Changesinchannelgeometrywerethenobservedonvarious scalesusingthegeoreferencedimagesanddigitizedchannelgeometries.Forchangeson thescaleoftheentireLAR,threesetsofimageswereused:1865,1900,and2002.The oldest(1865)andnewest(2002)datasetswereusedinordertoanalyzechangesonthe longesttimescalepossible(Figures21and22).The1900datasetwasalsoused becausethe1865setonlycoversreaches3and4,andthe1900setcoverstheentireLAR

(Figure22).ChangesonthescaleofafewkilometersonlyoccurredatGoethePark,and thereforethechannelsfromdatasetswereplottedatthislocationtoobservegeneral trendsovertime(Figure23).Forchangesonthescaleoflessthanakilometer(e.g. barforms),theactualimageswereusedwiththedigitizedshorelinesoverlaintoseesmall changestoshorelinesanddownstreammovementofgravelbars(Figure24).

AmapoftheLARshowingexposedunitswasproducedbasedonaerialphotos andfieldobservationsinthesummerof2006(Figures25through28).Threegeologic unitsweredefined.Theoldestunit(Ancientfluvialdeposits)consistsjointlyofthe miocenepliocenedepositsoftheMehrten,FairOaks,Laguna,Modesto,andRiverbank

Formations(Shlemon1967).Thisunitconsistsofpoorlyconsolidatedsiltstoneand sandstone,withsomeconglomerate.TheAncientfluvialdepositswithintheactive 34 channelweremappedbysnorkelandGPS.Thetwomorerecentunits(Pliopleistocene andModernriverdeposits)aretheunconsolidatedalluvium(sandsandgravels)that overlietheAncientfluvialdeposits.Theminingdebrisproducedhigherinthewatershed inthelate19 th centuryiscontainedwithintheseunits.Modernriverdepositsare differentiatedfromthePliopleistocenedepositsbytheageofmobilization.Modernriver depositsarewithintheactivechanneloftheLARandincludereworkedminingdebris andnaturallyformedfeaturesthatarecurrentlyaccessibleandmobileduringhighflow events.Pliopleistocenedepositsareoutsideoftheactivechannelandrepresentolder, prehistoricpositionsofthechannelandrelatedchannelfluvialdeposits.Muchofthe alluviumneartheLARhasbeenreworkedbydredgeminingoperationsoverthelast120 years.Manyofthespoilsoftheseoperationsarevisibleoutsideoftheactivechannel,but thesedepositswerenotdifferentiatedinthisstudy.

2.3 Results

TheoldestaccuraterecordoftheshapeoftheLARisfromthe1865Rancho

Survey(Figure21).Althoughthemaponlyshowsreaches3and4(fromGoetheParkto thecurrentlocationofNimbusDam),thechannelshowsfewplaceswheresignificant changeshaveoccurred(Figure22).Thereissomedifferencebetweenthe1865channel andthe1900and2002channelsnearthecurrentlocationofNimbusDam,butthemost significantchangesoccurredintheareanearGoethePark.Thislocationwillbeexamined belowinmoredetail.

Thesecondoldestavailablerecordofchannelshapewasaturnofthecentury topographicmapproducedbytheUSGS,obtainedindigitalformcourtesyofthe 35

CaliforniaGeologicalSurvey.ThismapcoverstheentireLARfromtheconfluencewith theSacramentoRivertothecurrentlocationofNimbusDam.Thechanneldigitizedfrom thismap(Figure22)reinforcestheconclusionthattherehavebeenfewmajorchannel changesoverthelast100years.ItindicatesthatthechangesnearNimbusDamhappened between1865and1900andthatchangesnearGoetheParkoccurredinthe20 th century.

Fewchangeshaveoccurredinreaches1and2since1900.

Accordingtohistoricaccounts(Dillingeretal.1991),moresignificantchanges mayhaveoccurredinreaches1and2(fromtheSacramentoRiverconfluencetoGoethe

Park)priorto1900.Duringthelate19 th centurythechannelwasstraightenedinreach1 andtheoutlettotheSacramentoRiverwasmovedupstreamandawayfromdowntown

Sacramento(Dillingeretal.1991).Thefactthatfewchangeshaveoccurredinthese lowerreachessince1900maybeduetothereinforcementoftheleveedbanks.Mostof thechannelinreaches1and2containsthistypeofengineering,whileonlymodest amountsofthechannelinreaches3and4areengineered(mostlynearbridgesandother structures)(NRC1995).

NearGoethePark,thegeneraltrendischannelstraighteningandincreased braiding.Twomeandersinthisareahavemovedinward(towardthemidlineoftheactive channelarea)(Figure23).Thedownstreammeanderhasmovedincrementally(Figure

23),buttheupstreammeanderavulsedinasingleeventbetween1964and1966(Figure

24).FlowrecordsfromtheFairOaksGaugeshowapeakdischargeof115,000cfsin

1965,whichranksastheeighthhighestyearlypeakdischargeinthe100yearsofflow recorded.Barringhumancausation,thissingleeventwaslikelytoberesponsibleforthe 36 changesatthislocation.Theriverhasalsochangedfromasinglechanneltomultiple channelsinthislocation(Figure29),althoughitisuncleartowhatdegreehuman activitiescontributedtothischange.Themaininfluenceislikelytobethesteepgradient

(knickpoint)andrelatedinstabilityofthechannelatthatlocation(Figure210).

Figure210indicatesthatthechannelbottomhasdegraded(lowered)throughout virtuallytheentireLAR.Thelongitudinalprofilesshowasmuchat9mofdegradationin reaches1and2andasmuchas4minreaches3and4.Thisdegradationhasbeencoupled withchannelwidening.Thelengthofthechannelandsurfaceareaofthevisiblewaterin aerialphotographs(1957and2002)wereusedtocalculateaveragechannelwidthsat moderatelylowflows(3300and2700cfsrespectively).

summarizestheseresultsandindicatesanincreaseinwidthofbetween12%and

15%over45years.Thisisaconservativeestimatebecauseflowswereslightlylowerin

2002.Althoughthisstudydidnotmeasurechanneldepthdirectly,itcouldbeinferredthe channeldepthisgenerallyshallowerasaresultofchannelwidening.

Figure211showslocationsinreach4wheregravelbarshavemoved significantlysince1957.TheUpperSunriselocality(Figures212and213)liesatthe endofalong,straightsectionofriverwherethechannelturnstotheleftasitencroaches onthebluffsofthenorthbank.Thebluffreducesstreamvelocityandforcesgraveltobe depositedinnearly,butnotexactly,thesamepositionovertime.Thegeometryofthebar haschangedover45years,butthegeneralsizeandlocationissimilar(Figures212and

213).

37

OthergravelbarssuchasatSailorBar(Figures214through216)andLower

Sunrise(Figures217through219)haveshowndownstreammigrationovertime.At

SailorBar,the2002photoshowsaninstreamislandbarinalocationwheretherewasno barinthe1957photo(Figures214and215).Thebaroutlinedinthe1957photoshows thenearestpotentialsourceforthenewisland.Arateofmovementwascalculatedusing theareaofthebar,theapproximatebarthicknessestimatedfrom1998bathymetry

(Figure216),andthedistancebetweenthenewislandandthepotentialsource.

Vb=Volumeofbar Vb = Ah A=Averagebararea h=Averagethicknessofbar where t=Timebetweenphotographs Vb d=Distancebetweencentroids g R = Rg=Rateofgravelmovement td (volume/unittime/unitdistance)

Thisratehasunitsofvolume/unittime/unitdistance,sotogetanapproximationofthe volumesofgravelmovementoverastretchofriverthisratewasmultipliedby6.4km(the lengthofreach4)andthetimeintervalbetweenthephotos.

R l= lR g l=Lengthofreach where Rl=Rateofgravellossinreach (volume/unittime) Vt= tR l Vt=Totalvolumelostfromreach

ThesecalculationswererepeatedusingthebarmovementatLowerSunrise(Figures217 through219),andgiveapreliminaryapproximationofminimumgravelvolume movementsontheorderof210,000to470,000m 3overthe6.4kmofreach4from1957to

2002andatimeaveragedrateof4,600to10,000m 3/yr(Table23).Itshouldbe

38 emphasizedthattheseestimatesareminimumvolumesbecausetheupstreamgravel sourcesidentifiedwerethenearestpotentialsources,butgravelisalsolikelytohavebeen transportedfromfurtherupstream.Chapter6willpresentanother,moredetailed approachtodeterminegravelvolumelossesontheLAR.

2.4 Discussion

TheLARchannelhasincised,haswidened,and(nearGoethePark)has straightenedandbecomemorebraided.Inaddition,grainsizedistributionsmeasuredby

Horner(2005)showcoarsening(armoring)ofthebedmaterialbelowNimbusDamasfar downstreamasSailorBar.Gravelismobileasdocumentedbythedownstreammigration ofbars.

Thesechangesareeasilyobservedondifferentscalesusinghistoricmapsand aerialphotos,buttherearecontrolsorlimitstochannelchanges.Thearmoringofthebed materialbelowNimbusDammaylimittheverticaldegradationofthechannelinthat location,anddegradationwillbecomelimitedonmoreofthechannelasitcontinuesto coarsen.

Bedrockoutcropsareanotherfactorthatmaylimitboththeverticaldegradation andtheplanformgeometryofthechannel.BedrockontheLARconsistsofcohesive, poorlyconsolidatedsiltsandsands(Shlemon1967)and,comparedtotheunconsolidated sedimentsthatmakeupthebulkofthechannel,itisfairlyresistanttoerosion.Where exposed,ittendstolimitgeomorphicchange.Inthisstudy,outcropsofbedrockwere onlymappedinreaches3and4(Figures25through28),althoughbedrockisalso presentinthedownstreamreachesoftheLAR. 39

Thenorthsideoftheriverhasabluffcomposedentirelyofbedrockthatrangesin heightfromlessthanafewmeterstomorethan50m(Figure25).Thisblufflimitsthe rateofnorthwardmigrationofthechannel.Withinandnearthechannel,mostofthe materialisrecent,unconsolidatedgravelsandsands.Bedrockisexposedontheoutside ofmeanderbendswherestreamvelocitiesarehighanderosionalcapacityisgreatest.

Therefore,bedrockcontrolstherateofmeanderdevelopmentontheLAR.Inaddition,it islikelythatbedrocklimitstheverticaldegradationinlocationssuchasSanJuanRapid

(Figure27)whereextensiveamountsofbedrockarevisibleonthechannelbottom.

40

2.5 FiguresandTables

Figure21RanchoSurveyfrom1865(courtesyWaterResourcesCenterArchives, Berkeley,CA)

41

Figure22MapoftheLowerAmericanRivershowingthechangesinplanformfrom 1865to2002.

42

Figure23MapofLowerAmericanRivershowingchangesinplanformnearGoethe Parkfrom1865to2002atabout35yearintervals.

43

Figure24Aerialphotosshowingthechannelchangesthatoccurredbetween1964and 1966betweenGoetheandAnselHoffmanParks.Apeakflowof115,000cfsin1965is likelyresponsibleforthestraighteningofthechannel.

44

Figure25MapoftheLARshowingthelocationsofthethreegeologicmaps(Figures 26through219).Thispartofthestudywaslimitedtoreaches3and4wheresalmonid spawningismostcommon.

45

Figure26Geologicmapofreach3.

46

Figure27GeologicMapoftheupstreamportionofreach3anddownstreamportionof reach4.SanJuanRapidislocatednearthemeanderbendwherethechannelmeetsthe bluffs.

47

Figure28Geologicmapofreach4.

48

Figure29Channelshape(basedonaerialphotographs)nearGoetheParkshowingan increaseinbraidingbetween1957and2002.ThisistheonlylocationontheLARthat showsthesekindsofchannelchanges.

49

LongitudinalProfileoftheLAR Nimbus

30 . . .

San Juan Juan San Rapid Reach 4 Goethe Goethe Park

20 . . . Reach 3 Paradise Paradise Beach . Sacramento Reach 2

10 Reach 1 Elevation(m)

0

1906Channelbottom

1998Channelbottom

-10 0 10 20 30 40 DistancefromConfluence(km) Figure210LongitudinalprofileoftheLARshowingtheincisionsince1906andthe steepgradient(knickpoint)nearGoethePark.

50

Figure211Mapofreach4oftheLARshowingthreelocationswheregravelbarshave shownsignificantmovement.

51

Figure212PhotoofUpperSunriseshowingthelocationofthegravelbarislandin1957.

Figure213PhotoofUpperSunriseshowingthelocationofthegravelbarislandin2002. Theshapeandlocationchangedsignificantly,butthereisnoconsistentdownstream migrationduetothelocalizedcontrolofthebluff.

52

Figure214GeoreferencedphotoofSailorBarfrom1957.Thedashedlineidentifiesthe likelysourceofthesedimentthatformstheislandinthe2002photo(Figure215).

