Eastern Russia & Wrangel Island 19 Day Boutique

Total Page:16

File Type:pdf, Size:1020Kb

Eastern Russia & Wrangel Island 19 Day Boutique EASTERN RUSSIA & WRANGEL ISLAND 19 DAY BOUTIQUE EXPEDITION Cruising on the edge of the ice spotting polar bears or seals is a once-in-a-lifetime experience. Our boutique ice-class ship takes us to the edge of the pack ice past far- flung Russian islands at the top of the world. Off-limits for years, we step ashore onto land where once mammoth and sabre-toothed tigers roamed. Frozen seas and boggy tundra provide a backdrop where hundreds of polar bears and walruses, puffins, snow geese and rare spoon-billed sandpiper flourish in one of the world’s least frequented areas. Here, in remote lands we get to meet Siberian Yupik who share their traditions with us. ITINERARY DAY 1, NOME Nome is the most famous gold rush town in Alaska (the town’s welcome sign is marked on the state’s largest gold pan). This wind-swept tundra landscape is a haven for wildflowers. Hardy muskoxen forage, bear and caribou roam, and the mountain streams provide a freshwater habitat for spawning wild Alaskan salmon. Excursions include mushing, panning for gold on the beaches and trips to the Bering Land Bridge National Preserve. 01432 507 280 (within UK) [email protected] | small-cruise-ships.com DAY 2, PROVIDENIYA destination’s many facets from the knowledgeable onboard The gateway to the Russian Far East, this former Soviet military experts. Listen to an enriching talk, indulge in a relaxing port on Komsomolskaya Bay is at the southern limit of the Arctic treatment at the spa, work out in the well-equipped gym, enjoy ice pack. The town has a small museum charting the history of some down- time in your cabin, share travel reminiscences with whaling and fishing and the displacement of the indigenous newly found friends: the options are numerous. Siberian Yupik that caused irreversible cultural change. From seal fishing to their renowned dancing, we learn more about DAY 6, AYON ISLAND Yupik culture on a visit to a settlement at Novoye Chaplino This mostly low-lying tundra island lies off the coast of the overlooking a picturesque fjord. Chukotka peninsula on the west of the Bering strait and is part of the Northern Sea Route, or Northeast passage. Ayon Island’s DAY 3, CAPE DEZHNEV & UELEN VILLAGE indigenous Chukchi population are reindeer herders. Many live The easternmost point of Russia, here on a clear day, you can in Ayon Village, a coastal settlement where we are guaranteed a see Alaska. It is a good hike up the headland where you will warm welcome especially at the small museum set up by reach a lighthouse and a monument to the Russian explorer children. On the outskirts of the village is a Neolithic settlement Semyon Dezhnev, who rounded the Cape in 1648. Further up we can explore. the coast is Naukan, an abandoned Yupik village, and Uelen, the only still-inhabited village on the cape. Home to Siberian DAY 7, MEDVEZHYI ISLANDS Yupik Eskimos, Uelen is the closest Russian settlement to the Also known as Bear Islands - on account of the polar bears that US. have taken up residence on this isolated archipelago - this far-flung island group is located above Russia, in the DAY 4, KOLYUCHIN BAY & KOLYUCHIN ISLAND inhospitable East Siberian Sea. The arctic flora draws naturalists Conservationists will guide you over soft tundra and point out for wildflowers - buttercups, yellow poppies and rockfoil - rare lichens, mosses and wildflowers where scurrying ground lichens and mosses on the hammocky tundra. Natural rock squirrels hunt for food. Kolyuchin also has some of the Arctic’s pillars stand sentinel on Chetyrbok Stolbovoy (Four Spires most spectacular bird cliffs, with puffins, guillemots and gulls, Island), where you can go ashore and hike to see an and a photogenic walrus haul-out. Off the north coast of the abandoned weather station. Chukotka Peninsula, this small island was once an important centre for research into polar bears and walruses, one of a DAY 8, AT SEA number dotted across the Arctic. As you cruise to your next port of call, spend the day at sea savouring the ship’s facilities and learning about your DAY 5, AT SEA destination’s many facets from the knowledgeable onboard As you cruise to your next port of call, spend the day at sea experts. Listen to an enriching talk, indulge in a relaxing savouring the ship’s facilities and learning about your treatment at the spa, work out in the well-equipped gym, enjoy 01432 507 280 (within UK) [email protected] | small-cruise-ships.com some down- time in your cabin, share travel reminiscences with polar bears, walrus and seals among the ice floes in the newly found friends: the options are numerous. distance. Listen to the ice cracking and groaning while around you is just stillness. Sadly, changing weather