Ophthalmology

Total Page:16

File Type:pdf, Size:1020Kb

Ophthalmology Ophthalmology Anatomy and physiology terms Sclera Optic disc Cornea Fovea centralis Limbus Optic nerve Uvea Light adaptation Choroid Dark adaption Ciliary body Pupillary reflex Iris Accommodation reflex Pupil Visual field Angle of eye Temporal fibres Retina Nasal fibres Anterior chamber Optic nerve Posterior chamber Optic chiasma Aqueous humor Optic tract Vitreous humor Thalamus Lens Occipital cortex Zonules of lens Visual cortex Conjunctiva Hemianopsia Zeis glands Retinal vessels Meibomian glands Macula Rods cones Canal of Schlemm Blind spot Anisocoria Lacrimal apparatus Mydriasis Intraocular lens Lacrimal gland Palpebral Lacrimal ducts Corneoscleral Lacrimal sac Vitreous humor Nasolacrimal duct Miosis Tear gland Physical examination terms Review of systems: Eyes Ocular symptoms Itching Visual deficits Prickling Uncompensated visual defect Soreness Blurring Edema Clouding Puffiness Fogging Bloodshot Fuzziness of vision Red eye Diplopia Pinkeye Seeing double Photophobia Near adaptation Aversion Scotoma Sensitivity to light Amaurosis fugax Lacrimation Transient monocular blindness Tearing Shadow in eye Watering Halos Crusting Rings around lights Gluing of eyelids Color blindness Sleep in eye Xanthopsia Matting of eyelashes Poor dark adaption Mucopurulent discharge Dark bodies Stringy discharge Specks Thick discharge Spots Thin discharge Vitreous floaters Black eye Flashes of light Periorbital ecchymosis Scintillating scotomata Shiner Fortification spectrum Corrective lenses Burning Safety glasses Smarting Disposable contact lenses Foreign-body sensation Extended-wear contact lenses Gritty sensation Gas-permeable contact lenses Scratchy sensation Hard contact lenses Pain on blinking Semisoft contact lenses Eyestrain Soft contact lenses Twitching of eyelid Bifocals Drooping Trifocals Ptosis Oculist Irritation Cataract extraction Timoptic drops Narrow-angle glaucoma Wide-angle glaucoma Examination of eye Glass eye Astigmatism Ocular prosthesis Dewy cornea Nasal canthus Grainy cornea Temporal canthus Steamy cornea Conjunctiva Keratoconjunctivitis Cornea Arcus senilis Globe Circus senilis Limbus Band keratopathy Meibomian gland Kayser-Fleischer ring Orbital rim Brushfield spots Periorbital ecchymoses Anisocoria Black eye Iridodonesis Raccoon eye Tremulous iris Exophthalmos Hippus Thinning of eyebrows Coloboma Palpebral fissures Iridis Lagophthalmos Iris bombe Symblepharon Consensual light reflexes Ptosis Marcus Gunn pupil Lid lag Argyll Robertson pupil Epicanthal folds Adie pupil Ectropion Horner syndrome Entropion Blown pupil Marginal blepharitis Ophthalmoplegia Crusting of the lids Iritis Pediculosis of the lashes Iridocyclitis Palpebral conjunctivae Uveitis Xanthelasma Aphakia Stye Blue scleras Hordeolum Episcleritis Dacryoadenitis Pterygium Dacryocystitis Pinguecula Chalazion Anterior staphyloma Meibomian cyst Chemosis Tarsal cyst Edema Anterior segment Bitot spots Anterior chamber Ciliary injection Hypopyon Limbal flush Hyphema Cobblestoning Corneal opacity Conjunctival injection Keratoconus Hyperemia Keratitis Erythema Congestion Superior oblique Allergic conjunctivitis Inferior oblique Phlyctenular conjunctivitis Oculomotor nerve Vernal conjunctivitis Trochlear nerve Epidemic conjunctivitis Abducens nerve Purulent conjunctivitis Visual acuity Epiphora Cup: disc ratio Xerophthalmia Updrawn