I CHROMOSOMAL ALTERNATION of GENERATIONS IN
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Invasive Weeds of the Appalachian Region
$10 $10 PB1785 PB1785 Invasive Weeds Invasive Weeds of the of the Appalachian Appalachian Region Region i TABLE OF CONTENTS Acknowledgments……………………………………...i How to use this guide…………………………………ii IPM decision aid………………………………………..1 Invasive weeds Grasses …………………………………………..5 Broadleaves…………………………………….18 Vines………………………………………………35 Shrubs/trees……………………………………48 Parasitic plants………………………………..70 Herbicide chart………………………………………….72 Bibliography……………………………………………..73 Index………………………………………………………..76 AUTHORS Rebecca M. Koepke-Hill, Extension Assistant, The University of Tennessee Gregory R. Armel, Assistant Professor, Extension Specialist for Invasive Weeds, The University of Tennessee Robert J. Richardson, Assistant Professor and Extension Weed Specialist, North Caro- lina State University G. Neil Rhodes, Jr., Professor and Extension Weed Specialist, The University of Ten- nessee ACKNOWLEDGEMENTS The authors would like to thank all the individuals and organizations who have contributed their time, advice, financial support, and photos to the crea- tion of this guide. We would like to specifically thank the USDA, CSREES, and The Southern Region IPM Center for their extensive support of this pro- ject. COVER PHOTO CREDITS ii 1. Wavyleaf basketgrass - Geoffery Mason 2. Bamboo - Shawn Askew 3. Giant hogweed - Antonio DiTommaso 4. Japanese barberry - Leslie Merhoff 5. Mimosa - Becky Koepke-Hill 6. Periwinkle - Dan Tenaglia 7. Porcelainberry - Randy Prostak 8. Cogongrass - James Miller 9. Kudzu - Shawn Askew Photo credit note: Numbers in parenthesis following photo captions refer to the num- bered photographer list on the back cover. HOW TO USE THIS GUIDE Tabs: Blank tabs can be found at the top of each page. These can be custom- ized with pen or marker to best suit your method of organization. Examples: Infestation present On bordering land No concern Uncontrolled Treatment initiated Controlled Large infestation Medium infestation Small infestation Control Methods: Each mechanical control method is represented by an icon. -
Algae & Marine Plants of Point Reyes
Algae & Marine Plants of Point Reyes Green Algae or Chlorophyta Genus/Species Common Name Acrosiphonia coalita Green rope, Tangled weed Blidingia minima Blidingia minima var. vexata Dwarf sea hair Bryopsis corticulans Cladophora columbiana Green tuft alga Codium fragile subsp. californicum Sea staghorn Codium setchellii Smooth spongy cushion, Green spongy cushion Trentepohlia aurea Ulva californica Ulva fenestrata Sea lettuce Ulva intestinalis Sea hair, Sea lettuce, Gutweed, Grass kelp Ulva linza Ulva taeniata Urospora sp. Brown Algae or Ochrophyta Genus/Species Common Name Alaria marginata Ribbon kelp, Winged kelp Analipus japonicus Fir branch seaweed, Sea fir Coilodesme californica Dactylosiphon bullosus Desmarestia herbacea Desmarestia latifrons Egregia menziesii Feather boa Fucus distichus Bladderwrack, Rockweed Haplogloia andersonii Anderson's gooey brown Laminaria setchellii Southern stiff-stiped kelp Laminaria sinclairii Leathesia marina Sea cauliflower Melanosiphon intestinalis Twisted sea tubes Nereocystis luetkeana Bull kelp, Bullwhip kelp, Bladder wrack, Edible kelp, Ribbon kelp Pelvetiopsis limitata Petalonia fascia False kelp Petrospongium rugosum Phaeostrophion irregulare Sand-scoured false kelp Pterygophora californica Woody-stemmed kelp, Stalked kelp, Walking kelp Ralfsia sp. Silvetia compressa Rockweed Stephanocystis osmundacea Page 1 of 4 Red Algae or Rhodophyta Genus/Species Common Name Ahnfeltia fastigiata Bushy Ahnfelt's seaweed Ahnfeltiopsis linearis Anisocladella pacifica Bangia sp. Bossiella dichotoma Bossiella -
Phylogenetic Classification of Life