Figure215GeoreferencedphotoofSailorBarfrom2002.Thedashedlineontheleft showsanislandbarthathasformedsince1957.Thesurfaceareaofthetwobarsandthe distancebetweenthecentroidsweremeasured.

53

Figure216Bathymetriccontoursusedtodeterminethe1.8m(6ft)estimatedthicknessof theisland(USACE1998).

54

Figure217GeoreferencedphotoofLowerSunrisefrom1957.Thedashedlineidentifies thelikelysourceoftheislandinthe2002photo(Figure218).

Figure218GeoreferencedphotoofLowerSunrisefrom2002.Thedashedlineonthe leftshowsthemodernlocationoftheisland.Thesurfaceareaofthetwobarsandthe distancebetweenthecentroidsweremeasured.

55

Figure219Bathymetriccontoursusedtodeterminethe1.2m(4ft)estimatedthicknessof theisland. Table21 AvailableHistoricData Photo Georeferencing Flow Cross Date Source Section or (typeof (cfs) sections Map transformation) 1865 Rancho Survey Nimbus to L. Goethe Map -- No Yes (2 control pts) 1900 US Geol Survey (USGS) Complete Map -- No Yes (1st order) 1906 CA Debris Commission (CDC) Complete Map -- Yes Yes (1st order) 8/16/1937 US Dept of Agriculture (USDA) Complete Photo 300 No Yes (1st order) 3/31/1949 Bureau of Reclamation (BOR) Nimbus to Fair Oaks Photo 3000 No No 7/23/1953 USDA Nimbus to A. Hoffman Photo 1300 No Yes (2nd order) 8/24/1957 USDA Complete Photo 3300 No Yes (2nd order) 1962 US Army Corps of Eng(USACE) Complete Map -- Yes Yes (2nd order) 5/29/1964 USDA Nimbus to Goethe Photo 3000 No Yes (2nd order) 8/4/1966 USGS Complete Photo 2200 No Yes (2nd order) 9/19/1966 CA Dept of Fish&Game (DFG) Complete Photo 1000 No Yes (2nd order) 7/6/1972 USDA Complete Photo 3100 No Yes (2nd order) 4/20/1984 WAC Corporation Nimbus to CSUS Photo 2400 No Yes (2nd order) 4/24/1999 WAC Corporation Nimbus to CSUS Photo 4500 No Yes (2nd order) 3/12/2001 BOR Complete Photo 1500 No Yes (2nd order) 5/9/2002 BOR Complete Photo 2700 No Yes completemeansfromNimbusDamtotheconfluencewiththeSacramentoRiver

56

Table22 Changes in Channel Width (1957-2002) Water Sur face Channel Average Year Reaches Area (m 2) Length (m) Width (m) 1-2 2,434,000 21,600 113 1957 3-4 1,272,000 15,130 84 Percent (3300cfs) 1-4 3,706,000 36,730 101 Increase 1-2 2,729,000 21,630 126 12% 2002 3-4 1,436,000 14,800 97 15% (2700cfs) 1-4 4,164,000 36,430 114 13% Table23 Gravel Movement Results (Reach 4 only)

Location A h Vb d Rg Rl Vt (m 2) (m) (m 3) (km) (m 3/yr/km) (m 3/yr) (m 3) SailorBar 11,000 1.8 20,800 0.650 710 4,600 210,000 LowerSunrise 8,800 1.2 10,700 0.115 2,100 13,000 600,000 t=45yrs l=6.4km

57

Chapter3: GravelmobilityandtheeffectsofFolsomandNimbusDams

3.1 Introduction

Althoughsedimentbudgetsaretypicallyconcernedwiththevolumesofsediment entering,exiting,andstoredwithinareach,itisalsousefultoanalyzetheflowconditions underwhichtransportoccurs.Thisisespeciallyimportantingravelbedriverssuchasthe

LowerAmericanRiver(LAR),wherecoarsesedimenttransportistypicallylimitedto largemagnitudefloodevents(Parker1980).Athoroughunderstandingofthemagnitude offlowrequiredtomobilizecoarsesedimentgivesmanagersthepredictiveabilityto designreleasesthatminimizenegativeimpactsandenhancepositiveeffects.

TheprimaryhabitatconcernontheLARisthereductionofspawninggravel supply,althoughtherearealsopositiveimpactsofgravelmobility.Periodicmovementof gravelbedshelpstowinnowawayexcessfinematerial,improvepermeability,andreduce armoring(Horner2005).Ideally,damreleasescouldbedesignedinsuchawaythat gravelbedsareperiodicallymobilized,butwithoutsignificantlossofgravelfromthe river.Thisscenarioisonlypossiblewithdetailedunderstandingoftherelationship betweenflowsandgravelmovement.

ThemostthoroughstudytodateongravelmobilityontheLARwasdoneby

AyresAssociates(2001).Theyproducedadetailed2dimensionalhydraulicmodelofthe

LARfromNimbusDamtotheconfluenceoftheSacramentoRiver.Fromthismodel, theywereabletodeterminethespatialdistributionofshearstressesateachoffour modeledflows:30,50,80,and115thousandcubicfeetpersecond(tcfs).Theyused grainsizedistributions(D 50 values)from28sitestodeterminewhetherthebedwouldbe 58 mobileateachflow.Ofthe28sites,oneshowedmobilityat30tcfs,sixat50tcfs,11at

80tcfs,and14at115tcfs.Thosethatshowednomobilityatanymodeledflowwere eitherlocatedwheretheriverwasnotcapableofmovingthematerial(outsideofthe mainchannelorinaslowerstretchofriver)orcontainedverylargegrainsthatwere beyondthetransportcapacityoftheriverevenathighflows.Theyconcludedthatgravel isgenerallyimmobileforflowsbelow50tcfs.Thisfigurehasbeenvaluableforriver managersastheminimumvalueforbedmobility.HoweverAyresAssociates’workalso indicatesthatnotallbedsbecomemobileatthisflowandasdischargeincreasesabove50 tcfstheamountofbedmobilitywithintheriveralsoincreases.Butdoesthismeanthatno gravelistransportedbelow50tcfs?Entirebedsmaynotbemobile,butempirical observationsshowthatsignificantmovementdoesoccuratlowerflows.

InDecember2005,dischargeof36tcfswasmaintainedfor11days.Thiswas donetoreducereservoirstorageandhelpwithfloodcontrolforamajorstormthat impactedtheareaonNewYear’sDay(Figure31).Whenflowswereloweredattheend ofJanuary2006,significanterosionwasobservedattheislandnearLowerSunrise

Access(Figure32).TheshorelinesoftheriverwereloggedusingaGPS(Trimble

GeoExplorerCEwithrealtimedifferentialcorrection)inFeb2005andJan2006.The changesintheseshorelinesillustratethatthehighflowscausedincisionoftwosmall channelsonthegravelbarandgraveldepositiononthedownstreamendoftheisland.

AtracerrockstudywasalsobeguninFebruary2005.Brightlypaintedrocksof threesizegradations(Table31)weredeployedbyboatalongsixtransects(Figure33).

Gravelmovementwasmeasuredbywadingnearanddownstreamofthetransectsand 59 loggingthelocationoftracerrockswithaGPSafterfloweventswithmagnitudesof8 and26.5tcfs(Figure34).Thelocationsoftracerrocksfoundateachofthesixsitesare showninFigures35through310.Nogravelmovementwasdetectedafterthe8tcfs event,butthe26.5tcfseventwasabletomovesomelarge(yellow)grainsadistanceof

25meters(Figure36)andsomemedium(red)grainsatleast75m(Figure39).Fewof thesmall(red)grainswerefound.Itisassumedthattheserocksweregenerallymobilized duringthelarger(26.5tcfs)event,butweretransportedtoofartoberecovered.

Alloftheabovemethodsaregoodindicatorsofgravelmovementbutarenot directindicatorsofvolumesofgravellossfromthesystem.Duringaparticularevent,it ispossibleforagravelbartobecomemobileandthenredepositafewmeters downstream.Movementofthisscalemaynotbesignificantintermsofgravelsupplyon theriver.Inordertoidentifytheeventsthatcausedmajorvolumetricgravelloss,scour anddowncuttingwereusedasaproxyforvolumetricchange.Thesechangeswere observedbyusingrepeated,fixedcrosssections.

3.2 Method

StreamdischargewasmeasuredbytheUSGSonaregularbasisinorderto maintainanaccuratestagedischargerelationshipfortheFairOaksGauge.Becausethese measurementsweremadeatthesamelocationeachtime,repeatedcrosssectionswere plottedandcomparedwithpeakdischargerecordsfromeachwateryeartodeterminethe effectofpeakdischargeonchannelshape.

TheFairOaksgaugehasbeenoperatedandmaintainedsinceNovember3,1904

(USGS2004).ItwasoriginallylocatednearthetownofFairOaks,butwasmoved3.5km 60 upstreamtoasitenearHazelAvenueonDecember6,1957aftertheconstructionof

FolsomandNimbusDams(Figure311).Measurementsweremadefromcableways locatedjustdownstreamofthegauge,whichensuredthatthecrosssectionswere compiledinidenticalplacesateachsite.Measurementscontainedthedepthofthewater andthehorizontaldistancefromanarbitrarystartingpointalongthecable.Theelevation ofthechannelbottomwascalculatedbysubtractingthedepthofthewaterfromtheriver stagerecordedbythegaugeduringthemeasurement.Thisresultedinanaccurately referencedelevationassumingthatthewatersurfaceisthesameatthegaugeandthe cableway.Becausethehorizontaldatumwasarbitraryduringeachdischarge measurement,thecrosssectionswereadjustedhorizontallyuntilabestfitwasachieved.

OnecrosssectionwasproducedforeachyearthatUSGSstreamgaugingdata wereavailable.Measurementsmadeinsummerorearlyfallwereusedtoensurethat changesinchannelcrosssectionresultedfromthepeakdischargeofaparticularwater year(theMediterraneanclimateoftheareaprecludestheyearlypeakflowfrom occurringinsummerorearlyfall).Resultsweregroupedbytimeperiodtosummarize significantdowncuttingeventsfrom1944to2004.

3.3 Results

Figure312showstheeffectoftheimpoundmentoftheLARonthemagnitudeof floodevents.AlthoughtheconstructionofFolsomandNimbusDamshasgenerally reducedthemagnitudeoffloodsontheLAR,theeffectonthelargestevents(>8year recurrenceinterval)hasbeenminimal.Thisisimportantbecauselargeeventsarelikelyto causemostgravelloss.Figure313showstheeventsthatcauseddeepeningorwidening 61 ofthecrosssectionattheFairOaksGauge.Detailsofthecrosssectionalchangesare describedbelow.

Figure314showsthechangesobservedattheFairOaksgaugebeforethe regulationoftheriverbyFolsomandNimbusDams(pre1955).Withtheexceptionof

1951,thechannelchangedlittlefromyeartoyear.Mostnotably,afloodof94.4tcfsin

1945causedalmostnochangeinthechannelshape.Theonlysignificantdowncutting eventwasthe180tcfseventin1951(theflowofrecord).

SeveralmajordowncuttingeventsoccurredafterthecompletionofFolsomand

NimbusDamsin1955.ThemoderngaugelocationnearHazelAvenuehadaconsistent channelshapefrom195860,19631964,and19651968(recordswereunavailablefor

196162)(Figure315).Themajorchangesinthisperiodappeartohavebeencausedby thelargemagnitudeeventsof1963(101tcfs)and1965(115tcfs);theformercausing wideningofthechannelandthelattercausingover2mofdowncutting.

Therewerenofloodeventsgreaterthan100tcfsintheperiodfrom1965to1983 andnochannelchangesindicatingdowncuttingorwidening(Figure316).Theonly significantchangesduringthistimeperiodweretwoepisodesofaggradationin1969and

19801983(norecordswereavailablefor1980and1982).Itispossiblethatthemoderate eventsin1969(73.4tcfs),1980(84.8tcfs),and1982(91.1cfs)werelargeenoughfor materialfromNimbusBasin(500–600mupstream)tobemobilizedanddepositedatthe cableway.However,itisalsopossiblethattheaggradationresultedfrommaintenanceof thefishweir250mupstream.Figure317showsthatlargematerialwasaddedto

62 reinforcetheweiron8/3/1972.Ifsomeofthisloosematerialwastransported downstream,itmayhavebeendepositedatthecablewaysite.

Twoeventshavecauseddowncuttinginmorerecenttimes:1986(134tcfs)and

1997(117tcfs)(Figure318).Therehavebeennoothersignificantchannelchangesin thelast22yearsdespitemoderatelylargeflowsof51tcfsin1995and1996.