conditions means DAY 9, DMITRIY LAPTEV STRAIT & LYAKHOVSKY ISLAND the ice is receding, so store this sight in your memories. Separating the Siberian mainland from the Lyakhovsky Islands, part of the New Siberian Islands, the Dmitry Laptev Strait is DAY 12, EXPEDITION DE LONG ISLANDS named after Russian Arctic explorer Dmitry Yakovlevich Laptev, Five islands make up the uninhabited De Long archipelago. who was one of the first Russians to live among the indigenous Zhokhov Island is renowned for its preserved mammoth remains Yupik in the area. It is an area where the sea generally stays found in the boggy tundra. On Bennett Island, plumes escaping below freezing for nine months of the year, but the permafrost is from the melting permafrost are sometimes visible in space. thawing at an incredible rate and cliffs are collapsing into the Thought to be methane escaping, they remain scientifically sea. Prehistoric bones, mammoth tusks, sabre-toothed tiger and unexplained. As global warming affects permafrosts, cliffs here other megafauna fossils have all been found on these islands - are falling into the sea. Shore landings get you close to tundra well-preserved by the permafrost - with some plant material wildflowers, with possible sightings of arctic fox, lemming and believed to be up to 130 thousand years old. The current flora plenty of seabirds. consists primarily of low-lying grasses, sedges, lichens and mosses. Lyakhovsky Islands are the southernmost group of the DAY 13, AT SEA New Siberian Islands of which Great Lyakovsky Island has a As you cruise to your next port of call, spend the day at sea weather station that was mentioned in Jules Vernes’ novels. savouring the ship’s facilities and learning about your destination’s many facets from the knowledgeable onboard DAY 10, AT SEA experts. Listen to an enriching talk, indulge in a relaxing As you cruise to your next port of call, spend the day at sea treatment at the spa, work out in the well-equipped gym, enjoy savouring the ship’s facilities and learning about your some down- time in your cabin, share travel reminiscences with destination’s many facets from the knowledgeable onboard newly found friends: the options are numerous. experts. Listen to an enriching talk, indulge in a relaxing treatment at the spa, work out in the well-equipped gym, enjoy DAY 14, USHAKOVA CAPE, WRANGEL ISLAND some down- time in your cabin, share travel reminiscences with Breaching grey and beluga whales, ringed seals and bearded newly found friends: the options are numerous. seals swim close to the shore. Inaccessible for much of the year, changing weather conditions mean that in recent years the DAY 11, ICE EDGE CRUISING island is becoming ice-free earlier and earlier, and the Forging through these icy Arctic conditions can be a challenge occasional finback whale from Mexico has been spotted here. for less-sturdy vessels. Head out on deck as our polar class ship Tundra covers much of this huge island with coastal plains and breaks through the pack ice and keep an eye out for specks of central mountains creating a rich ecosystem with the highest 01432 507 280 (within UK) [email protected] | small-cruise-ships.com level of biodiversity in the high Arctic. ice pack. The town has a small museum charting the history of whaling and fishing and the displacement of the indigenous DAY 15, CAPE FLORENS & CAPE BLOSSOM, WRANGEL ISLAND Siberian Yupik that caused irreversible cultural change. From Named for the colourful flora and wildflowers on the mossy seal fishing to their renowned dancing, we learn more about tundra, such as yellow arctic poppies, Cape Florens helped give Yupik culture on a visit to a settlement at Novoye Chaplino the island its unique status as the northernmost World Heritage overlooking a picturesque fjord. Site. It is also one of the places we might get to spot foraging Siberian brown and northern collared lemmings (often hunted DAY 19, NOME, ALASKA down by snowy owls), alongside Wrangel’s other inland fauna Nome is the most famous gold rush town in Alaska (the town’s species - arctic foxes, wolverines, muskoxen and reindeer. welcome sign is marked on the state’s largest gold pan). This wind-swept tundra landscape is a haven for wildflowers. Hardy DAY 16, KRASIN BAY & CAPE WARING, WRANGEL ISLAND muskoxen forage, bear and caribou roam, and the mountain Observe the only permanent colony of nesting snow geese in streams provide a freshwater habitat for spawning wild Alaskan Asia as you hike across the tundra to the Mammoth River. salmon. Excursions include mushing, panning for gold on the Twitchers might glimpse other tundra- loving birds including beaches and trips to the Bering Land Bridge National Preserve. spoon-billed sandpipers, peregrine falcons, arctic tern, gulls and skuas who feed on this ancient, protected natural reserve.