Proc. Natl. Accad. Sci. USA Vol. 93, pp. 1071-1076, February 1996 Evolution Archaeal- eubacterial mergers in the origin of Eukarya: Phylogenetic classification of life (centriole-kinetosome DNA/Protoctista/kingdom classification/symbiogenesis/archaeprotist) LYNN MARGULIS Department of Biology, University of Massachusetts, Amherst, MA 01003-5810 Conitribluted by Lynnl Marglulis, September 15, 1995 ABSTRACT A symbiosis-based phylogeny leads to a con- these features evolved in their ancestors by inferable steps (4, sistent, useful classification system for all life. "Kingdoms" 20). rRNA gene sequences (Trichomonas, Coronympha, Giar- and "Domains" are replaced by biological names for the most dia; ref. 11) confirm these as descendants of anaerobic eu- inclusive taxa: Prokarya (bacteria) and Eukarya (symbiosis- karyotes that evolved prior to the "crown group" (12)-e.g., derived nucleated organisms). The earliest Eukarya, anaero- animals, fungi, or plants. bic mastigotes, hypothetically originated from permanent If eukaryotes began as motility symbioses between Ar- whole-cell fusion between members of Archaea (e.g., Thermo- chaea-e.g., Thermoplasma acidophilum-like and Eubacteria plasma-like organisms) and of Eubacteria (e.g., Spirochaeta- (Spirochaeta-, Spirosymplokos-, or Diplocalyx-like microbes; like organisms). Molecular biology, life-history, and fossil ref. 4) where cell-genetic integration led to the nucleus- record evidence support the reunification of bacteria as cytoskeletal system that defines eukaryotes (21)-then an Prokarya while -
Icelandic Geothermal Kelp – Specifications
Icelandic Geothermal Kelp – Specifications Laminaria digitata Certified 100% Organic PRODUCT DESCRIPTION Species Laminaria digitata Plant Part Milled Sea Vegetation (whole thallus) Processing Method Sustainable harvest, controlled geothermal low-temperature drying Country of Origin Iceland Primary Active Phytonutrients, Iodine and other micronutrients Recommended Daily Serving 50 milligrams* Particle Size Granules and Powder Color Green Aroma Mild marine odor Taste Salty Storage Dry area Shelf Life Best used within 60-months Packaging 25 kg. (55 lbs.); Multi-walled Kraft bag; easy-pour spout Certificates Certified 100% Organic by QAI; Certified Kosher by Star-K ANALYSIS Activity 2500-7500 ppm (0.25 – 0.75%) Iodine Moisture NMT 10% Test Methods Ash NMT 50% Lead NMT 5 ppm ICP-MS Inorganic Arsenic NMT 30 ppm IC-ICP-MS Cadmium NMT 1.5 ppm ICP-MS Mercury NMT 0.05 ppm ICP-MS Aerobic Plate Count <10,000 CFU/g FDA BAM 3 Total Coliform <1,000 CFU/g FDA BAM 4 Microbial E. coli N/D (<10 CFU/g) FDA BAM 4 Salmonella Negative (ND/25g) AOAC-989.09 Yeast/Mold <2,500 CFU/g each FDA BAM 18 Thorvin contains over 60 minerals, vitamins, amino acids, and beneficial phytonutrients. Thorvin is a 100% natural organic marine algae product; therefore, a specific laboratory analysis may vary from the typical analysis due to naturally occurring fluctuations in the sea plant. The information presented above is believed to be accurate and reliable; however, Thorvin, Inc. makes no warranty, either express or implied, and assumes no liability for this information and the product described herein. These are averages and are not guaranteed as conditions of sale. -
Classifications of Fungi
Chapter 24 | Fungi 675 Sexual Reproduction Sexual reproduction introduces genetic variation into a population of fungi. In fungi, sexual reproduction often occurs in response to adverse environmental conditions. During sexual reproduction, two mating types are produced. When both mating types are present in the same mycelium, it is called homothallic, or self-fertile. Heterothallic mycelia require two different, but compatible, mycelia to reproduce sexually. Although there are many variations in fungal sexual reproduction, all include the following three stages (Figure 24.8). First, during plasmogamy (literally, “marriage or union of cytoplasm”), two haploid cells fuse, leading to a dikaryotic stage where two haploid nuclei coexist in a single cell. During karyogamy (“nuclear marriage”), the haploid nuclei fuse to form a diploid zygote nucleus. Finally, meiosis takes place in the gametangia (singular, gametangium) organs, in which gametes of different mating types are generated. At this stage, spores are disseminated into the environment. Review the characteristics of fungi by visiting this interactive site (http://openstaxcollege.org/l/ fungi_kingdom) from Wisconsin-online. 24.2 | Classifications of Fungi By the end of this section, you will be able to do the following: • Identify fungi and place them into the five major phyla according to current classification • Describe each phylum in terms of major representative species and patterns of reproduction The kingdom Fungi contains five major phyla that were established according to their mode of sexual reproduction or using molecular data. Polyphyletic, unrelated fungi that reproduce without a sexual cycle, were once placed for convenience in a sixth group, the Deuteromycota, called a “form phylum,” because superficially they appeared to be similar. -