3.4 Discussion

Quantifyinggravelmobilityisdifficult,butthetopichasbeenstudiedwitha varietyoftechniquesontheLAR.TheAyresAssociates(2001)studyprovidesguidance onminimumflowsnecessarytomobilizebeds,butitsusefulnessislimitedfor quantifyingvolumesofgravelmovementbecauseitisahydraulicandnotasediment transportmodel.Asedimenttransportmodelwouldbeextremelyuseful,butisbeyond thescopeofthisproject.

EmpiricalevidenceverifiesthatgraveldoesmoveregularlyontheLAR,perhaps withflowsaslowas26.5tcfs.Graveldischargeattheselowerflows,however,islikely tobesmallcomparedwithlowfrequencyevents(10–20yearfloods)(Figure312).As themagnitudeofthefloodsincreases,therateofgraveldischargeshouldalsoincrease.If therelationshipwereasimpleproportionality,thenmanagingdischargestominimize gravellosswouldbeamatterofavoidinganylargedischarges.However,becausegravel mobilityreliesontheconceptofincipientmotion(theminimumflownecessaryto mobilizegravel)atasite,thereislikelytobeathresholddischargeabovewhichvirtually allgravelinthereachismobilizedandgraveldischargeissignificant.

63

Changesinchannelgeometryoccurafterthesethresholdevents,andthereislittle changebelowthethreshold.WiththeFairOaksgaugecrosssectionsasaproxy(Figure

313),thefivelargesteventsweretheonlyonesthatcausedsignificantchannel deepeningorwidening,suggestingthat100tcfsisthethresholdforcompletebed mobility,scour,andsignificantgravellossfromtheLAR.

3.5 FiguresandTables

Figure31HydrographshowingthefloodcontrolreleasesinDecember2005toJanuary 2006.

64

Figure32Changesintheshorelinesduringthe36tcfseventofDecember2005to January2006.Gravelwasdepositedonthedownstreamend(lowerleft)ofthebarand twosmallchannelswereincisedinthegravelbar.

65

Figure33Locationsoftracerrockdeploymentlines.RocksweredeployedonFebruary 4,2005.

66

Figure34Hydrographshowingflowsduring2005tracerrockexperiment.

67

Figure35TracerrocksfoundatSailorBar.

68

Figure36TracerrocksfoundatLowerSunriseupstreamsite.

69

Figure37TracerrocksfoundatLowerSunrisedownstreamsite.

70

Figure38TracerrocksfoundatLowerSunrisesidechannelsite.

71

Figure39TracerrocksfoundatSacramentoBarupstreamsite.

72

Figure310TracerrocksfoundatSacramentoBardownstreamsite.

73

Figure311LocationofFairOaksgauge.Priorto1957itwaslocatedneartheFairOaks Bridge.ThemodernlocationisNearHazelAvenue.

74

Figure312RecurranceintervalsoffloodeventsatFairOaksgaugebeforeandafterdam emplacement.Damshavesignificantlydecreasedthemagnitudeofthehighfrequency events(1–5yearrecurrenceinterval),buttheeffectonlowfrequencyevents(>8year recurrenceinterval)ismuchlesspronounced.

75

InstantaneousAnnualPeakStreamflow atFairOaks

1,000,000 = Channel deepening or widening

100,000

Discharge(cfs) 10,000

1,000 1990 2000 1995 2005 1945 1950 1955 1960 1965 1970 1975 1980 1985 Figure313Eventsthatshoweddeepeningorwidening.Alloftheseeventswereover 100tcfs.

76

Figure314Crosssectionsbeforetheemplacementofthedam(atgaugesitenearthe FairOaksBridge).Verylittlechangeisobservedexceptin1951(180tcfsevent).

77

Figure315Crosssectionsaftertheemplacementofthedams.Littlechangewas observedexceptwideningin1963(101tcfsevent)andamajordowncuttingin1965(115 tcfsevent).

78

Figure316Crosssectionsfromthelate1960’stotheearly1980’s.Nowideningor downcuttingwasobserved,butaggradationtookplacein1969(73.4tcfsevent)and1979 –1983(84.8tcfsand91.1tcfsevents).

79

Figure317Rockfillbeingplacedupstreamoffishweirtofacilitaterepair.8/3/82D.M. Westphal,Photo(BureauofReclamation).

80

Figure318Crosssectionsfromthemid1980’stopresent.Changeswerefromthe1986 (134tcfs)and1997(117tcfs)events. Table31 TracerRockSizes Color DiameterRange Red 1.6–3.2cm Blue 4.4–6.4cm Yellow 8.9–10.8cm

81

Chapter4: Volumetricestimateofgravelinputs

4.1 Introduction

Animportantcomponentofasedimentbudgetisthevolumetricgravelinputto thereachofinterest.Measurementofthisvolumeisdifficult,butismadesignificantly easierwhenonlyconsideringgravel,becausegravelismuchmoredifficulttotransport intothereachthanfinematerial.Potentialsourcesarelimitedtolocationsclosetothe reachitself(requiringlittleornotransport)ortolocationsdrainedbystreamswithflow velocitiescapableoftransportinggravelintothereachofinterest.

ReidandDunne(1996)identify9processesfortheintroductionofsedimentinto streams(Table41).Source9(bankerosion)isasignificantsourceofgraveltothe

LowerAmericanRiver(LAR)andwillbediscussedindetaillater.Sources3through7 donotapplytogravelandwereignored.Sources1,2,and8onlyapplytorelativelysteep terrainandcaseswheretheseactivitiesoccurcloseenoughtotheriverthatthegravel maybeentrained.TheterrainadjacenttotheLARisrelativelygentle,withtheexception ofthebluffsonthenorthsideoftheriver.Theriverencroachesonthesebluffsinseveral locations(Figures41and42),butaerialphotographsshownegligibleretreatatall locations.Thebluffformationsareprimarilysiltysandswithseveralunitscontaining gravellyintervals,howeverthesecoarsedepositsarenomorethanafewmetersthickand wouldnotcontributesignificantamountsofgraveltotheriverunlessthebanksretreated agreatdeal(whichtheyhavenot).Forthesereasons,sources1,2,and8werealso ignored.

82

InthispartofthestudyweconsideredreachesthreeandfouroftheLAR(Figure

43).Becauseweareconsideringthesediscretereachesandnotanentiredrainagebasin, wemustalsoaccountforgraveltransportedintothesereachesfromupstreamandby tributaries.NeitherisasignificantsourceofgraveltotheLAR.Therearefewtributaries totheLARandthosethatdoexistaresmall(nolargerthansmallcreeks),haveagentle gradient,andarethereforeincapableoftransportingthelargematerialneededfor spawning.GravelsupplyfromupstreamisalsounlikelysinceNimbusandFolsomDams wereemplacedinthemid1950's.LargedamssuchasNimbusandFolsomareeffective sedimenttraps.Additionally,thesedimentofinterestinthisstudyiscoarseandvirtually impossibletosuspend.SedimenttrappingcurvesdevelopedbyBrune(1953)relatethe trapefficiencytotheratioofreservoircapacitytoaverageyearlyinflow(Figure44).

UsingthecapacityofFolsomDam(975,000acft)andtheinflowfromthe2004water year(1,811,00acft)givesFolsomDamaratioof0.5.Thiscorrespondstoatrapping efficiencyofmorethan90%forfine,colloidalsedimentandmuchhigherefficiencyfor coarsesediment.

Onefinalsourceofgravelthatmustbeconsideredishumaninput.Theonly majorprojectinvolvinggraveladditionoccurredin1999.Atthistime,gravel augmentationexperimentswereconductedbytheCaliforniaDepartmentofFishand

Gameatthreesites,includingSailorBar,LowerSunrise,andSacramentoBar.Atotalof

3,300m3ofgravelwasaddedatthesesites(Horner2005).

83

IntermsofgravelinputtotheLAR,bankerosionislikelytobetheonlymajor contributor.Thischapterlooksatthevolumeofgravelthathasbeenintroducedtothe

LARbybankerosion.

4.2 Method

Areasofbankerosionwereidentifiedbycomparingthehistoriclocationofthe activechannelboundarywiththecurrentboundarylocation.Thiswasachievedusing aerialphotographyfrom1957and2002.Photosfromtheseyearswerechosenbecause theyspanthetimeframeofinterestafterthecompletionofFolsomandNimbusDamsand becausethephotoshavesimilardischarge(3300cfsand2700cfs,respectively).

Becausethewettedperimeterinthephotographdoesnotnecessarilydefinethe entireactivechannel,thechannelboundarywasoftendrawnoutsideofthephoto’swater line.Threecriteriawereusedtodefinetheactivechannel:thewaterlineinthephoto, typeanddensityofvegetation,andsoilshading.Lowbrushandgroundcoverare possiblewithintheactivechannel,buttallervegetationdoesnotpersistontheAmerican

Riverinareasthatareregularlyinundated.Wherethereisnovegetation,theshadingof thegroundsurfacewasusedtoidentifytheactivechannel.Areasthathadnotbeen inundatedrecentlyareslightlydarker.Asanexampleofhowthesecriteriawereused,

Figure45showstheright(north)bankattheFishHatcherywithnovegetationin1957 andvegetatedin2002.

Theaerialphotosweregeoreferencedasrasterdataandthechannelboundaries digitizedasvectorpolygonfeatures.Ageometricsubtractionwasperformedonthe polygonstoidentifythosepartsofthe2002channelthatwerenotpartofthe1957 84 channel,signifyingerosion.A10mclustertolerance(maximumdistanceatwhichthe channelboundariesareconsideredcoincident)wassetintheGISsoftwaresothatslight differencesinthechannelboundarybetweenthetwophotoswereignored.Figures41 and42showthelocationsofsignificantbankerosioninreaches4and3,respectively.

Inadditiontoidentifyingthelocationsofsignificanterosion,theGISsoftware alsocalculatedthesurfaceareaofeacherodedbank.Todeterminethevolumes,estimates oftheheight(thickness)ofeacherodedsectionweremeasuredinthefield(Figure46).

Becauseofthecomplexitiesofbarformsandbankshapes,simplymultiplyingthesurface areabythebankheightmaynotaccuratelydescribethevolumeofanerodedbank.Allof theerodedbanksarenowfairlysteep.Ifthebankhadagentleslopebeforeerosion,asin thecaseofapointbar(Figure47B),thenthecrosssectionalgeometryresemblesa triangle,andtheformulaV e=½Ahgivesareasonableestimateofthevolumeof sedimenteroded(whereV e=volumeeroded,A=areaerodedasmeasuredfrom photographs,andh=heightoferodedbankmeasuredinthefield).However,ifthebank wasalreadysteep,asinthecaseoftheerosionofacutbank(Figure47C),thena rectangularerodedcrosssectiongivesabetterestimationandtheformulaV e=Ahshould beused.Therefore,foreachsiteadeterminationwasmadewhethertousethetriangular orrectangularcalculationmethod.Thisdeterminationwasbasedontwofactors:the remaining(uneroded)geometryofthebankupstreamanddownstreamfromtheeroded areas,andthelocationoftheerosionrelativetomeanders,withtheinsideofmeanders likelybeingpointbars(triangular)andtheoutsideofmeanderslikelybeingcutbanks

(rectangular).TheheightofeacherodedsitewasdeterminedusingaJacob'sStaffand 85 handlevelalongeacherodedbank(Figure46).Thesemeasurementswereusedto determineonerepresentativeheightforeachsite(Table42).

Thepercentgravelinthebankateachsitewasestimatedinthefield.Percentages lessthan100%reflectexcessfines.Atthesesitestherewereeitherexcessfinesinthe gravelmatrix,ortherewerelayersoffinesinterspersedwithlayersofsuitablegravel.

Thevolumeoferodedsedimentateachsitewascalculatedbymultiplyingthepercent gravel(decimalequivalent)timesthevolumeoferodedsediment(Table42).

4.3 Results

Fivelocationsofsignificantbankerosionwereidentifiedonairphotosinreach4

(Figure41)andfourlocationswereidentifiedinreach3(Figure42).Eachsitewas visitedtoverifyevidenceoferosion,measuretheheightofthebank,verifythetypeof bank(pointbarorcutbank),andmakeanestimateofthepercentageofspawninggravel.

TheFishHatcheryerosionalsite(Figure45)islocatedatriverkm36.2onthe left(south)bankoftheriverabout1kmbelowNimbusDam.Thissiteisabout500m belowtheremovableweirthatdivertsfishintothehatcheryduringspawningseason.The erodedbankis500mlongandhasrecededupto50m.Justupstreamoftheerosion,the right(north)bankrunsupagainsta50mtallbluff,thendivergesfromthebluffandthe thalwegshiftstothesouthside(wheretheerosionhasoccurred).Thesitehasrecently beenstabilizedwithriprap1to2metersindiametertopreventfurtherencroachmenton thehatchery.Theerodedstretchofriverisrelativelystraight.Theheightofthebankwas measuredat9differentlocationswithbankheightsrangingfrom4.5to8.5meters,and anaveragevalueof6meterswasusedforvolumeestimates.Theriprapmadeitdifficult 86 toobservethepercentgravelwithinthebank,butexposuresatthetopofthebank showedprimarilygravelwithasmallamountoffines,resultinginanestimated90% gravelcontent.Usingthesurfaceareaof14,000m2andthetriangular(pointbar) calculationmethod,anestimated38,000m3ofgravelhasbeenerodedfromtheFish

Hatcherysitesince1957(Table42).