Recommended publications
  • New Constraints on the Age, Geochemistry
    New constraints on the age, geochemistry, and environmental impact of High Arctic Large Igneous Province magmatism: Tracing the extension of the Alpha Ridge onto Ellesmere Island, Canada T.V. Naber1,2, S.E. Grasby1,2, J.P. Cuthbertson2, N. Rayner3, and C. Tegner4,† 1 Geological Survey of Canada–Calgary, Natural Resources Canada, Calgary, Canada 2 Department of Geoscience, University of Calgary, Calgary, Canada 3 Geological Survey of Canada–Northern, Natural Resources Canada, Ottawa, Canada 4 Centre of Earth System Petrology, Department of Geoscience, Aarhus University, Aarhus, Denmark ABSTRACT Island, Nunavut, Canada. In contrast, a new Province (HALIP), is one of the least studied U-Pb age for an alkaline syenite at Audhild of all LIPs due to its remote geographic lo- The High Arctic Large Igneous Province Bay is significantly younger at 79.5 ± 0.5 Ma, cation, and with many exposures underlying (HALIP) represents extensive Cretaceous and correlative to alkaline basalts and rhyo- perennial arctic sea ice. Nevertheless, HALIP magmatism throughout the circum-Arctic lites from other locations of northern Elles- eruptions have been commonly invoked as a borderlands and within the Arctic Ocean mere Island (Audhild Bay, Philips Inlet, and potential driver of major Cretaceous Ocean (e.g., the Alpha-Mendeleev Ridge). Recent Yelverton Bay West; 83–73 Ma). We propose anoxic events (OAEs). Refining the age, geo- aeromagnetic data shows anomalies that ex- these volcanic occurrences be referred to col- chemistry, and nature of these volcanic rocks tend from the Alpha Ridge onto the northern lectively as the Audhild Bay alkaline suite becomes critical then to elucidate how they coast of Ellesmere Island, Nunavut, Canada.
    [Show full text]
  • Sverdrup-Among-The-Tundra-People
    AMONG THE TUNDRA PEOPLE by HARALD U. SVERDRUP TRANSLATED BY MOLLY SVERDRUP 1939 Copyright @ 1978 by Regents of the University of California. All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, elec- tronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the regents. Distributed by : Scripps Institution of Oceanography A-007 University of California, San Diego La Jolla, California 92093 Library of Congress # 78-60483 ISBN # 0-89626-004-6 ACKNOWLEDGMENTS We are indebted to Molly Sverdrup (Mrs. Leif J.) for this translation of Hos Tundra-Folket published by Gyldendal Norsk Forlag, Oslo, 1938. We are also indebted to the late Helen Raitt for recovering the manuscript from the archives of the Scripps Institution of Oceanography. The Norwegian Polar Institute loaned negatives from Sverdrup's travels among the Chukchi, for figures 1 through 4. Sverdrup's map of his route in the Chukchi country in 19 19/20 was copied from Hos Tundra-Folket. The map of the Chukchi National Okrug was prepared by Fred Crowe, based on the American Geographic Society's Map of the Arctic Region (1975). The map of Siberia was copied from Terence Armstrong's Russian Settlement in the North (1 965) with permission of the Cambridge University Press. Sam Hinton drew the picture of a reindeer on the cover. Martin W. Johnson identified individuals in some of the photographs. Marston C Sargent Elizabeth N. Shor Kittie C C Kuhns Editors The following individuals, most of whom were closely associated with Sverdrup, out of respect for him and wishing to assure preservation of this unusual account, met part of the cost of publication.