Blackberry Rosette Cercosporella Rubi
Blackberry Rosette Cercosporella rubi Rosette disease, also called double blossom disease, is a destructive disease of blackberries in Louisiana and other southeastern states. If left unmanaged, commercial production can be severely limited because diseased canes will not produce berries. The disease, caused by the fungus Cercosporella rubi, has a biennial cycle, which matches the growth pattern of blackberries. The fungus attacks primocanes in the spring, overwin- ters in dormant buds, and the infected canes then develop symptoms the following year on the flo- ricanes. Spores of the fungus are dispersed from infected flowers to the young buds of primocanes by wind and insects. The fungus has a very narrow host range and has not been reported on other types of brambles such as raspberry, boysenberry or tayberry in the United States. Flowers on diseased fruiting canes are more red or pink in color than healthy flowers and have distorted petals and enlarged sepals, which gives them the appearance of a double flower. Infected plants produce multiple branches with abnormal leaf production. Young leaves are light green and eventually turn yellowish-brown giving the leaves a bronzing appearance. Diseased canes do not produce berries, and berry production on non- infected canes is small and of poor quality. Rosette can be successfully managed through a combination of resistance, cultural practices and chemical treatments. Plant-resistant varieties. Most of the thorny, erect blackberry varieties are very suscep- tible to rosette and require careful and extensive attention to management. The thornless varieties Rosette formations on blackberries infected with ‘Arapaho’, ‘Apache’, ‘Navaho’ and ‘Ouachita’ are the fungus Cercosporella rubi moderately resistant to resistant to rosette and also grow well in Louisiana. -
And Red Sea Urchins
NEGATIVELY CORRELATED ABUNDANCE SUGGESTS COMPETITION BETWEEN RED ABALONE (Haliotis rufescens) AND RED SEA URCHINS (Mesocentrotus franciscanus) INSIDE AND OUTSIDE ESTABLISHED MPAs CLOSED TO COMMERCIAL SEA URCHIN HARVEST IN NORTHERN CALIFORNIA By Johnathan Centoni A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology Committee Membership Dr. Sean Craig, Committee Chair Dr. Brian Tissot, Committee Member Dr. Paul Bourdeau, Committee Member Dr. Joe Tyburczy, Committee Member Dr. Erik Jules, Program Graduate Coordinator May 2018 ABSTRACT NEGATIVELY CORRELATED ABUNDANCE SUGGESTS COMPETITION BETWEEN RED ABALONE (Haliotis rufescens) AND RED SEA URCHINS (Mesocentrotus franciscanus) INSIDE AND OUTSIDE ESTABLISHED MPAs CLOSED TO COMMERCIAL SEA URCHIN HARVEST IN NORTHERN CALIFORNIA Johnathan Centoni Red abalone and sea urchins are both important herbivores that potentially compete with each other for resources like food and space along the California coast. Red abalone supported a socioeconomically important recreational fishery during this study (which was closed in 2018) and red sea urchins support an important commercial fishery. Both red sea urchins and red abalone feed on the same macroalgae (including Pterygophora californica, Laminaria setchellii, Stephanocystis osmundacea, Costaria costata, Alaria marginata, Nereocystis leutkeana), and a low abundance of this food source during the period of this project may have created a highly competitive environment for urchins and abalone. Evidence that suggests competition between red abalone and red sea urchins can be seen within data collected during the years of this study (2014-2016): a significantly higher red sea urchin density, concomitant with a significantly lower red abalone density, was observed within areas closed to commercial sea urchin harvest (in MPAs) compared to nearby reference areas open to sea urchin harvest. -
Chapter 2. Vegetative Morphology of Plants Vegetative Morphology of Plants