pupil Esophoria Counting fingers Esotropia Intraocular pressures Convergent strabismus Slit-lamp examination Cross-eyedness Orbicularis Comitant strabismus Pseudophakia Conjugate deviation Emmetropia Cover test Amaurosis Medial deviation Myopia Nasal deviation Nearsightedness Lateral deviation Hypermetropia Temporal deviation Farsightedness Horizontal nystagmus Amblyopia Vertical nystagmus Presbyopia Rotatory nystagmus Red-green color-blindness Fast component Ishihara pseudoisochromatic plates Medial rectus Dendritic keratitis Lateral rectus Herpetic keratitis Superior rectus Fluorescein dye Inferior rectus Pathology and treatment Blepharitis Strabismus Conjunctivitis Nystagmus Anisocoria Astigmatism Corneal ulcer Myopia Cycloplegia Hypermetropia Dacryoadenitis Presbyopia Iritis Cataract Ophthalmoplegia Chalazion Papilledema Hordeolum (stye) Nyctalopia Hordeolum internum Photophobia Hordeolum externum Scotoma Macular degeneration Xerophthalmia Retinal detachment Hyperopia Scleral buckle Hemianopsia Retinitis pigmentosa Esotropia Retinitis Exotropia Diabetic retinopathy Scleritis Diplopia Uveitis Glaucoma Amblyopia Procedures and tests Iridectomy Keratotomy Phacoemulsification Aphakia Fluorescein angiography Ophthalmoscopy Slit lamp ocular examination Tonometry Visual acuity (Clearness) test Visual field examination Cataract surgery Keratoplasty Laser photocoagulation Aspiration-irrigation Corneal transplant Vitrectomy Goldmann perimeter visual field examination .
Recommended publications
  • Interactions Between Biomaterials and the Sclera: Implications on Myopia
    Interactions between Biomaterials and the Sclera: Implications on Myopia Progression by James Su A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Vision Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Christine F. Wildsoet, Chair Professor Kevin E. Healy Professor Xiaohua Gong Fall 2009 Interactions between Biomaterials and the Sclera: Implications on Myopia Progression © 2009 by James Su University of California, Berkeley Abstract Interactions between Biomaterials and the Sclera: Implications on Myopia Progression by James Su Doctor of Philosophy in Vision Science University of California, Berkeley Professor Christine F. Wildsoet, Chair Myopia prevalence has steadily climbed worldwide in recent decades with the most dramatic impact in East Asian countries. Treatments such as eyeglasses, contact lenses, and laser surgery for the refractive error are widely available, but none cures the underlying cause. In progressive high myopia, invasive surgical procedures using a scleral buckle for mechanical support are performed since the patient is at risk of becoming blind. The treatment outcome is highly dependent on the surgeon’s skills and the patient’s myopia progression rate, with limited choices in buckling materials. This dissertation, in four main studies, represents efforts made to control high myopia progression through the exploration and development of biomaterials that influence scleral growth. First, mRNA expression levels of the chick scleral matrix metalloproteinases, tissue- inhibitor of matrix metalloproteinases, and transforming growth factor-beta 2 were assessed for temporal and defocus power effects. The first study elucidated the roles that these factors play in scleral growth regulation and suggested potential motifs that can be incorporated in future biomaterials design.