    [Show full text]
  • A Newly Discovered Glacial Trough on the East Siberian Continental Margin
    Clim. Past Discuss., doi:10.5194/cp-2017-56, 2017 Manuscript under review for journal Clim. Past Discussion started: 20 April 2017 c Author(s) 2017. CC-BY 3.0 License. De Long Trough: A newly discovered glacial trough on the East Siberian Continental Margin Matt O’Regan1,2, Jan Backman1,2, Natalia Barrientos1,2, Thomas M. Cronin3, Laura Gemery3, Nina 2,4 5 2,6 7 1,2,8 9,10 5 Kirchner , Larry A. Mayer , Johan Nilsson , Riko Noormets , Christof Pearce , Igor Semilietov , Christian Stranne1,2,5, Martin Jakobsson1,2. 1 Department of Geological Sciences, Stockholm University, Stockholm, 106 91, Sweden 2 Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 10 3 US Geological Survey MS926A, Reston, Virginia, 20192, USA 4 Department of Physical Geography (NG), Stockholm University, SE-106 91 Stockholm, Sweden 5 Center for Coastal and Ocean Mapping, University of New Hampshire, New Hampshire 03824, USA 6 Department of Meteorology, Stockholm University, Stockholm, 106 91, Sweden 7 University Centre in Svalbard (UNIS), P O Box 156, N-9171 Longyearbyen, Svalbard 15 8 Department of Geoscience, Aarhus University, Aarhus, 8000, Denmark 9 Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia 10 Tomsk National Research Polytechnic University, Tomsk, Russia Correspondence to: Matt O’Regan ([email protected]) 20 Abstract. Ice sheets extending over parts of the East Siberian continental shelf have been proposed during the last glacial period, and during the larger Pleistocene glaciations. The sparse data available over this sector of the Arctic Ocean has left the timing, extent and even existence of these ice sheets largely unresolved.
    [Show full text]
  • Paleozoic Rocks of Northern Chukotka Peninsula, Russian Far East: Implications for the Tectonicsof the Arctic Region
    TECTONICS, VOL. 18, NO. 6, PAGES 977-1003 DECEMBER 1999 Paleozoic rocks of northern Chukotka Peninsula, Russian Far East: Implications for the tectonicsof the Arctic region BorisA. Natal'in,1 Jeffrey M. Amato,2 Jaime Toro, 3,4 and James E. Wright5 Abstract. Paleozoicrocks exposedacross the northernflank of Alaskablock the essentialelement involved in the openingof the the mid-Cretaceousto Late CretaceousKoolen metamorphic Canada basin. domemake up two structurallysuperimposed tectonic units: (1) weaklydeformed Ordovician to Lower Devonianshallow marine 1. Introduction carbonatesof the Chegitununit which formed on a stableshelf and (2) strongly deformed and metamorphosedDevonian to Interestin stratigraphicand tectoniccorrelations between the Lower Carboniferousphyllites, limestones, and an&site tuffs of RussianFar East and Alaska recentlyhas beenrevived as the re- the Tanatapunit. Trace elementgeochemistry, Nd isotopicdata, sult of collaborationbetween North Americanand Russiangeol- and texturalevidence suggest that the Tanataptuffs are differen- ogists.This paperpresents the resultsof one suchstudy from the tiatedcalc-alkaline volcanic rocks possibly derived from a mag- ChegitunRiver valley, Russia,where field work was carriedout matic arc. We interpretthe associatedsedimentary facies as in- to establishthe stratigraphic,structural, and metamorphicrela- dicativeof depositionin a basinal setting,probably a back arc tionshipsin the northernpart of the ChukotkaPeninsula (Figure basin. Orthogneissesin the core of the Koolen dome yielded a
    [Show full text]
  • Evidence for Slab Material Under Greenland and Links to Cretaceous
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Evidence for slab material under Greenland 10.1002/2016GL068424 and links to Cretaceous High Key Points: Arctic magmatism • Mid-mantle seismic and gravity anomaly under Greenland identified G. E. Shephard1, R. G. Trønnes1,2, W. Spakman1,3, I. Panet4, and C. Gaina1 • Jurassic-Cretaceous slab linked to paleo-Arctic ocean closure, prior to 1Centre for Earth Evolution and Dynamics (CEED), Department of Geosciences, University of Oslo, Oslo, Norway, 2Natural Amerasia Basin opening 3 • Possible arc-mantle signature in History Museum, University of Oslo, Oslo, Norway, Department of Earth Sciences, Utrecht University, Utrecht, Netherlands, 4 Cretaceous High Arctic LIP volcanism Institut National de l’Information Géographique et Forestière, Laboratoire LAREG, Université Paris Diderot, Paris, France Supporting Information: Abstract Understanding the evolution of extinct ocean basins through time and space demands the • Supporting Information S1 integration of surface kinematics and mantle dynamics. We explore the existence, origin, and implications Correspondence to: of a proposed oceanic slab burial ground under Greenland through a comparison of seismic tomography, G. E. Shephard, slab sinking rates, regional plate reconstructions, and satellite-derived gravity gradients. Our preferred [email protected] interpretation stipulates that anomalous, fast seismic velocities at 1000–1600 km depth imaged in independent global tomographic models, coupled with gravity gradient perturbations, represent paleo-Arctic oceanic slabs Citation: that subducted in the Mesozoic. We suggest a novel connection between slab-related arc mantle and Shephard, G. E., R. G. Trønnes, geochemical signatures in some of the tholeiitic and mildly alkaline magmas of the Cretaceous High Arctic W.