Chapter 2. Vegetative morphology of plants Vegetative morphology of plants INTRODUCTION: THE PLANT’S BASIC BODY PLAN Most plants are photosynthetic machines: they capture the energy contained in sunlight and transform solar radiation into chemical energy stored the form of bonds in chains of carbon molecules. Through the process of photosynthesis, light and atmospheric CO2 are combined in the leaves of green plants to form simple carbohydrates, which are then used to build other organic molecules such as cellulose, starch, oils, waxes, proteins, or DNA. Six molecules of CO2 (and some 72 photons of light) are needed to form one molecule of glucose: sunlight 6 CO2 + 6 H2O → C6H12O6 + 6 O2 As a byproduct of the process, six molecules of oxygen are formed and dissipated from the leaf tissue into the atmosphere. To achieve this remarkable feat of turning atmospheric carbon dioxide into living molecules while releasing oxygen into the earth’s atmosphere, plants have evolved highly specialized organs. The light-intercepting structure par excellence is the leaf. The set of leaves in the upper aerial part of the plant form the plant’s canopy, where the plant exchanges gases with the atmosphere and intercepts light from the sun. But in order to work its chemical wonder up in the leaves, the plant also needs water and mineral nutrients such as phosphorus, essential for the synthesis of DNA, or nitrogen, essential for manufacturing proteins. In order to obtain these, plants have developed the root —a complex network of underground stem-like organs— whose role is the absorption of water and mineral nutrients from the soil, and, in doing so, anchoring the plant to the ground. -
Rose Rosette Disease Demystified
EPLP-010 6/14 Rose Rosette Disease Demystified Kevin Ong, Associate Professor and Extension Plant Pathologist Molly Giesbrecht, Extension Associate (Plant Pathology) Dotty Woodson, Extension Program Specialist; Laura Miller, County Extension Agent–Tarrant County Texas A&M AgriLife Extension Service, The Texas A&M University System What do we know? The disease has been around Rose rosette disease, a lethal rose disease with no for more than 70 known cure, has recently increased in the Dallas-Fort years. As early as Worth area. Many people who grow and enjoy roses the 1940s, symp- as well as landscapers who take care of them are con- toms of witches’ cerned about how to protect their plants and confused broom (growth of by all the information available from various sources a tight, brush-like on the Internet, in publications, and from the media. cluster of plant So, what do we know about this disease? shoots) (Fig. 1) The following review of information from peer- were described on reviewed (evaluated by experts in the field) articles in roses in Manitoba, scientific journals summarizes what we know so far. Canada (Conners, 1941). In the United Figure 2. Witches’ broom effect on States, rose plants a flower cluster. Distorted flowers in Wyoming with and increased, atypical reddish color similar symptoms on the buds. were described in 1942 (Thomas and Scott, 1953), and the disease was subsequently found in other states. In 1990, George Philley reported the disease in East Texas. It appeared in the Dallas-Fort Worth area in the mid-1990s and has expanded there in the last 2 to 3 years. -
Biomechanical Analysis of Wave-Induced Mortality in the Marine Alga Pterygophora Californica
MARINE ECOLOGY - PROGRESS SERIES Vol. 36: 163-170, 1987 Published March 2 Mar. Ecol. hog. Ser. Biomechanical analysis of wave-induced mortality in the marine alga Pterygophora californica Richard F. Biedka, John M. Gosline & Robert E. De Wreede Departments of Zoology and Botany, University of British Columbia, Vancouver, British Columbia V6T 2B1, Canada ABSTRACT: A biomechanical analysis was carried out on the stipe of the marine brown alga Pterygophora cahfornica (Ruprecht). Tensile and compressive mechanical tests on the cortical material revealed that the plant is constructed from a reasonably stiff (tensile modulus of elasticity = 60 MN m-2), strong (tensile strength = 9 MN m-2) and extensible (fdure strain = 0.49) material. Consequently, the stipe is a very robust structure that is extremely difficult to break. However, the work of fracture of the cortical material is only about 400 J m-', making it a relatively brittle material. Thus, it is expected that small notches or flaws at the stipe surface will dramatically reduce the ability of the stipe to resist bending forces caused by waves. Fracture mechanics analysis suggests a critical flaw size for the cortical material of about 0.2 mm, and any surface defect larger than this size will degrade the mechanical strength of the plant. The red urchin Strongylocentrotus franciscanus is known to graze on the stipe of P. californica. This grazing is known to mtroduce surface flaws an order of magnitude or more larger than the critical flaw size, and therefore it IS very likely that such grazlng will make a substantial contribution to wave-induced mortahty of these plants. -