TheSailorBarerosionalsite(Figure48)islocatedontheright(north)bankat riverkm35.3,where1000mofshorelinehasrecededupto100m.Thelocationisonthe insideofameanderbend,sotriangular(pointbar)geometrywasusedforsediment volumecalculations.Theheightwasmeasuredat9differentlocationsandrangedfrom4

6.5mwithanaverageheightof6m.Thebankwascomposedexclusivelyofgravelsizes appropriateforspawning.With100%gravelcontentandasurfaceareaof46,000m2,an estimated126,000m3ofgravelhasbeenerodedfromtheSailorBarsitesince1957

(Table42).

AsmallamountoferosionoccurredontheleftbankatUpperSunrise(Figure49) nearriverkm33.7.Atthislocation,120mofshorelinehasreceded20m.Theerosion occurredinasidechanneloppositefromthehighbluffs.Inearlierphotographsofthis area,agraveloperationexistedtothesouthwest.Theerosionisclearlyontheinsideofa meanderbend,sotriangular(pointbar)geometrywasusedforvolumecalculations.

Sevenheightmeasurementsweremadealongtheerodedbank,withresultsrangingfrom

4to6mandaveraging5m.Thebankcontainedabundantfinesedimentinterspersedwith gravel,resultinginanestimatedgravelcontentof25%.Usingthe2000m 2surfacearea,

87 anestimated1000m3ofgravelhasbeenerodedfromUpperSunrisesince1957(Table

42).

SignificanterosionhasoccurredontherightbankatLowerSunriseaccess

(Figure410).Thissiteisatriverkm31.7andairphotosshowthat450mofshorelinehas recededupto65msince1957.Theoverallchannelisrelativelystraightatthislocation, butduringlowtomoderateflowstheriverisdivertedaroundamidchannelbarfeature, causingerosiononthenorthbank.Thereisalsoasidechannelonthesouthbankthat goesdryatflowsbelow3000cfs.Becausethechannelisrelativelystraightoverall,the erodedbankistypicalofneitherapointbarnoracutbank;however,thenorthbankboth upstreamanddownstreamisnotparticularlysteep,sotriangulargeometrywasusedfor volumecalculationsatthissite.Thirteenheightmeasurementsweremadealongthebank withresultsrangingfrom2to5.5mandaveraging4m.Gravelcontentvariedthroughout theerodedbank,withpredominantlyfinegrainedmaterialintheupstreamportions, gravelinthemiddle,andamixtureoffineandcoarsesedimentinthedownstream portions,resultinginanestimatedoverallgravelcontentof50%.Usingthesurfacearea of15,000m2,anestimated15,000m3ofgravelhasbeenerodedfromtheLowerSunrise sitesince1957(Table42).

TheerosionontherightbankatSanJuanRapid(riverkm29.0)isslightly differentthantheotherlocations,becausetherivermakesapairofsharpbendsbefore meetingthe30mtallbluffsonthenorthsideforathirdtime(Figure411).Twosections intheareahaveerodedatotalof460mofshorelineandhaveretreatedupto50m.The erodedbanksarepartofacutbank,sorectangular(cutbank)geometrywasusedfor 88 calculations.Theheightofthebankandgravelcontentwasestimatedusingahandlevel fromtheoppositebank.Theheightwasestimatedat7mandthegravelcontent25%.This bankhasyieldedapproximately22,000m3ofgravelsince1957(Table42).

TheLowerRossmoorerosionalsiteislocatedatriverkm26.5ontheleftbank.At thissite,700mofshorelinehasrecededupto57m(Figure412).Thebankheightwas measuredat6locationsrangingfrom3.5to7mwithanaverageof6m.Theupstreampart oftheerodedsectionisontheinsideofameanderbendandthedownstreampartison theoutside,however,thebankgenerallyseemstohaveagentleslopeinadjacentareas, sotriangulargeometrywasused.Thebankwasprimarilyfines(10%gravel),yielding only7,000m3ofgravelfromthe24,000m2section.(Table42)

TheerosionatHaganParkislocatedontheleftbankwherethestreamhas straightenedduetoameandercutoffdownstreambetween1964and1966(Figure413).

Thebankadjacenttotheerodedsectionisverysteep,sorectangulargeometrywasused forcalculations.800mofbankhaverecededupto91mandis7mthick,translatingthe

51,000m2oferosioninto167,000m3ofgravel,whichisthelargestcontributionofgravel fromasinglesiteinthisstudy(Table42).

ThemeanderatUpperGoethewascutoffbetweenMay1964andAugust1966, basedonaerialphotographsfromthosetimes.Thesharpbendsthatexistedbeforewere straightened,andminorerosionoccurredonthenorthbankwithmoresignificanterosion ofthepointbaronthesouthbank(Figure414).The570mofshorelineonthesouthbank recededupto122myieldinganareaof37,000m2andavolumeof61,000m3(Table42).

89

TheLowerGoetheerosionalsiteisthefurthestdownstreaminreach3(Figure

415).Theerosionoccurredontheinsideofabroadmeanderbend,sotriangular(point bar)geometrywasused.Thebankreceded61m,was640mlong,andconsistedof primarilyfinesandsandsilts.Thesedimentcontained10%gravel,sothe24,000m2of erosiononlyyielded6000m3ofgravel(Table42).

Summingthegravelerodedfromallninesitesgivesatotalerodedgravelvolume of440,000m3(Table42).Thevolumeaddedbyhumans(3000m3)wastherefore insignificantandbelowthetwosignificantdigitsinthesemeasurements.

4.4 Discussion

Atypicalmeanderingriverwillnaturallyerodeontheoutsideofmeanders(cut bank)anddepositontheinside(pointbar)(Mount1995).Mostoftheerosiononthe

LAR,however,hasoccurredinstraightreachesorontheinsideofmeanderbends

(Figures41and42).Itisdifficulttoidentifyaspecificgeomorphicprocessthatwould causethis,butitsuggeststhatthedynamicsoftherivermayhavechangeddueto incision,thedammingoftheriver,andreducedsedimentsupplyfromupstream.

ItisalsointerestingtonotethatsignificanterosionontheLARoccursin upstreamanddownstreamlocations.SailorBarandHaganParkarethesitesofmaximum sedimenterosion,andarelocatedontheupstreamanddownstreammarginsofthestudy arearespectively(reaches4and3oftheLAR).Thissuggeststhattwomechanismsmay beresponsibleforthedegradation:incisionandsedimentremovalthatprogressed downstream(mouthward)fromthedam,andchanneldegradationinthelowerreaches thatmayhaveprogressedupstream(headward)frombelowthestudyarea. 90

Indescribingthedownstreameffectsofdams,Collier,etal.(1996)haveobserved thatvirtuallyallriversinciseanddegradedirectlybelowdamsandthatthisdegradedarea willlengthendownstream(mouthward)overtimeuntilitreachesanequilibrium(ora tributarysuppliesmoresediment).Thelargeamountofgravelerodedfromthebankat

SailorBar(just2kmbelowNimbusDam)isconsistentwiththismodelandsuggeststhat thedegradedareaontheLARisatleast2kmlong.

Thedownstreamboundaryofreach3waschosenprimarilybecauseitrepresented aknickpoint(locationwheretheriverelevationdropssharply)thatseparatesthelow gradientofreach2fromthehighergradientupstream(Figure43).Knickpointstendto progressupstreamveryrapidly(ingeologicterms),duetothesteepgradient,high velocity,andhighstreampower,unlesstheyarecontrolledbyanerosionresistantfeature suchasadamorresistantlayerofbedrock(Mount1995).Themeandercutoffand subsequenterosionofthenearbybanks(UpperGoetheandHaganPark)couldbe attributedtothisprocessofheadwardprogressingerosion.Figure43showsthechange ingradientbetweenreaches2and3.Inaddition,thechannelwidenshereandthe sedimentloadchangesfromprimarilygravelupstreamtoprimarilyfinesediment downstream(basedonqualitativefieldobservations).

Thesetwoprocesses,headwardandmouthwarderosion,maybehappening simultaneouslyontheLAR.Butregardlessofthemechanism,banksoftheLARhave erodedandsignificantvolumesofgravelhavebeenaddedtothechannelasaresult.Itis unlikely,however,thatthesevolumesaresignificantenoughtomakeupforthelossof supplyfromupstream.Astheresultsfromchapter6willshow,channeldegradation 91

(incision)hasoccurredinreaches3and4,andthesegravellossesaremuchlargerthan theinputsdescribedinthischapter.

4.5 FiguresandTables

Figure41Locationsofsignificanterosioninreach4oftheLAR.Thelocationofthe bluffstothenorthareindicated.

92

Figure42Locationsofsignificantbankerosioninreach3oftheLAR.Thelocationof thebluffstothenorthareindicated.

93

LongitudinalProfileoftheLAR Ave Dam Sac Sac CSUS River Nimbus Nimbus Sunrise

30

Reach 4

20 Reach 3 . Reach 2

10 Reach 1 Elevation(m)

0

-10 0 10 20 30 40 DistancefromConfluence(km) Figure43ThislongitudinalprofileoftheLARfromtheconfluencewiththeSacramento RivertoNimbusDamisfrom1998basedonchannelbottomelevationsfrom2foot contoursproducedbytheArmyCorpsofEngineers(USACE1998).

94

Figure44Brune(1953)sedimenttrappingcurve.Theverticallineindicatesthecapacity toinflowratioofFolsomDam.

95

Figure45FishHatchery.Asignificantarea(14,000m 2)waserodedontheleftbank beforeitwasarmoredtopreventencroachmentonthehatcherystructures.Thebankis6 metershighandcontains90%gravel.

96

Figure46BankheightsweremeasuredusingaJacob’sStaffandhandlevel.Black marksonthestaffare50cmapart.

97

Figure47Geometryofbankerosion.Erosionofapointbarapproximatesatriangle(B), whilecutbankapproximatesarectangle(C).Pointbarerosioncalculationsusethe formula½Ah,whilecutbankcalculationsusAh.

98

Figure48SailorBar.Therightbankatthislocationhascontributedmostofthegravel inputintheupperreachoftheriverbecauseitcontains100%gravel,is6metershighand 46,000m2haseroded.

99

Figure49UpperSunrise.Theleftbankatthislocationhaslostanareaof2000m2.The bankis5metershighandcontains25%gravel.

100

Figure410LowerSunrise.Themainflowoftheriverhasshiftedfromtheleftbankto therightbankwhereithaseroded15,000m2ofgravel.Thebankis4mhigh,andcontains 50%gravel.

101

Figure411SanJuan.Therightbankofthissharpbendintheriverhaserodedanetarea of13,000m2betweenthetwolocations.Itis7mhighandcontains25%gravel.

102

Figure412LowerRossmoor.Theleftbankhaslostanareaof24,000m2.Thebankis6 metershighandcontainsonly10%gravel.

103

Figure413HaganPark.Theleftbankhaslostanareaof51,000m2.Thebankis7meters highandcontains50%gravel.

104

Figure414UpperGoethe.Themeanderatthislocationwascutoffbetween1964and 1966.Theerodedsectionhasanareaof37,000m2,hasaheightof7m,andis50%gravel.

105

Figure415LowerGoethe.Theleftbankhasanerodedareaof24,000m2.Thebankis5 metershighandhas10%gravel.

106

Table41Potentialsedimentsourcesforrivers(ReidandDunne1996)andwhetherthey applytogravel. Source Doesitapplytogravel? 1 Landslides Maybe 2 DebrisFlows Maybe 3 Gullies No 4 Treethrow No 5 Animalburrows No 6 Sheetwasherosion No 7 Winderosion No 8 Dryravel Maybe 9 Bankerosion Yes Table42 Gravel Input Calculations for Reaches 3 and 4

Surface Triangular Estimated Sediment Estimated Gravel Area Location or Thickness Volume Gravel Volume Eroded 3 3 Rectangular 2 (m) (m ) Content (m ) (m ) Fish Hatchery T 14,000 6 42,000 90% 38,000 Sailor Bar T 46,000 6 126,000 100% 126,000 Upper Sunrise T 2,000 5 5,000 25% 1,000 Lower Sunrise T 15,000 4 31,000 50% 15,000 reach 4 3 San Juan R 13,000 7 90,000 25% 22,000 200,000 m subtotal Lower Rossmoor T 24,000 6 73,000 10% 7,000 Hagan Park R 51,000 7 334,000 50% 167,000 Upper Goethe T 37,000 7 121,000 50% 61,000 reach 3 3 Lower Goethe T 24,000 5 60,000 10% 6,000 240,000 m subtotal 440,000 m 3 TOTAL

107

Chapter5: Volumetricestimateofgravelloss

5.1 Introduction

Anatural,undisturbedreachofgravelbedriverthatisinequilibrium,has relativelyconstantgravelcontentovershorttimescales(tenstohundredsofyears).