    [Show full text]
  • Reconstruction of Paleoclimate of Russian Arctic in the Late Pleistocene–Holocene on the Basis of Isotope Study of Ice Wedges I.D
    Kriosfera Zemli, 2015, vol. XIX, No. 2, pp. 86–94 http://www.izdatgeo.ru RECONSTRUCTION OF PALEOCLIMATE OF RUSSIAN ARCTIC IN THE LATE PLEISTOCENE–HOLOCENE ON THE BASIS OF ISOTOPE STUDY OF ICE WEDGES I.D. Streletskaya1, A.A. Vasiliev2,3, G.E. Oblogov2, I.V. Tokarev4 1 Lomonosov Moscow State University, Department of Geography, 1 Leninskie Gory, Moscow, 119991, Russia; [email protected] 2 Earth Cryosphere Institute, SB RAS, 86 Malygina str., Tyumen, 625000, Russia; [email protected], [email protected] 3 Tyumen State Oil and Gas University, 38 Volodarskogo str., Tyumen, 625000, Russia 4 Resources Center “Geomodel” of Saint-Petersburg State University, 1 Ulyanovskaya str., St. Petersburg, 198504, Russia The results of paleoclimate reconstructions for the Russian Arctic on the basis of the isotope composition (δ18O) of ice wedges have been presented with the attendant analysis of all available data on isotope composition of syngenetic ice wedges with determined geologic age. Spatial distributions of δ18O values in ice wedges and elementary ice veins have been plotted for the present time and for MIS 1, MIS 2, MIS 3, and MIS 4. Trend lines of spatial distribution of δ18O for different time periods are almost parallel. Based on the data on isotope composition of ice wedges of different age, winter paleotemperatures have been reconstructed for the Russian Arctic and their spatial distribution characterized. Paleoclimate, ice wedges, isotope composition, atmospheric transfer INTRODUCTION Over the last decades numerous papers on iso- Laptev Sea region [Derevyagin et al., 2010]. These tope composition of ice wedges and its relation to pa- data allow to expand this range and to adjust Vasil- leo-geographic conditions have been published chuk’s equations for the whole Russian Arctic.