    [Show full text]
  • An Algorithm to Detect Kayser-Fleischer Ring in Human Eye for Diagnosing Wilson Disease
    ISSN: 2319-8753 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 3, Issue 5, May 2014 An Algorithm to Detect Kayser-Fleischer Ring in Human Eye for Diagnosing Wilson Disease 1S.Tharageshwari, 2 D.Sasikala 1PG scholar, Department Of ECE, Vivekanandha College of Engineering For Women, Namakkal , Tamil nadu, India. 2Associate Professor, Department Of ECE, Vivekanandha College of Engineering For Women, Namakkal, Tamil nadu, India. ABSTRACT-An eye image is segmented by JSEG (J measure based segmentation) algorithm without the manual parameter adjustment and simplifies texture and color for detecting the Kayser-Fleischer ring in diagnosing Wilson Disease. Segmentation with this algorithm passes through two major stages, namely color quantization and spatial segmentation as first stage and region growing and region merging as secondary stage. The biometric measurement provides information on the percentage of the extent of the cornea tissue affected from the copper accumulation. This algorithm detects the presence of symptoms reducing occurrence of false-negative diagnoses and improves accuracy of actual methods used in practice like slit lamp method. The described techniques reduces possible interpretation errors and assists doctor to diagnose the pathology. INDEX TERMS – Wilson disease, Kayser-Fleischer Ring, segmentation, Biometric measurement. I. INTRODUCTION Wilson disease is an autosomal recessive genetic disorder that prevent the body from getting rid of extra copper. A small amount of copper obtained from food is needed to stay healthy, but too much copper is poisonous. When the copper storage capacity of the liver is surpassed, copper is passed into the bloodstream and travels to the other organs-including the brain, kidney, and eyes.
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • Cataract Influence on Iris Recognition Performance
    Cataract influence on iris recognition performance Mateusz Trokielewicz1,2, Adam Czajka2,1, Piotr Maciejewicz3 1Biometrics Laboratory, Research and Academic Computer Network, Wawozowa 18, 02-796 Warsaw, Poland; 2Institute of Control and Computation Engineering, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland; 3Department of Ophthalmology, Medical University of Warsaw, Lindleya 4, 02-005 Warsaw, Poland ABSTRACT This paper presents the experimental study revealing weaker performance of the automatic iris recognition methods for cataract-affected eyes when compared to healthy eyes. There is little research on the topic, mostly incorporating scarce databases that are often deficient in images representing more than one illness. We built our own database, acquiring 1288 eye images of 37 patients of the Medical University of Warsaw. Those images represent several common ocular diseases, such as cataract, along with less ordinary conditions, such as iris pattern alterations derived from illness or eye trauma. Images were captured in near-infrared light (used in biometrics) and for selected cases also in visible light (used in ophthalmological diagnosis). Since cataract is a disorder that is most populated by samples in the database, in this paper we focus solely on this illness. To assess the extent of the performance deterioration we use three iris recognition methodologies (commercial and academic solutions) to calculate genuine match scores for healthy eyes and those influenced by cataract. Results show a significant degradation in iris recognition reliability manifesting by worsening the genuine scores in all three matchers used in this study (12% of genuine score increase for an academic matcher, up to 175% of genuine score increase obtained for an example commercial matcher).
    [Show full text]
  • Refractive Changes After Scleral Buckling Surgery
    Refractive changes after scleral buckling surgery Alterações refracionais após retinopexia com explante escleral João Jorge Nassaralla Junior1 ABSTRACT Belquiz Rodriguez do Amaral Nassaralla2 Purpose: A prospective study was conducted to compare the refractive changes after three different types of scleral buckling surgery. Methods: A total of 100 eyes of 100 patients were divided into three groups according to the type of performed buckling procedure: Group 1, encircling scleral buckling (42 patients); Group 2, encircling with vitrectomy (30 patients); Group 3, encircling with additional segmental buckling (28 patients). Refractive examinations were performed before and at 1, 3 and 6 months after surgery. Results: Changes in spherical equivalent and axial length were significant in all 3 groups. The amount of induced astigmatism was more significant in Group 3. No statistically significant difference was found in the amount of surgically induced changes between Groups 1 and 2, at any postoperative period. Conclusions: All three types of scleral buckling surgery were found to produce refractive changes. A correlation exists between additional segments and extent of refractive changes. Keywords: Retinal detachment/surgery; Scleral buckling/adverse effects; Refraction/ ocular; Biometry INTRODUCTION During the past several years, our Retina Service and others(1) have continued to use primarily solid implants with encircling bands. Only occa- sionally episcleral silicone rubber sponges are utilized. Changes in refrac- tion are frequent after retinal detachment surgery. The surgical technique used appears to influence these changes. Hyperopia(2) and hyperopic astig- matism may occur presumably by shortening the anteroposterior axis of the globe after scleral resections(1). Scleral buckling procedures employing an encircling band generally are expected to produce an increase in myopia and myopic astigmatism(1,3).