Downstreamgraveltransportoccursonastatisticallyregularbasis,butthis“gravelout” isoffsetby“gravelin”(transportfromupstreamandtributaries,orbybankerosion)

(Mount1995).

TheLowerAmericanRiver(LAR),however,isadisturbed,regulatedriver,and theamountofgravelchangesovertimeasitadjuststonewflowregimes,sediment supply,andchannelchanges.ThehistoryoftheLAR(seeChapter1)includesseveral episodesofdisturbances,startingwiththehugeinfluxofhydraulicminingsedimentin thelatenineteenthcentury,thendredginginandnearthechannelintheearlytwentieth century,andfinallytheimpoundmentoftheriverin1955.Inaddition,changestothe

SacramentoRiverhavehadaprofoundimpactontheLARbywayofchangeinbase elevation.TheSacramentoRiverisreportedtohaveaggradedbyover3mwithmining sedimentinthelatenineteenthcentury,andthendegradedassedimentsupplywas reducedbytheconstructionofdamsintheupperSacramentoValleywatershed(Dillinger etal.1991;NRC1995).TheSacramentoRiverwasalsobeendredgedfornavigation

(Mount1995).Inaddition,themouthoftheAmericanRiverwasmovedupstreamand thelastfewmilesofthechannelwerestraightenedforfloodcontrolinthenineteenth century(Dillingeretal.1991).

108

TheproductionofminingsedimentintheSierraspeakedbeforetheturnofthe century(Gilbert1917).Gilbert(1917)proposedasymmetricalsedimentwavemodelfor themovementofthisdebristhroughthefoothillsandintothedelta,althoughmorerecent studies(James1993)havefoundvastamountsofminingdebrisstillinfoothilllocations.

James(1993)proposedanasymmetrical,rightskewedsedimentwavemodelasamore accuraterepresentation.Regardless,thetypicalresponsetoexcesssedimentloadwould bedowncuttinganddegradationwithhigherincisionratessoonafterthedisruptionand lowerrateslateron(Gilbert1917;James1991;James1993).

IsgravelbeinglostfromtheLARandifso,howfast?Thisisprobablythemost importantquestiontorivermanagersthatisbeingaddressedinthisstudy.Thehistoric eventsoftheriversuggestthatthevolumeofspawninggravelislikelytohavebeen reducedoverthelasthundredyears,butitisdifficulttoestimatethisloss.Ifthevolume ofgraveltransportedoutoftheLARwereknown,thenthevolumelosscouldbe calculatedbysubtractingthegraveloutputfromthegravelinputthatwasmeasuredin

Chapter4(Figure11).However,becausethegraveloutputisdifficulttomeasure accurately,gravellosswasmeasuredempiricallyinthisstudyusinghistoricgeometryof thechannel(crosssectionsandlongitudinalprofiles)andcomparingittothemodern geometry.Thisapproachgivesthemostaccurateviewofgravellossregardlessofthe accuracyofgravelinputmeasurementsfromChapter4.Thiswillthenallowthegravel outputcomponentofthebudgettobecalculated.

109

5.2 Method

TomeasuregravellossintheLAR(SinFigure11),changesinthevolumeof gravelwithinthechannelweredeterminedusingfourstepsandseveraltypesofavailable data,includinghistoriccrosssectionsandlongitudinalprofiles.First,thedifferencein crosssectionalareabetweenhistoriccrosssectionsandmodernoneswasmeasured.This yieldedthe“crosssectionalareaeroded”.Second,the“crosssectionalareaeroded”was multipliedtimesthelengthofthereachforwhichthecrosssectionwasdeterminedtobe representative.Thiswasdonetoextrapolatethecrosssectionalareatoavolumeand yieldedthe“sedimentvolumeeroded”.Third,thehistoricandmodernlongitudinal profileswereusedtoverifythatthechangeatthecrosssectionwastrulyrepresentative oftheentirereach.Thedifferenceinelevationbetweenthehistoricprofileandthe modernone(incision)wasestimated,andtheaverageincisionforthereachwas comparedtotheincisionatthecrosssectionandthevolumeofgravellosswasadjusted.

Thisyieldedthe“adjustedsedimentvolumeeroded”.Finally,toaccountforthefactthat notallerodedsedimentwasgravel,thepercentageofgravelwasestimatedforeachreach anditsdecimalequivalentwasmultipliedbyboththe“sedimentvolumeeroded”andthe

“adjustedsedimentvolumeeroded”toyieldthe“gravelvolumeeroded”and“adjusted gravelvolumeeroded”,respectively.

Crosssectionsforestimatesofgravellosscamefromthreedifferentdatasets; twohistoric(CDC1907;USACE1963)andonemodern(USACE1998).Thehistoric crosssectionswerefrom1906and1962(butpublishedoneyearlater)andwereobtained indigitalformfromtheWaterResourcesCenterArchivesattheUniversityofCalifornia, 110

BerkeleyandtheU.S.ArmyCorpsofEngineers,SacramentoDistrict,respectively.The moderndata(USACE1998)wereobtainedfromtheU.S.BureauofReclamation,but wereoriginallycollectedandproducedbytheU.S.ArmyCorpsofEngineers,

SacramentoDistrict.The1962dataincludedfourcrosssectionsspacedalongtheLAR, andfourcorrespondingcrosssectionsfrom1906werechosen(Figure51)toallow comparisonbetween1906and1962.The1998dataconsistsofaGISshapefilewith seamlesstopographyandbathymetry(2footcontourinterval)whichwasusedtoproduce moderncrosssectionsinthesamelocationaseachhistoriccrosssection(Figures52to

59).Thedifferenceinareabetweenthecrosssectionswascalculatedbyusingalinear interpolationofeachsection,summingthedifferencesinelevationat1.5mintervals,and multiplyingby1.5m.Thiscalculationwasdoneonlyfortheareawithinthemodern activechannelandproducedanestimateofthecrosssectionalareaerodedateachcross sectionlocation.

Thisareawasthenmultipliedbythelengthofthereachtoestimatethesediment volumeerodedforeachreach.ThisrequiredtheLARtobedividedinto4reaches,ideally witheachreachhavingcharacteristicssimilartothecorrespondingcrosssectionlocation.

Geomorphiccharacteristicswereusedindefiningthesereaches.Descriptionsofeach reachcanbefoundinChapter1.Todeterminethelengthofeachreach,thethalweg distancewasmeasuredonamap(USACE1998).

Multiplyingbythelengthofthereachassumedthattheerosionthatoccurredat thecrosssectionwasrepresentativeoftheentirereach.Toverifythevalidityofthis assumptionandadjustthevolumeaccordingly,theincisionmeasuredbetweenhistoric 111 andmodernlongitudinalprofileswasusedasaproxy(Figure510).Thedifferencein elevationbetweenthehistoricandmodernprofile(incision)wassampled(usingalinear interpolation)at30mintervalsthroughouteachreachandanaverageincisioncalculated.

Thiswascomparedtotheincisioncalculatedatthecrosssection.Theratioofaverage incisionforthereachtoincisionatthecrosssectionwasmultipliedbythe“sediment volumeeroded”toyieldthe“adjustedsedimentvolumeeroded”.Twotypesofprofiles wereavailable:channelbottom(CB)andwatersurface(WS).However,bothwerenot availableforeveryyear(Figure510).Incisionfrom1906to1998wascalculatedusing

CB,whileincisionfrom1906to1962wascalculatedusingWS.Incisionfrom1962to

1998wasestimatedusingthedifferencebetweenthe1906to1998(CB)incisionandthe

1906to1962(WS)incision.

Thefinalstepindetermininggravelvolumelosswastotaketheprevious calculationsandaccountforthefactthatnotallsedimenterodedwasgravel.The percentageoftheerodedmaterialthatwasgravelwasdeterminedbyestimatingthe percentageofgravelwithinthemodernchannelforeachreach(Table51).Basedon fieldobservations,thebedmaterialindownstreamreaches(1and2)wasdeterminedto beprimarilysandwhiletheupstreamreaches(3and4)weredeterminedtobeprimarily gravel.The“gravelvolumeeroded”and“adjustedgravelvolumeeroded”were calculatedbymultiplyingthe“percentgravel”(decimalequivalent)bythe“sediment volumeeroded”andthe“adjustedsedimentvolumeeroded”respectivelyforeachreach.

112

5.3 Results

Gravellossesinreaches3and4haveamuchlargerimpactonspawninghabitat becausevirtuallyallofthespawningactivityoccursintheseupperreaches(Vyverberget al.1997).Therefore,gravellossesfromreaches1to4andlossesfromreaches3and4 weresummedseparately(Table51).About6.1millionm 3ofgravelwereerodedfrom reaches14since1906(abouthalfofthisoccurringsince1962)andabout3.2millionm 3 erodedfromreaches3&4since1906(alsowithhalfofthisoccurringsince1962).It shouldbenotedthatthedivisionoftheLARintofourreachesdoesnotimplythatinputs andoutputsweresummedseparatelyforeachreachoftheriver.

ThechannelhasincisedinallfourreachesoftheLAR,butthelowerreaches

(1&2)haveseenmoreincisionandsedimentlossthantheupperreaches(3&4).

However,themajorityofthegravellossoccurredintheupperreachesbecausethebed materialinthesereacheshasamuchhigherfractionofcoarsematerial.

Ingeneral,adjustingthevolumesusingthelongitudinalprofilesindicatethat simplymultiplyingthecrosssectionalareabythelengthofthereachslightly overestimatedtheamountofchannelerosion.Thisresultedintheadjustedvaluesbeing lowerthantheunadjusted.Theexceptiontothisisforreaches1&2from19621998.

Oncethevolumesofgravellossfordiscretetimeperiodswereknown,ratesof gravellosswerecalculated(Table52).Threetimeperiodswereconsideredbasedonthe availabilityofcrosssectionandlongitudinalprofiledata:oneprimarilybeforethe constructionofFolsomandNimbusDamsin1955(19061962),oneprimarilyafterdam construction(19621998),andonethatspanstheentirerange(19061998).Thegravel 113 volumeerodedfor19061962wascalculatedbysubtractingthe19621998volumefrom the19061998volume.Theratesestimatedusingunadjustedgravelvolumes(i.e.using onlycrosssectiondata)indicatethatallthreetimeperiodshadsimilarratesofgravel loss.Accordingtothesedata,87,000to88,000m3/yrwereerodedfromtheentireLAR

(reaches1to4)and55,000to58,000m3/yrwereerodedjustfromreaches3and4.

However,theadjustedgravelvolumes(i.e.usingbothcrosssectionalandlongitudinal profiledata)indicateahigherrateafterdamconstruction;anincreasefrom51,000to

90,000m3/yrfortheentireLARandanincreasefrom32,000to44,000m 3/yrforreaches3 and4.

5.4 Discussion

Theresultsofthispartofthestudyindicateveryclearlythatgravelhasbeenlost fromtheLARoverthelast100years.Allofthecrosssectionsshowincision,andthe longitudinalprofilesshowveryfewplaceswherethechannelhasaggradedoreven stayedthesameinelevation(Figure510).Downstreamreaches1and2showthe greatestamountofincision,andtheonlylocationwherethechannelelevationhasstayed marginallystableisjustdownstreamofSanJuanRapidattheupstreamendofreach3.

Thesedatafurthersupporttheideaoftwomechanismsofchanneldegradation, oneprogressingdownstreamfromNimbusDamandoneprogressingupstreamfromthe confluencewiththeSacramentoRiver.Theonlylocationthatseemstohavebeen unaffectedbyeithermechanismisnearSanJuanRapidattheboundarybetweenreaches

3and4.Thislocationmayhavesomecontrollingfactorthatrendersitimmuneto degradation,possiblyageologiccontrolwithcohesive,ashrichbedrockthatisdifficult 114 toerode.Thetwosharpbendsthattherivertakesatthislocationareunlikeanyother featureontheriver.

Table52couldsuggestthatthedammaybepartiallyresponsibleforthe reductioningravelsupplyontheLARbecausethe“adjustedrateofgravelloss”ishigher after1955.However,twofactorschallengethevalidityofthisclaim.First,two significantfigureshavebeenassignedtoallofthesemeasurements.Thislevelof accuracymaynotbejustified,andonesignificantdigitmaybemoreappropriate.