    [Show full text]
  • Laptev Sea System
    Russian-German Cooperation: Laptev Sea System Edited by Heidemarie Kassens, Dieter Piepenburg, Jör Thiede, Leonid Timokhov, Hans-Wolfgang Hubberten and Sergey M. Priamikov Ber. Polarforsch. 176 (1995) ISSN 01 76 - 5027 Russian-German Cooperation: Laptev Sea System Edited by Heidemarie Kassens GEOMAR Research Center for Marine Geosciences, Kiel, Germany Dieter Piepenburg Institute for Polar Ecology, Kiel, Germany Jör Thiede GEOMAR Research Center for Marine Geosciences, Kiel. Germany Leonid Timokhov Arctic and Antarctic Research Institute, St. Petersburg, Russia Hans-Woifgang Hubberten Alfred-Wegener-Institute for Polar and Marine Research, Potsdam, Germany and Sergey M. Priamikov Arctic and Antarctic Research Institute, St. Petersburg, Russia TABLE OF CONTENTS Preface ....................................................................................................................................i Liste of Authors and Participants ..............................................................................V Modern Environment of the Laptev Sea .................................................................1 J. Afanasyeva, M. Larnakin and V. Tirnachev Investigations of Air-Sea Interactions Carried out During the Transdrift II Expedition ............................................................................................................3 V.P. Shevchenko , A.P. Lisitzin, V.M. Kuptzov, G./. Ivanov, V.N. Lukashin, J.M. Martin, V.Yu. ßusakovS.A. Safarova, V. V. Serova, ßvan Grieken and H. van Malderen The Composition of Aerosols
    [Show full text]
  • LATE PLEISTOCENE and EARLY HOLOCENE WINTER AIR TEMPERATURES in KOTELNY ISLAND: RECONSTRUCTIONS USING STABLE ISOTOPES of ICE WEDGES Yu.K
    Kriosfera Zemli, 2019, vol. XXIII, No. 2, pp. 12–24 http://www.izdatgeo.ru DOI: 10.21782/EC2541-9994-2019-2(12-24) LATE PLEISTOCENE AND EARLY HOLOCENE WINTER AIR TEMPERATURES IN KOTELNY ISLAND: RECONSTRUCTIONS USING STABLE ISOTOPES OF ICE WEDGES Yu.K. Vasil’chuk1,2, V.M. Makeev3, A.A. Maslakov1, N.A. Budantseva1, A.C. Vasil’chuk1 1 Lomonosov Moscow State University, Faculty of Geography and Faculty of Geology, 1, Leninskie Gory, Moscow, 119991, Russia 2 Tyumen State University, 6, Volodarskogo str., Tyumen, 625003, Russia; [email protected] 3Russian State Hydrometeorological University, 98, Malookhtinsky prosp., St. Petersburg, 109017, Russia Late Pleistocene and Holocene winter air temperatures in Kotelny Island, northeastern Russian Arctic, have been reconstructed using oxygen isotope compositions of ice wedges and correlated with evidence of Late Pleistocene and Holocene climate variations inferred from pollen data. The δ18О values range exceeds 6 ‰ in Late Pleistocene ice wedges but is only 1.5 ‰ in the Holocene ones (–30.6 ‰ to –24.0 ‰ against –23.1 ‰ to –21.6 ‰, respectively). The Late Pleistocene mean January air temperatures in Kotelny Island were 10–12 °С lower than the respective present temperature. On the other hand, mean winter temperatures in cold substages during the Karga interstadial were colder than those during the Sartan glacial event. The Late Pleistocene– Holocene climate history included several warm intervals when air temperatures were high enough to maintain the existence of low canopy tree patches in Kotelny Island. Mean January air temperatures in the early Holocene were only 1.0–1.5 °С lower than now.
    [Show full text]
  • The Mesozoic–Cenozoic Tectonic Evolution of the New Siberian Islands, NE Russia
    Geol. Mag. 152 (3), 2015, pp. 480–491. c Cambridge University Press 2014 480 doi:10.1017/S0016756814000326 The Mesozoic–Cenozoic tectonic evolution of the New Siberian Islands, NE Russia ∗ CHRISTIAN BRANDES †, KARSTEN PIEPJOHN‡, DIETER FRANKE‡, NIKOLAY SOBOLEV§ & CHRISTOPH GAEDICKE‡ ∗ Institut für Geologie, Leibniz Universität Hannover, Callinstraße, 30167 Hannover, Germany ‡Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, 30655 Hannover, Germany §A.P. Karpinsky Russian Geological Research Institute (VSEGEI), Sredny av. 74, 199106 Saint-Petersburg, Russia (Received 27 December 2013; accepted 4 June 2014; first published online 25 September 2014) Abstract – On the New Siberian Islands the rocks of the east Russian Arctic shelf are exposed and allow an assessment of the structural evolution of the region. Tectonic fabrics provide evidence of three palaeo-shortening directions (NE–SW, WNW–ESE and NNW–SSE to NNE–SSW) and one set of palaeo-extension directions revealed a NE–SW to NNE–SSW direction. The contractional deformation is most likely the expression of the Cretaceous formation of the South Anyui fold–thrust belt. The NE–SW shortening is the most prominent tectonic phase in the study area. The WNW–ESE and NNW–SSE to NNE–SSW-oriented palaeo-shortening directions are also most likely related to fold belt formation; the latter might also have resulted from a bend in the suture zone. The younger Cenozoic NE–SW to NNE–SSW extensional direction is interpreted as a consequence of rifting in the Laptev Sea. Keywords: New Siberian Islands, De Long Islands, South Anyui suture zone, fold–thrust belt. 1. Introduction slip data. Such datasets deliver important information for understanding the regional geodynamic evolution In the last decades, several plate tectonic models have of the study area.