    [Show full text]
  • Anesthesia Management of Ophthalmic Surgery in Geriatric Patients
    Anesthesia Management of Ophthalmic Surgery in Geriatric Patients Zhuang T. Fang, M.D., MSPH Clinical Professor Associate Director, the Jules Stein Eye Institute Operating Rooms Department of Anesthesiology and Perioperative Medicine David Geffen School of Medicine at UCLA 1. Overview of Ophthalmic Surgery and Anesthesia Ophthalmic surgery is currently the most common procedure among the elderly population in the United States, primarily performed in ambulatory surgical centers. The outcome of ophthalmic surgery is usually good because the eye disorders requiring surgery are generally not life threatening. In fact, cataract surgery can improve an elderly patient’s vision dramatically leading to improvement in their quality of life and prevention of injury due to falls. There have been significant changes in many of the ophthalmic procedures, especially cataract and retinal procedures. Revolutionary improvements of the technology making these procedures easier and taking less time to perform have rendered them safer with fewer complications from the anesthesiology standpoint. Ophthalmic surgery consists of cataract, glaucoma, and retinal surgery, including vitrectomy (20, 23, 25, or 27 gauge) and scleral buckle for not only retinal detachment, but also for diabetic retinopathy, epiretinal membrane and macular hole surgery, and radioactive plaque implantation for choroidal melanoma. Other procedures include strabismus repair, corneal transplantation, and plastic surgery, including blepharoplasty (ptosis repair), dacryocystorhinostomy (DCR)
    [Show full text]
  • Physical Assessment of the Newborn: Part 3
    Physical Assessment of the Newborn: Part 3 ® Evaluate facial symmetry and features Glabella Nasal bridge Inner canthus Outer canthus Nasal alae (or Nare) Columella Philtrum Vermillion border of lip © K. Karlsen 2013 © K. Karlsen 2013 Forceps Marks Assess for symmetry when crying . Asymmetry cranial nerve injury Extent of injury . Eye involvement ophthalmology evaluation © David A. ClarkMD © David A. ClarkMD © K. Karlsen 2013 © K. Karlsen 2013 The S.T.A.B.L.E® Program © 2013. Handout may be reproduced for educational purposes. 1 Physical Assessment of the Newborn: Part 3 Bruising Moebius Syndrome Congenital facial paralysis 7th cranial nerve (facial) commonly Face presentation involved delivery . Affects facial expression, sense of taste, salivary and lacrimal gland innervation Other cranial nerves may also be © David A. ClarkMD involved © David A. ClarkMD . 5th (trigeminal – muscles of mastication) . 6th (eye movement) . 8th (balance, movement, hearing) © K. Karlsen 2013 © K. Karlsen 2013 Position, Size, Distance Outer canthal distance Position, Size, Distance Outer canthal distance Normal eye spacing Normal eye spacing inner canthal distance = inner canthal distance = palpebral fissure length Inner canthal distance palpebral fissure length Inner canthal distance Interpupillary distance (midpoints of pupils) distance of eyes from each other Interpupillary distance Palpebral fissure length (size of eye) Palpebral fissure length (size of eye) © K. Karlsen 2013 © K. Karlsen 2013 Position, Size, Distance Outer canthal distance
    [Show full text]
  • 20-OPHTHALMOLOGY Cataract-Ds Brushfield-Down Synd Christmas