Roundingthesenumberstoonedigitmakesthedifferenceinratesseemmuchless pronounced.Additionally,themeasurementswereadjustedbyusinglongitudinalprofiles fromthethreedatasets.Eachdatasethadadifferentsourceandthelevelofaccuracyis largelyunknownbutisassumedtobehigh.Thetypesofprofilesarealsonotthesame whichmayaccountforthedifferenceinrate(Figure510).

Regardless,thedatafromthisprojectsuggestthattheLARhasbeenincising throughoutthetwentiethcenturyandtherateofincisionhasnotdecreased.Bothmodels forminingdebristransportthroughthisarea(Gilbert1917,James1993)implythatthe rateofincisionshouldgodownovertime.Thefactthatithasnotmaybeenough evidencetoclaimthatFolsomandNimbusDamsareatleastpartiallyresponsibleforthe reductioningravelontheLAR.

115

5.5 FiguresandTables

Figure51LocationmapfortheLARshowingthelocationofthefourreachesandcross sectionsthatwereusedtomeasuregravelloss.ThecrosssectionIDswithRoman numeralsarefrom1906,whiletheIDswithArabicnumeralsarefrom1962.

116

CSXIX'

12

10

8

. 6

4

2

Elevation(m) 0

-2

-4

-6 1350 1450 1550 1650 1750 1850 1950 2050 2150 2250 Distance(m)

1906 1998 Figure52Crosssectionsshowingerosionbetween1906and1998inreach1atriver kilometer1.6(CDC1907;USACE1998).

117

CSX'

16

14

12 . 10

8

6 Elevation(m)

4

2

0 2000 1950 1900 1850 1800 1750 1700 1650 1600 1550 Distance(m)

1906 1998 Figure53Crosssectionsshowingerosionbetween1906and1998inreach2atriver kilometer12.6(CDC1907;USACE1998).

118

CSIII'

24

22

20 .

18

16 Elevation(m) 14

12

10 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 Distance(m)

1906 1998 Figure54Crosssectionsshowingerosionbetween1906and1998inreach3atriver kilometer24.8(CDC1907;USACE1998).

119

CSII

35

33

31 . 29

27

25 Elevation(m)

23

21

19 700 600 500 400 300 200 100 0 Distance(m)

1906 1998 Figure55Crosssectionsshowingerosionbetween1906and1998inreach4atriver kilometer34.1(CDC1907;USACE1998).

120

CS1.0

12

10

8 .

6

4 Elevation(m) 2

0

-2 0 100 200 300 400 500 600 700 800 900 Distance(m)

1962 1998 Figure56Crosssectionsshowingerosionbetween1962and1998inreach1atriver kilometer1.6(USACE1963;USACE1998).

121

CS7.8

16

14

12 . 10

8

6 Elevation(m)

4

2

0 0 50 100 150 200 250 300 350 400 450 500 Distance(m)

1962 1998 Figure57Crosssectionsshowingerosionbetween1962and1998inreach2atriver kilometer12.6(USACE1963;USACE1998).

122

CS15.4

24

22

20 .

18

16 Elevation(m) 14

12

10 0 100 200 300 400 500 600 700 800 900 Distance(m)

1962 1998 Figure58Crosssectionsshowingerosionbetween1962and1998inreach3atriver kilometer24.8(USACE1963;USACE1998).

123

CS21.2

33

31

29 .

27

25 Elevation(m) 23

21

19 0 50 100 150 200 250 300 350 400 450 Distance(m)

1962 1998 Figure59Crosssectionsshowingerosionbetween1962and1998inreach4atriver kilometer34.1(USACE1963;USACE1998).

124

LongitudinalProfiles Ave Sac Sac River Dam CSUS Sunrise Sunrise Nimbus

30

Reach 4

20 Reach 3 . Reach 2 CS21.2

10 CSII Reach 1 Elevation(m) CS15.4 CSIII' 1906watersurface 0 1906channelbottom CS7.8 1962watersurface CSX' 1998channelbottom CS1.0

-10 CSXIX' 0 10 20 30 40 DistancefromConfluence(km) Figure510Longitudinalprofilesusedtocorrectthesedimentvolumeeroded(CDC 1907;USACE1963;USACE1998). Table51 NetGravelVolumeLossesontheLowerAmericanRiver 1906to1998 Incision Average Adjusted Adjusted Cross Length Sediment Gravel at Incision Sediment Gravel Cross Sectional of Volume Percent Volume Reach Cross for Volume Volume Section Area Reach Eroded Gravel Eroded 2 3 Section Reach Erod ed 3 Eroded (m ) (m) (m ) 3 (m ) 3 (m) (m) (m ) (m ) 1 CSXIX' 500 8,900 4,400,000 8.2 7.2 3,900,000 10% 440,000 390,000 2 CSX' 860 11,000 9,700,000 5.8 5.5 9,200,000 25% 2,400,000 2,300,000 3 CSIII' 260 8,900 2,300,000 1.4 1.3 2,200,000 75% 1,800,000 1,600,000 4 CSII 420 8,000 3,400,000 3.0 1.5 1,700,000 100% 3,400,000 1,700,000 Total (reaches 3&4) 5,700,000 3,900,000 5,100,000 3,400,000 Total (reaches 1-4) 20,000,000 17,000,000 8,000,000 6,100,000 1962to1998 1 CS1.0 440 8,900 3,900,000 2.8 4.2 5,800,000 10% 390,000 580,000 2 CS7.8 230 11,000 2,600,000 2.1 3.5 4,300,000 25% 650,000 1,100,000 3 CS15.4 300 8,900 2,600,000 0.7 0.5 2,000,000 75% 2,000,000 1,500,000 4 CS21.2 15 8,000 120,000 0.9 0.8 100,000 100% 120,000 100,000 Total (reaches 3&4) 2,700,000 2,100,000 2,100,000 1,600,000 Total (reaches 1-4) 9,200,000 12,000,000 3,100,000 3,200,000

125

Table521 RatesofGravelLossontheLowerAmericanRiver Reaches14 Adjusted Adjusted Gravel Rate of Gravel Rate of Volume Time Gravel Years Volume Gravel Eroded (years) Loss 1 3 Eroded 3 Loss (m ) 3 (m /yr) 3 (m ) (m /yr) 1906-1998 8,000,000 6,100,000 92 87,000 66,000 1906-1962 4,900,000 2,800,000 56 88,000 51,000 1962-1998 3,100,000 3,200,000 36 87,000 90,000

Reaches3&4 1906-1998 5,100,000 3,400,000 92 56,000 37,000 1906-1962 3,100,000 1,800,000 56 55,000 32,000 1962-1998 2,100,000 1,600,000 36 58,000 44,000

1Thedisparityinadjustedratesofgravellossbetween19061962and19621998maybearesultof increasedscourafterdamconstructionin1955,butcouldalsobeexplainedbythedifferenttypesof longitudinalprofilesusedintheadjustmentprocess(seeFigure510). 126

Chapter6: Estimatingbedrockdepths

6.1 Introduction

Thepurposeofthispartofthestudyistodeterminetherangeofgraveldepthson theLowerAmericanRiver(LAR),whichwillhelpconstrainthesignificanceofgravel lossesontheLAR.Thisdependstosomedegreeonhowclosetherivercomesto degradingdowntobedrock.

Bedrockoutcropsinandnearthechannelcanbeobservedinvariousplaces throughoutreaches3and4(upper15km)oftheLAR(Figure61).Mostofthese outcropsareonthebankswherethechanneliserodinglaterally.Clearlytherangeof graveldepthsstartsatzero,buthowdeepisitinotherareas?Isthechannelbottomonthe

LARsimplyathinveneerofgraveloverlyingbedrock,orarethereareaswherethe gravelismanymetersdeep?Seismicrefractionwasusedtoaddressthisquestion.

6.2 Method

SeismicrefractionsurveyswereperformedatvariouslocationsalongtheLARby installinganarrayof12geophonesat3mintervalsalongthegravelsurface(Figure62).

Ironrodswerepoundedintothegroundandsecuredtoeachgeophonewithziptiesin ordertoensuregoodcouplingbetweenthegeophoneandthegravel.Asaresult, geophonemeasurementswereessentiallybeingmade0.3m(thelengthoftherods)below thesurface.Thislengthwasaddedtoalldepthmeasurements.

Seismicwavesweregenerated(usingasledgehammerandmetalplate)1.5–

7.6mfromeachendofthearrayandthetraveltimeforthefirstwavetoarriveateach geophonewasrecorded(Figure63).Interpretationsweremadeusingeitheratwoor 127 threelayermodel,whichassumesthatthelayersarehorizontalandthattheseismic velocityincreaseswithdepth(Figure64).Therefore,thebedrockisassumedtohavea significantlyhigherseismicvelocitythantheunconsolidatedsedimentsthatoverlieit.

Changesinseismicvelocitywithintwometersofthesurfacewereinterpretedasthe locationofthewatertable.Thisassumptionisreasonablegiventhatallsurveyswere locatedwithinafewmeters(laterally)oftheshoreline.Incaseswherethreelayerswere observed,theywereassumedtobedrygravel,wetgravel,andbedrock.Lillie(1999) indicatesthatunconsolidatedsedimentshaveseismicvelocitiesof100–2000m/s.

Expectedvelocitiesfordrygravel(whichcontainahighfractionofvoidspace)wouldbe closetothatforair(approximately320m/s)andwetgravel(withwaterfillingthevoids) closetothatforwater(1500m/s).Lillie(1999)alsoindicatesthatclasticsedimentary rockshavevelocitiesof1500–5500m/s.Thebedrockinthearea(FairOaksandMehrten

Formations)ispoorlyconsolidatedsandstoneandsiltstonewithsomeconglomerate

(Shlemon1967),sobedrockvelocitiesareexpectedtobeinthelowerpartofthisrange.

Theoverlapintypicalseismicvelocitiesfortheunconsolidatedsedimentsandclastic sedimentaryrocksintroducesthepossibilitythatthevelocityofthebedrockislessthan ordoesnotdiffersignificantlyfromtheoverlyingsediment(whichwouldcontradictone ofthepremisesoftheinterpretationmodels).However,becauseseismicvelocitiesof about2700m/swereobservedatNB2,itisassumedthatthebedrockvelocitiesinthearea aregenerallygreaterthan2000m/s.

Figure64showstheinterpretationmodelandequationsusedtodeterminedepths tobedrock.Surveysweredoneinbothdirections(i.e.withseismicwavesgeneratedfrom 128 eachendofthearray),calculationswereperformedforeach,anddepthvaluesaveraged frombothdirections.

6.3 Results

Seismicsurveyswereperformedat4locationsintheupper7kmoftheLAR

(Figure61).Surveysweredoneparalleltotheriveratalllocationswithadditional surveysperpendiculartotheriverintwolocations(NimbusBasinandLowerSunrise).

NimbusBasinislocatedatriverkilometer37.0,justdownstreamfromNimbus

Dam(Figure65).Theareahasbeenhighlymodifiedforconstructionofthedam,fish hatchery,andHazelAvenuebridge.TheexposureofbedrocknearNB1andthearmoring ofthestreambedprovideevidencethattheareahasdegradedsincethedamwas constructedin1955.Twoseismicsurveyswereperformedatthislocation,one perpendiculartotheriverontheupstreamendofthebarclosesttothedam(NB1)and oneparalleltotheriveronthedownstreamendofthebarclosetoHazelAvenue(NB2).

BothsurveyswereperformedinearlyAugustof2006duringflowsof3300cfs.Results fromNB1wereinconsistentwithasimplehorizontallayermodel(Figure66).Theshot locationsonthenorthendofthearrayshowseismicwavesarrivingatmoredistant geophonessoonerthanatcloserones.Thisindicatesthatthebedrocksurfaceislikelyto beundulating,perhapsshallowateitherendofthearrayanddeepinthemiddle.NB2 wastheonlylocationontheLARtoproduceresultsindicatingahorizontallyoriented bedrocksurfacewithinthedepthrangeofthemethod(Figure66).Seismicvelocitiesfor layer1averaged450m/s,consistentwithdrygravel.Velocitiesforlayer2averaged

1600m/s,consistentwithwetgravel.Finally,velocitiesforlayer3averaged2700m/s 129 whichisinterpretedasthevelocityofunderlyingbedrock.Usingequationsforathree layermodel,depthtothewatertableis1.1manddepthtobedrockis6.8m.

SailorBarislocatedatriverkm36.0,downstreamofthefishhatchery(Figure

67).Thesurvey(SB)wasdoneonabarfeatureparalleltothechannelonthenorthbank inearlyAugustof2006duringflowsof3300cfs.ResultsfromSBindicateachangein seismicvelocity(410m/sto1800m/s)atadepthofabout1.1mwhichisconsistentwith thewatertableatthatdepth(Figure68).Nootherchangesinvelocityareapparent.Ifwe assumethatthebedrockwasslightlydeeperthanthedepthofthesurveyandthatthe bedrockinthislocationhasavelocityclosetothatmeasuredatNB2(2700m/s),wecan calculateaminimumgraveldepthof8.5m.