Taxonomy of Cultivated Potatoes (Solanum Section
Botanical Journal of the Linnean Society, 2011, 165, 107–155. With 5 figures Taxonomy of cultivated potatoes (Solanum section Petota: Solanaceae)boj_1107 107..155 ANNA OVCHINNIKOVA1, EKATERINA KRYLOVA1, TATJANA GAVRILENKO1, TAMARA SMEKALOVA1, MIKHAIL ZHUK1, SANDRA KNAPP2 and DAVID M. SPOONER3* 1N. I. Vavilov Institute of Plant Industry, Bolshaya Morskaya Street, 42–44, St Petersburg, 190000, Russia 2Department of Botany, Natural History Museum, Cromwell Road, London SW7 5BD, UK 3USDA-ARS, Vegetable Crops Research Unit, Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison WI 53706-1590, USA Received 4 May 2010; accepted for publication 2 November 2010 Solanum tuberosum, the cultivated potato of world commerce, is a primary food crop worldwide. Wild and cultivated potatoes form the germplasm base for international breeding efforts to improve potato in the face of a variety of disease, environmental and agronomic constraints. A series of national and international genebanks collect, characterize and distribute germplasm to stimulate and aid potato improvement. A knowledge of potato taxonomy and evolution guides collecting efforts, genebank operations and breeding. Past taxonomic treatments of wild and cultivated potato have differed tremendously among authors with regard to both the number of species recognized and the hypotheses of their interrelationships. In total, there are 494 epithets for wild and 626 epithets for cultivated taxa, including names not validly published. Recent classifications, however, recognize only about 100 wild species and four cultivated species. This paper compiles, for the first time, the epithets associated with all taxa of cultivated potato (many of which have appeared only in the Russian literature), places them in synonymy and provides lectotype designations for all names validly published where possible. -
The Life Cycles of Cryptogams 7
Acta Botanica Malacitana, 16(1): 5-18 Málaga, 1991 E IE CYCES O CYOGAMS Peter R. BELL SUMMARY: Meiosis and karyogamy are recognized as control points in the life cycle of cryptogams. The control of meiosis is evidently complex and in yeast, and by analogy in all cryptogams, involves progressive gene activation. The causes of the delay in meiosis in diplohaplontic and diplontic organisms, and the manner in which the block is removed remain to be discovered. There is accumulating evidence that cytoplasmic RNA plays an important role in meiotic division. Many features of tn are still obscure. The tendency to oogamy has provided the opportunity for the laying down of long-lived messenger RNA in the abundant cytoplasm of the female gamete. The sporophytic nature of the developing zygote can in this way be partially pre-determined. There is evidence that this is the situation in the ferns. Specific molecules (probably arabino-galacto-proteins) on the surface of the plasma membrane are likely to account both for gametic selection, and the readiness with which appropriate gametes fuse. The dikaryotic condition indicates that nuclear fusion is not inevitable following plasmogamy. The ultimate fusion of the nuclei may result from quite simple changes in the nuclear surface. Exposure of lipid, for example, would lead to fusion as a result of hydrophobic forces. Aberrations of cryptogamic life cycles are numerous. The nuclear relationships of many aberrant cycles are unknown. In general it appears that the maintenance of sporophytic growth depends upon the presence of at least two sets of chromosomes. Conversely the maintenance of gametophytic growth in cultures obtained aposporously appears to be impossible in the presence of four sets of chromosomes, or more.