    20-OPHTHALMOLOGY cataract-ds BrushfielD-Down synd christmas tree-myotonic dystrophy coronaRY-pubeRtY cuneiform-cortical(polyopia) cupuliform-post subcapsular(max vision loss) Elschnig pearl, ring of Soemmering-after(post capsule) experimenTal-Tyr def glassworker-infrared radiation grey(soft), yellow, amber, red(cataracta rubra), brown(cataracta brunescence), black(cat nigrans)(GYARBB)-nuclear(hard) heat-ionising radiation Membranous-HallerMan Streiff synd morgagnian-hypermature senile oildrop(revers)-galactossemia(G1PUT def) post cortical/bread crumb/polychromatic lustre/rainbow-complicated post polar-PHPV(persistent hyperplastic prim vitreous) radiational-post subcapsular riders-zonular/lamellar(vitD def, hypoparathy) roseTTe(ant cortex)-Trauma, concussion shield-atopic dermatitis snowstorm/flake-juvenile DM(aldose reductase def, T1>T2, sorbitol accumulat) star-electrocution sunflower/flower of petal-Wilson ds, chalcosis, penetrating trauma syndermatotic-atopic ds total-cong rubella zonular-galactossemia(galactokinase def) stage of cataract lamellar separation incipient/intumescence(freq change of glass) immature mature hypermature Aim4aiims.inmorgagnian sclerotic lens layer ant capsule ant epithelium lens fibre[66%H2O, 34%prot-aLp(Largest), Bet(most aBundant), γ(crystalline, soluble)] nucleus embryonic(0-3mthIUL) fetal(3-8mthIUL)-Y shape(suture) infantile(8mthIUL-puberty) adult(>puberty) cortex post capsule thinnest-post pole>ant pole thickest, most active cell-equator vitA absent in lens vitC tpt in lens by myoinositol H2O tpt in lens
    [Show full text]
  • Fibrillary Lines of the Cornea a Clinical Sign in Keratoconus
    Brit. J. Ophthal. (I975) 59, I 36 Br J Ophthalmol: first published as 10.1136/bjo.59.3.136 on 1 March 1975. Downloaded from Fibrillary lines of the cornea A clinical sign in keratoconus A. J. BRON,* D. J. LOBASCHER,t W. S. DIXON,: S. N. DAS,¶ AND M. RUBENt From The Oxford Eye Hospital,* Moorfield's Eye Hospital,t The University of Torontot, and the Royal Surrey County Hospital¶ In the course of studying keratoconus patients, mented on a proforma which recorded clinical history, fibrillar structures lying immediately inside Fleischer's vision, refraction, ocular pressure, keratometry, and bio- ring have been observed. Their arrangement is microscopical and ophthalmoscopical findings. Photo-slit thought to be characteristic of this condition. They photographs were taken of all subjects and macrophoto- lie at the level of the subepithelium and are identical graphs (Brown, I970) were taken some cases. Drawings were made of the corneal changes. The dimensions of the in form but not in arrangement to similar structures fibrillary structures observed were gauged by measure- in the normal cornea. These are described in the ments from selected macrophotographs. The findings in 77 preceding paper (Bron, 1975). The present paper newly referred patients are presented in this paper. describes the distribution of fibrillary lines in kerato- conus and how they differ from those in normal eyes. Clinical findings copyright. Material and methods The fibrillary lines of keratoconus are fine, white, Observations were made in the Keratoconus Clinic of curved, and slightly wavy, and lie in concentric Moorfields Eye Hospital. Clinical findings were docu- bundles at the internal margin of Fleischer's ring (Fig.