TheUpperUpperSunrisesite(UUS)islocatedatriverkm34.5,betweenSailor

BarandtheUpperSunriseisland(Figure69).Thesurveywasdoneparalleltothe channelonthesouthbankinmidAprilof2007duringflowsof1800cfs.Resultsfrom

UUSindicatenochangesinseismicvelocity(Figure610).Ifweassumethatthebedrock wasslightlydeeperthanthedepthofthesurveyandthatthebedrockinthislocationhasa velocityclosetothatmeasuredatNB2(2700m/s),wecancalculateaminimumgravel depthof9.2m.

LowerSunriseislocatedatriverkm31.7,downstreamofSunriseBoulevard

(Figure611).Twoseismicsurveyswereperformedatthislocation,oneperpendicularto thechannel(LS1)andoneparallel(LS2).ThesurveyatLS1wasperformedinearly

Augustof2006duringflowsof3300cfsandLS2wasperformedinearlyApril2007 duringflowsof2000cfs.ResultsfromLS1showedchangesinseismicvelocity,butwere 130 inconsistentwithasimplehorizontallayermodelandperhapsindicateanundulating surfaceintheNWSEdirection(Figure612).However,theresultsfromLS2,whichwas orientedNESW,didnotindicateanychangeinseismicvelocity(Figure612).Applying thesamealgorithmasforSBandUUS,theminimumdepthtobedrockis8.3m.

6.4 Discussion

Minimumorabsolutedepthscouldbedeterminedforfourofthesixseismic refractionsurveys(Table61).Ofthesefour,onlyoneshowedanabsolutedepthto bedrock(6.8m)attheNimbusBasinSite,NB2.Therestindicatethatthebedrockisat least8.3mdeep.Usingthesevalues,graveldepthsontheLARspantherangeof0mto greaterthan9m.Itisworthnotingthatthetwosurveyswheredepthscouldnotbe determinedweredoneperpendiculartothedirectionofthechannel.Thismayindicate thatbedrockelevationsarelessvariableparalleltothechannelandmorevariable perpendiculartoit.

HowdeeparethegraveldepositsontheLAR?Thedepthofgravelappearsto varygreatly.Atthesitesofthefourseismicsurveys,thegravelisnotathinveneer, however,allofthesurveysweredoneonorneargravelbarswhereoneexpectsthe graveltobedeep.Therearealsoareaswheretheriverhasalreadyreachedbedrock

(Figure61).IfshallowbedrockislimitedtothechannelmarginsshowninFigure61, thenthegravelinthechanneloftheLARmaybemanymetersdeep,butifshallow bedrockareasextendwellintothechannel,therivermaybeclosetoagraveldeficit.

Becausewehavelittleevidenceofthisextent,thedegreeofverticalbedrockcontrolon theLARremainslargelyanopenquestion. 131

6.5 FiguresandTables

Figure61Locationmapoftheseismicsurveysontheupper7kmoftheLAR.

132

Figure62Installationofthegeophonearray.Thegeophonesweresecuredto0.3mlong rebarpoundedintothegraveltoensuregoodcouplingbetweenthegeophoneandgravel.

133

Figure63Seismicwavegeneration.Theplatewasstruckmanytimesandtheresults stackedtominimizeambientnoise.

134

Figure64Interpretationmodelforhorizontallayerswithseismicvelocitiesthatincrease withdepth(v 1<v2<v3<v4)(fromLillie1999)

135

Figure65LocationmapforseismicsurveysatNimbusBasin

136

Figure66SeismicsurveyresultsforNimbusBasin 137

Figure67LocationmapforseismicsurveyatSailorBar

138

Figure68SeismicsurveyresultsforSailorBar

139

Figure69LocationmapforseismicsurveyatUpperUpperSunrise

140

Figure610SeismicsurveyresultsforUpperUpperSunrise

141

Figure611LocationmapforseismicsurveysatLowerSunrise

142

Figure612SeismicsurveyresultsforLowerSunrise 143

Table61ResultsofSeismicSurveys Elevation of Elevation of Depth to Depth to River gravel surface bedrock Location Survey ID water table bedrock kilometer (m above sea (m above (m) (m) level) sea level) Nimbus Basin NB1 37.0 ------25.6 ---- Nimbus Basin NB2 37.0 1.1 6.8 25.0 18.2 Sailor Bar SB 36.0 1.1 >8.5 23.5 <15.0 U. Upper Sunrise UUS 34.5 <0.3 >9.2 21.3 <12.1 Lower Sunrise LS1 31.7 ------19.2 ---- Lower Sunrise LS2 31.7 <0.3 >8.3 19.2 <10.9 ---- could not be determined

144

Chapter7: AnalysisandConclusions

7.1 SummaryofResults

TheplanformoftheLARhasremainedlargelyunchangedsince1906(Figure

22).TheLARisprimarilyasinglechannel,meandering,gravelbedriver.However, longitudinalprofilesshowaknickpoint(rapiddropinriverelevation)nearGoethePark

(Figure210).Thehighgradientatthislocationhascauseddrasticlocalizedplanform changes,includingsuddenmeandercutoffsandanincreaseinthenumberofchannels fromasinglechanneltotwoorthree(Figures23to29).Thelongitudinalprofilesalso indicatelargeamountsofincisionthroughouttheLAR,withthechannelbottombeing loweredbyupto9minreaches1and2andupto4minreaches3and4(Figure210).

DischargeontheLARhasbeenalteredbytheregulationofflowbyFolsomand

NimbusDamssince1955.Minimumyearlyflowshaveincreasedfromabout350to

2300cfs(over600%increase)(Figure19)whileyearlypeakflowshavedecreasedfrom anaverageof54,000to30,000cfs(lessthan50%decrease)sinceimpoundment(Figure

17).Ofthesepeakflows,thelargestevents(withgreaterthananeightyearrecurrence interval)haveseentheleastchangewithonlya20%reductionindischargemagnitude

(Figure18).

TheincipientmotionofgravelontheLARhasbeenstudiedbyvarious researchers,includingAyresAssociates(2001)whodeterminedthatgravelbedsare generallyimmobilebelow50,000cfs.However,therelationshipbetweendischargeand thevolumeofgravellossfromtheLARremainslargelyunknown.Inthisstudy,yearly crosssectionalchangesattheFairOaksGaugewereusedtodeterminewhenmajorscour 145 andgravellossoccurs.Flowsbelow100,000cfscausedlittlelossofgravelatthegauge, whilethefiveeventssince1945withmagnitudesover100,000cfsallcauseddeepening and/orwideningofthechannel.Assumingthatthiscrosssectionisrepresentativeof changesthroughouttheLAR,100,000cfsmaybethethresholdformajorgravelloss

(Figures313to318).

Bankerosion(wideningofthechannel)istheonlymajorgravelinputtotheLAR, becauseupstreamrecruitmentisblockedbyNimbusDam,andnotributariescontribute significantamountsofcoarsesediment.Ninelocationsofsignificantbankerosionwere identifiedinreaches3and4(upper12.5km)usingaerialphotographsfrom1957and

2002(Figures41and42).Approximately440,000m 3ofgravelhasbeenerodedfrom thebanksandintroducedtotheLARinthistimeframe(Table42).

Lossofgravelfromtheactivechannelwasalsomeasuredusingchangesinarea betweenhistoricandmoderncrosssectionsandlongitudinalprofiles(Table51).An estimated1,600,000m 3ofgravelhasbeenerodedfromtheactivechannelinreaches3 and4between1962and1998.Thegraveltransportedoutofreaches3and4includesthe gravelerodedfromboththechannelandthebanks,totaling2,000,000m 3fromabout

1960to2000(Figure71).

ThesignificanceofgravellossontheLARdependstosomedegreeonthedepth ofthegraveldeposits.Resultsfrommappingofthechannelbottomandseismic refractionsurveysindicatethatgraveldepthsrangefrom0m(bedrockoutcropsonthe channelbottom)togreaterthan9m(Table61).Thiswiderangeofdepthsprecludes

146 definitivestatementsabouttheextentofbedrockcontrolandthevolumeofgravel remaininginthechannel.

7.2 Discussion

ThereasonsforthenetlossofgravelontheLARaretwofold.TheLARis respondingtotheinfluxofminingsedimentinthelatenineteenthcenturyandthe cessationofupstreamgravelsupplybytheconstructionofNimbusandFolsomDamsin

1955.Thedegreetowhicheachoftheseisresponsibleforthegravellossoverthelast50 yearsisunknown,butbotharelikelycontributors.

Analysisofchannelerosionratesfortimeframesbeforeandafterdam construction(Table52)indicatethatgravelwasbeingerodedfromthechannelbefore theemplacementofFolsomandNimbusDams(32,000m 3/yrfrom19061962)asa responsetotheinfluxofminingdebris.Therateofgravellossestimatedinthisstudy since1962mayhaveincreased(44,000m 3/yr),butthelowprecisionoftheseestimates precludesmakingthisstatementwithcertainty.Iftheminingdebrisweretheonlycause, therateofdepletionwouldbeexpectedtodecreaseovertime(Gilbert1917).Thevolume estimatesinthisstudyshownosuchdecrease,owingtotheeffectsofFolsomand

NimbusDams.

Basedonpatternsobservedinotherstudies,channelincision(deepening)from theeffectsofthedamsshouldbemostprominentjustbelowNimbusanddecrease downstream.Thelengthanddepthofdegradationshouldincreaseovertimeuntil equilibriumisreachedeitherbythearmoringofthechannelbelowthedamorflattening oftheprofiletoapointwheresignificanttransportceases(WilliamsandWolman1984). 147

TheLARchannelcurrentlyhasasignificantlayerofarmorbelowthedam(Vyverberget al.1997;Horner2005)whichmayindicatealowpotentialforfurtherincisiondirectly belowthedam.ThecrosssectionsattheFairOaksGaugesupportthisclaimbecauseno channeldeepeninghasoccurredatthatlocationsince1986(Figure318).However, unlessgravelisreplaced,thelengthofthearmoredsectionmaycontinuetolengthen downstream.Theincisedsectionmayalsocontinuetopropagatedownstream.Currently itappearstoextendtoSanJuanRapid(Figure210)wheretheelevationmaybe controlledbybedrockandthereductionofstreampoweratapairofsharpmeander bends(Figure27).However,thisdoesnotprecludefurtherincisionintheareasbetween

SanJuanRapidandNimbusDam.

IncisionbelowSanJuanRapidmayhavepropagatedupstreamfromthe confluenceoftheSacramentoRiver.TheSacramentoRiveraggradedbyabout3.3m

(10.8ft)duringthepeakofhydraulicmining(Gilbert1917),andthesubsequentlowering ofthebaseelevationmayhavecausedaknickpointtomigrateupstream.Thisknickpoint appearstobecurrentlylocatednearGoethePark(Figure210),althoughthereisno evidencethatitwasfurtherdownstreamatanearliertime.Itispossiblethatthe knickpointhasbeeninthatlocationforthelast100yearsandthatthedegration throughoutreaches1and2wassimultaneous.However,theknickpointcouldprogress furtherupstreamfromitscurrentlocation,butbedrockoutcrops(Figure26)maylimit therateofprogression.

ThedegreetowhichbedrockimposesgeomorphiccontrolontheLARislargely anopenquestion.Certainlytheexistenceofoutcropsonthechannelbottom(Figures26 148 to219)indicatesthatbedrockisafactorinsomelocations,butthelateralextentofthese outcropsunderneathmorerecentdepositsisuncertain.Theresultsofseismicsurveysin thisstudyindicatewidevariationindepthsandpossiblyawildlyundulatingbedrock surface.Perhapsthesevariationscanbeexplainedbyancientchannelswithinthebedrock thatweresubsequentlyrefilledwithrecentsediment.However,withseismicdepths measuredatonlyfourlocations,thisremainsspeculation.

AlthoughlargeamountsofgravelhavebeenlostfromtheLAR,theconsequences forsalmonidspawningarenotclear.ThevolumeofgravelremainingintheLARchannel remainsunknownandconsequentlythereisinsufficientevidencetosayifthereduction ingravelvolumeislimitingspawninghabitat,especiallyduetotheimportantroleof otherphysicalfactorssuchassubstrateparticlesizeandlocalizedflowcharacteristics.

Thechannelfeaturesthatseemtopromotethemostspawninguseareriffles.Rifflesare createdbyinchannelfeaturessuchasgravelbars,andthereductionofgravelsupply fromupstreammaycausethesebarstodeteriorateandbereplacedbyplanebedsover time(Brandt2000).Thereforeanyhabitatenhancementeffortshouldfocusnotonlyon thereplacementofgravelvolume,butondoingsoinawaythatmaintainsandenhances bedfeaturesthatpromoterifflesandinstreamdiversityoffeatures.