    [Show full text]
  • National Report of the Russian Federation
    DEPARTMENT OF NAVIGATION AND OCEANOGRAPHY OF THE MINISTRY OF DEFENSE OF THE RUSSIAN FEDERATION NATIONAL REPORT OF THE RUSSIAN FEDERATION 7TH CONFERENCE OF ARCTIC REGIONAL HYDROGRAPHIC COMMISSION Greenland (Denmark), Ilulissat, 22-24 august, 2017 1. Hydrographic office In accordance with the legislation of the Russian Federation matters of nautical and hydrographic services for the purpose of aiding navigation in the water areas of the national jurisdiction except the water area of the Northern Sea Route and in the high sea are carried to competence of the Ministry of Defense of the Russian Federation. Planning, management and administration in nautical and hydrographic services for the purpose of aiding navigation in the water areas of the national jurisdiction except the water area of the Northern Sea Route and in the high sea are carried to competence of the Department of Navigation and Oceanography of the Ministry of Defense of the Russian Federation (further in the text - DNO). The DNO is authorized by the Ministry of Defense of the Russian Federation to represent the State in civil law relations arising in the field of nautical and hydrographic services for the purpose of aiding navigation. It is in charge of the Hydrographic office of the Navy – the National Hydrographic office of the Russian Federation. The main activities of the Hydrographic office of the Navy are the following: to carry out the hydrographic surveys adequate to the requirements of safe navigation in the water areas of the national jurisdiction and in the high
    [Show full text]
  • Crustal Architecture of the East Siberian Arctic Shelf and Adjacent Arctic Ocean Constrained by Seismic Data and Gravity Modeling Results
    This is a repository copy of Crustal architecture of the East Siberian Arctic Shelf and adjacent Arctic Ocean constrained by seismic data and gravity modeling results. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/129730/ Version: Accepted Version Article: Drachev, SS, Mazur, S, Campbell, S et al. (2 more authors) (2018) Crustal architecture of the East Siberian Arctic Shelf and adjacent Arctic Ocean constrained by seismic data and gravity modeling results. Journal of Geodynamics, 119. pp. 123-148. ISSN 0264-3707 https://doi.org/10.1016/j.jog.2018.03.005 Crown Copyright © 2018 Published by Elsevier Ltd. This is an author produced version of a paper published in Journal of Geodynamics. Uploaded in accordance with the publisher's self-archiving policy. This manuscript version is made available under the Creative Commons CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.
    [Show full text]
  • Japan-Russia Workshop on Arctic Research Held in Tokyo on October 28–30, 2014, Possible Research Subjects, 29
    Cooperation on Arctic Research between Japan and Russia Joint Group of Japan and Russia on Arctic Research March, 2015 AERC Report 2015-1 Preface This is the report on the results of the discussions conducted by Japanese and Russian institutes and researchers on Arctic research following the recommendations made by the 11th Japan-Russia Joint Committee on Science and Technology Cooperation in September 2013. The discussions were mainly conducted at two workshops (WSs) held in July and October of 2014 in Tokyo, Japan. The Arctic region has been facing drastic changes in recent years. These changes are affecting the region’s environment and life in society, and moreover pose a threat to affect regions outside the Arctic region as well as the global environment. Clarification of these changes is an urgent issue, and it needs to be carried out by international and domestic efforts as well as through bilateral cooperation. The discussion on cooperative research between Russia, which dominates the largest area in the Arctic region among the Arctic countries, and Japan, which is a non-Arctic country but has long history of Arctic research, will surely make a substantial contribution to the overall understanding of these phenomena. We hope that the discussion made here will be implemented in some manner in the near future. Furthermore, continuous discussions in WSs are needed to narrow the existing gaps between the themes, and define other potential and productive research themes that could not be discussed in 2014. The organizers would like to thank Dr. Vladimir Pavlenko and Professor Tetsuo Ohata who on took the roles of WS coordinators and finishing the report for each side, and the International Science and Technology Center (ISTC), which financially supported the realization of the WSs and the development of this report.
    [Show full text]