    [Show full text]
  • The American Ophthalmological Society 2019
    Transactions of the American Ophthalmological Society VOLUME CXVII ONE HUNDRED AND FIFTY-FIFTH ANNUAL MEETING The Greenbrier, White Sulphur Springs, West Virginia 2019 PUBLISHED FOR THE AMERICAN OPHTHALMOLOGICAL SOCIETY SAN FRANCISCO, CALIFORNIA 2019 TABLE OF CONTENTS ABSTRACTS Papers ..............................................................................................................................................................2 Posters .............................................................................................................................................................3 2018-2019 Theses Published in the AJO .......................................................................................................4 ACADEMY OF OPHTHALMOLOGY Officers and Council .......................................................................................................................................6 Presidents of the Society ............................................................................................................................... 7 AWARDS AND LECTURES Recipients of the Lucien Howe Medal ...........................................................................................................8 Frederick H. Verhoeff Lecturers .....................................................................................................................9 Frederick Blodi Lecturers ...............................................................................................................................9
    [Show full text]
  • Retinal Occlusion As an Advanced Complication of Sickle Cell Disease Mohammed S Alkhaibari* Ministry of Health, Tabuk, Saudi Arabia
    New Frontiers in Ophthalmology Review Article ISSN: 2397-2092 Retinal occlusion as an advanced complication of sickle cell disease Mohammed S Alkhaibari* Ministry of Health, Tabuk, Saudi Arabia Abstract Retinopathy is a one of the major clinical manifestation of Hemoglobinopathy. It is acquired secondary to another retinal disorder. Retinopathy especially retinal occlusions are painless loss of monocular vision it’s from a vascular disorder. Ocular stroke caused by embolism in a retinal artery, that may emboli travel to distal branches of the retinal artery, causing loss of other section in the visual field. The manifestations of Sickle cell disease ocular manifestations came due to vascular occlusion, which may exist in the conjunctiva, iris, retina, and choroid. Because the ocular changes produced by SCD could be shown in other diseases, it’s important to except other occlusions’ causes, which have included central retinal vein occlusion, Eales disease, and retinopathy secondary to other chronic disorders. Other ocular changes cause that includes polycythemia vera, familial exudative vitreoretinopathy, talc and cornstarch emboli, and uveitis. Diagnosis of hemoglobenopathies is performed exclusively through Hb electrophoresis. The treatments and their results vary from one condition to the other. Introduction by valine, while in HbC it is replaced by lysine. The diagnosis of hemoglobinopathies is performed exclusively through hemoglobin Sickle-cell anaemia is a hereditary condition (SS or SC haemoglobin) electrophoresis [4]. The sickling test cannot be used for this purpose common in African people. Owing to occlusion of small vessels at the because it is nonspecific [5]. retinal periphery and ischemia, fibro-vascular proliferation occurs. Localized chorio-retinal scars are also characteristic of the condition.
    [Show full text]
  • Eye Findings in Dermatologic Conditions
    FAST FACTS FOR BOARD REVIEW Series Editor: William W. Huang, MD, MPH Eye Findings in Dr. O’Neill is from Buffalo Medical Group, New York. The author reports no conflict of interest. Dermatologic Conditions Jenna O’Neill, MD Eye Finding Definition/Pathogenesis Dermatologic Condition(s) Miscellaneous Angioid streaks Rupture of Bruch membrane PXE, EDS (kyphoscoliosis and Associated with sickle cell (innermost layer of choroid); vascular types most commonly anemia, β thalassemia, broad red-brown lines associated), Cowden disease Paget disease of bone, radiating from optic nerve and phosphatemia; often idiopathic Ankyloblepharon Fusion of all or part of Hay-Wells syndrome (also AD mutation in p63 filiforme adnatum eyelid margins known as AEC syndrome, a form of ectodermal dysplasia) Blue sclerae Blue hue is due to Alkaptonuria, EDS, Fanconi EDS type 6 underlying choroidal veins, anemia, Marfan syndrome, (kyphoscoliosis; AR which show through thin nevus of Ota, osteogenesis mutation in PLOD, collagen fibers of sclera imperfecta types I–III, PXE which encodes lysyl hydroxylase): blue sclerae, retinal detachment, globe rupture, keratoconus; also found in alkaptonuria and nevus of Ota due to pigment deposition in sclera Brushfield spot White to gray spots at Down syndrome Normal in children periphery of iris due to (Kunkmann-Wolffian stromal hyperplasia bodies) Cherry red spot Bright red-orange color of Hurler disease, Also seen in central retinal fovea is contrasted against Niemann-Pick disease, artery occlusion (fovea pale color of retina due
    [Show full text]