7.3 Recommendationsforfuturehabitatenhancements

Thediscussionthatfollowswilllookatrelationshipsbetweenchannelgeometry

(thatproducesriffles)andthedistributionofspawningontheLAR,speculatingabout possibleopportunitiesforhabitatenhancement.Itshouldbeemphasized,however,that thisdiscussionisprimarilybasedoninformationfromaerialphotographyanddoesnot 149 includethekindsofdetailedhydrologicandhabitatassessmentsneededtoimplement theseideas.

TheSunriseBoulevardarea(riverkm32)hassomeofthemosthighlyused spawninghabitatontheLAR(HannonandDeason2005;Horner2005)(Figure72).

Thishabitatisassociatedwithtransversebars(extendingacrosstheriveratanacute angle)anchoredbylateralbars(paralleltoflowoneithersideofthechannel).These featurescreaterifflesandcauseriverflowtoswitchfromonebanktotheother.High densityspawningoccursnearthelateralchangeinflow,perhapsduetotheinductionof subsurfaceflow(ThibodeauxandBoyle1987)bythetransversebar.

LikeSunrise,SailorBarhasageometrythatcausesflowtoshiftfromtheleft banktotherightbank(Figure73),butthehabitatisscarcelyusedforspawning.Its locationjustbelowNimbusDamheightenstheeffectsofreducedgravelsupply,andthe bedmaterialhasbecomearmoredandtoocoarseforreddconstruction(Vyverbergetal.

1997;Horner2005).Thisisincontrasttomostotherlocationsinreaches3and4which haveamoreappropriaterangeofsizesforspawning(Vyverbergetal.1997).Thissite, therefore,providesanopportunityforrehabilitation.Effortsinthislocationshouldbe focusedonreinforcingthisfeaturewithsedimentofappropriatesizes(graveland cobbles,butnotboulders).Others(Vyverbergetal.1997)havenotedthatthehigh velocitiesherepreventthesefinergrainsfromstayinginplace.Rehabilitationmayneed toinvolveachangeinthegeometryofthechannelaswell.Theflowisfocusedintoa narrowwidthjustupstreamofthetransversebar,soperhapswideningthissectionwould reducevelocitiesandtransportoffinergrains.Oneadvantageofaddinggravelatthis 150 locationisthatevenifsedimentistransporteditmayendupenhancinghabitat downstreamandreducingthepotentialforfurtherarmoring.

TheareabetweenLowerSunriseandSacramentoBar(Figure74)hasno significantbarsthatwouldinduceriffles.Theflowisrelativelystraightand homogeneous.Figure74showshowbarscouldbeconstructedtoinducetheflowto switchsidesofthechannelandpossiblycreatenewhabitatand/orenhanceexisting habitat.TheproposedlocationofthelateralbaronthenorthbankjustbelowtheLower

SunriseIslandalreadyseemstobealocationofsedimentdeposition,withwaterdepths around0.6m(2ft)atabout2700cfs.Thecreationofabaratthislocationmaysimply involveenhancingtheexistingfeature.Theproposedlocationofthebaronthesouth bankcurrentlyhaswaterdepthsaround1.21.8m(46ft)atabout2700cfs.However,this barwouldbethekeytorehabilitationatthissite,asitwouldcausetheflowtoswitch fromsouthtonorthbankbelowLowerSunriseandthenswitchbacktothesouthagain nearSacramentoBar.TheamountofhydraulicheadbetweentheLowerSunriseisland

(riverkm31.5)andSacramentoBar(riverkm30.6)requiredtoproducerifflesinthese locationsmaydeterminetheviabilityoftheproposedrestorationprojects.

Thereareseverallocationswheresalmonidsengageinspawning,oftenwithsuch ahighdensitythatreddsaresuperimposedononeanother(HannonandDeason2005).

Thehydrauliccharacteristicsinthechannelmaybewhatlimitthequalityofhabitat.

Furtherinvestigationsshouldfocusonanalyzingtheflow(bothsurfaceandsubsurface) athighdensityspawninglocationssuchasLowerSunrisesothatfuturehabitat enhancementscanbedesignedtomimicconditionsatcurrentlysuccessfullocations. 151

7.4 FiguresandTables

Gravelout = S/ t – Gravelin

2,000,000 = 1,600,000 – 440,000 440,000 m 3 Gra velIn

NetGravelLoss(S) 3 ) -1,600,000 m t r 3 o p m t s GravelStorage 0 u n o a 0 r 0 l t , e 0 v m 0 a r a 0 e , G r 2 t Bedrock - n w o d (

Figure71Completedgravelbudgetforreaches3and4fromabout1960to2000 showingtheestimatedvolumeofgravelthathasbeentransportedoutoftheuppertwo reaches

152

Figure72GeometryofgravelbarsandhighlyusedspawninghabitatatLowerSunrise(nearriverkm32).Barsonleftand rightbanksareconnectedbytransversebars

153

Figure73SiteforpotentialhabitatenhancementatSailorBar(riverkm35).Thegravelinthislocationistoocoarseforredd construction,soeffortsshouldconcentrateonenhancingthebarwithgrainsofappropriatesizes.

154

Figure74SiteforpotentialhabitatenhancementnearSacramentoBar(riverkm31).Currentlythereisnobaronthesouth sideofthechannel,butconstructionofsuchabarwouldcausestreamflowtoswitchfromthesouthbank,tothenorthbank, andbackagain.

155

REFERENCES

AyresAssociates,2001,Twodimensionalmodelingandanalysisofspawningbed mobilizationLowerAmericanRiver:ReportpreparedforSacramentoDistrictArmy CorpsofEngineers. Brandt,S.A.,2000,Classificationofgeomorphologicaleffectsdownstreamofdams, Catena,v.40,p.375401. Brune,G.M.,1953,TrapEfficiencyofReservoirs,TransactionsoftheAmerican GeophysicalUnion,v.34,no.3,p.407418. CaliforniaDebrisCommission(CDC),1907,MapoftheAmericanRiver,California: fromitsmouthintheSacramentoRivertotheSouthFork,scale1:9600,13sheets withcrosssections. CaliforniaStateMiningBureau(CSMB),1890,Reportofthestatemineralogist, CaliforniaGeologicalSurvey. Collier,M.P.,Webb,R.H.,andSchmidt,J.C.,1996,Damsandrivers,Aprimeronthe downstreameffectsofdams,U.S.GeologicalSurveyCircular1126,94p. Dillinger,W.C.,Woodward,L.,andSmith,J.M.,1991,AhistoryoftheLowerAmerican River,TheAmericanRiverNaturalHistoryAssociation(ARNHA),163p. Galay,V.J.,1983,Causesofriverbeddegradation,WaterResourcesResearch,v.19,p. 10571090. Gilbert,G.K.,1917,HydraulicminingdebrisintheSierraNevada,UnitedStates GeologicalSurveyprofessionalpaper105,154p. Graf,W.L.,1980,Theeffectofdamclosureondownstreamrapids,WaterResources Research,v.16(1),p.129136. Grant,G.,2003,Thegeomorphicresponseofriverstodams,ProgramatUniversityof Nevada,Reno,http://www.fsl.orst.edu/geowater/morphology/homeeis2.html. Hannon,J.andDeason,B.,2005,AmericanRiverSteelhead( Oncorhynchus mykiss ) Spawning20012005,BureauofReclamation,MidPacificRegion,48p.

156

Horner,T.C.,2005,PhysicalandgeochemicalcharacteristicsofAmericanRiver SpawningGravels,Secondyearreport(2003/2004season),Reportsubmittedtothe USBureauofReclamation,Sacramentooffice,139p. James,L.A.,1991,Incisionandmorphologicevolutionofanalluvialchannelrecovering fromhydraulicminingsediment,GeologicalSocietyofAmericaBulletin,v.103,p. 723736. James,L.A.,1993,SustainedreworkingofhydraulicminingsedimentinCalifornia:G.K. Gilbert’ssedimentwavemodelreconsidered,ZeitschriftfürGeomorphologie,N.F., Supplementband88,p.4966. Kondolf,G.M.,1988,Salmonidspawninggravels:Ageomorphicperspectiveontheir sizeanddistribution,modificationbyspawningfish,andcriteriaforgravelquality, [Ph.D.dissertation]:Baltimore,JohnsHopkinsUniversity,396p. Lane,E.W.,1955,Theimportanceoffluvialgeomorphologyinhydraulicengineering, AmericanSocietyofCivilEngineersProceedings,v.81,p.117. Lillie,R.J.,1999,WholeEarthGeophysics:NewJersey,PrenticeHall,361p. Mount,J.F.,1995,Californiariversandstreams,theconflictbetweenfluvialprocessand landuse:Berkeley,UniversityofCaliforniaPress,359p. NationalResearchCouncil(NRC),1995,FloodriskmanagementandtheAmerican RiverBasin,Anevaluation:Washington,D.C.,NationalAcademyPress,235p. Parker,G.,1980,Downstreamresponseofgravelbedstreamstodams;anoverview, ProceedingsoftheSymposiumonSurfaceWaterImpoundments,v.1,p.792801. Phillips,J.D.,2003,ToledoBendReservoirandgeomorphicresponseinthelowerSabine River,RiverResearchandApplications,v.19,p.137159. Platts,W.S.,M.A.Shirazi,andD.H.Lewis,1979,Sedimentparticlesizesusedbysalmon forspawningwithmethodsforevaluation,EcologicalResearchSeriesEPA600/3 79043,U.S.EnvironmentalProtectionAgency,CorvallisEnvironmentalResearch Laboratory,Corvallis,Oregon. Reid,L.andDunne,T.,1996,RapidEvaluationofSedimentBudgets,CatenaVerlag GMBH,370p. 157

Reiser,D.W.andBjornn,T.C.,1979,Habitatrequirementsofanadromoussalmonids, Pages154inInfluenceofforestandrangelandmanagementonanadromousfish habitatinwesternNorthAmerica,W.R.Meehan,editor,U.S.ForestService,General TechnicalreportPNW96,Portland,Oregon. Shlemon,R.J.,1967,LandformSoilRelationshipsinNorthernSacramentoCounty, California[Ph.Dthesis]:Berkeley,UniversityofCalifornia,295p. Snider,B.,Christophel,D.B.,Jackson,B.L.,andBratovitch,P.M.,1992,Habitat characterizationoftheLowerAmericanRiver,CaliforniaDepartmentofFishand Game,EnvironmentalServicesDivisionincooperationwithBeakConsultantsand thecountyofSacramento,California,Unpublishedreport,20p. Springborn,M.,Singer,M.B.,andDunne,T.,2005,AMassBalanceAnalysisofTotal MercuryFluxThroughaLarge,ManagedFloodplain[abstractH13A08]:Eos (Transactrions,AmericanGeophysicalUnion,JointAssemblySupplement),v.86p. 18. Thibodeaux,L.J.,andBoyle,J.D.,1987,Bedformgeneratedconvectivetransportin bottomsediment:Nature,v.325,p.341343. UnitedStatesArmyCorpsofEngineers(USACE),SacramentoDistrict,1963,Reporton theAmericanRiverfloodplain,California,7p.and7plateswithcrosssections. UnitedStatesArmyCorpsofEngineers(USACE),1989,EngineeringandDesign SedimentationInvestigationsofRiversandReservoirs, http://www.usace.army.mil/inet/usacedocs/engmanuals/em111024000/. UnitedStatesArmyCorpsofEngineers(USACE),SacramentoDistrict,1991,American RiverWatershedInvestigation,California:FeasibilityReport,U.S.ArmyCorpsof Engineers,SacramentoDistrict,andTheReclamationBoard,StateofCalifornia. UnitedStatesArmyCorpsofEngineers(USACE),SacramentoDistrict,1998,Seamless topographicandbathymetricdatalayeroftheLowerAmericanRiver.GISshapefile 3dcontutm. UnitedStatesGeologicalSurvey(USGS),2004,Stationdescription11446500American RAFairOaks,Internalreport,3p. 158

Williams,G.P.,andWolman,M.G.,1984,Downstreameffectsofdamsonalluvialrivers, UnitedStatesGeologicalSurveyProfessionalPaper1286.83p. Vyverberg,K.,Snider,B.,andTitus,R.G.,1997,LowerAmericanRiverChinook SalmonspawninghabitatevaluationOctober1994:CaliforniaDepartmentofFish andGameEnvironmentalServicesDivisionTechnicalReportNumber972,112p. Xu,J.,1990,Anexperimentalstudyofcomplexresponseinriverchanneladjustment downstreamfromareservoir,EarthSurfaceProcessesandLandforms,v.15,p.43 53.