By Phylogenetic and Network Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Development of Microbial Pest Control Products for Control of Arthropods: a Critical Evaluation and a Roadmap to Success __
The development of microbial pest control products for control of arthropods: a critical evaluation and a roadmap to success ______________________ Willem Ravensberg Thesis committee Thesis supervisor Prof. dr. J.C. van Lenteren Professor of Entomology, Wageningen University Other members Prof. dr. ir. J. Bakker, Wageningen University Prof. dr. ir. R.H. Wijffels, Wageningen University Dr. M.M. van Oers, Wageningen University Dr. J.W.A. Scheepmaker, National Institute for Public Health and the Enviroment, Bilthoven This research was conducted under the auspices of the Graduate School of Production Ecology and Resource Conservation Willem Ravensberg The development of microbial pest control products for control of arthropods: a critical evaluation and a roadmap to success ______________________ Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 7 September 2010 at 11.00 a.m. in the Aula. Ravensberg, W.J. (2010) The development of microbial pest control products for control of arthropods: a critical evaluation and a roadmap to success PhD Thesis Wageningen University, Wageningen, NL (2010) With references, with a summary in English ISBN 978-90-8585-678-8 to my late parents Contents ___________________________________________________________________________ Contents List of Acronyms and Abbreviations ix-x Chapter 1 General -
Technological Advances to Address Current Issues in Entomology: 2020 Student Debates
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Entomology papers Museum, University of Nebraska State 2-28-2021 Technological Advances to Address Current Issues in Entomology: 2020 Student Debates Lina Bernaola Louisiana State University at Baton Rouge Molly Darlington University of Nebraska—Lincoln, [email protected] Kadie Britt Virginia Polytechnic Institute and State University Patricia Prade University of Florida Morgan Roth Virginia Polytechnic Institute and State University See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/entomologypapers Bernaola, Lina; Darlington, Molly; Britt, Kadie; Prade, Patricia; Roth, Morgan; Pekarcik, Adrian; Boone, Michelle; Ricke, Dylan; Tran, Anh; King, Joanie; Carruthers, Kelly; Thompson, Morgan; Ternest, John J.; Anderson, Sarah E.; Gula, Scott W.; Hauri, Kayleigh C.; Pecenka, Jacob R.; Grover, Sajjan; Puri, Heena; and Vakil, Surabhi Gupta, "Technological Advances to Address Current Issues in Entomology: 2020 Student Debates" (2021). Entomology papers. 171. https://digitalcommons.unl.edu/entomologypapers/171 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Entomology papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Lina Bernaola, Molly Darlington, Kadie Britt, Patricia Prade, Morgan Roth, Adrian Pekarcik, Michelle -
Diversity Within the Entomopathogenic Fungal Species Metarhizium Flavoviride Associated with Agricultural Crops in Denmark Chad A
Keyser et al. BMC Microbiology (2015) 15:249 DOI 10.1186/s12866-015-0589-z RESEARCH ARTICLE Open Access Diversity within the entomopathogenic fungal species Metarhizium flavoviride associated with agricultural crops in Denmark Chad A. Keyser, Henrik H. De Fine Licht, Bernhardt M. Steinwender and Nicolai V. Meyling* Abstract Background: Knowledge of the natural occurrence and community structure of entomopathogenic fungi is important to understand their ecological role. Species of the genus Metarhizium are widespread in soils and have recently been reported to associate with plant roots, but the species M. flavoviride has so far received little attention and intra-specific diversity among isolate collections has never been assessed. In the present study M. flavoviride was found to be abundant among Metarhizium spp. isolates obtained from roots and root-associated soil of winter wheat, winter oilseed rape and neighboring uncultivated pastures at three geographically separated locations in Denmark. The objective was therefore to evaluate molecular diversity and resolve the potential population structure of M. flavoviride. Results: Of the 132 Metarhizium isolates obtained, morphological data and DNA sequencing revealed that 118 belonged to M. flavoviride,13toM. brunneum and one to M. majus. Further characterization of intraspecific variability within M. flavoviride was done by using amplified fragment length polymorphisms (AFLP) to evaluate diversity and potential crop and/or locality associations. A high level of diversity among the M. flavoviride isolates was observed, indicating that the isolates were not of the same clonal origin, and that certain haplotypes were shared with M. flavoviride isolates from other countries. However, no population structure in the form of significant haplotype groupings or habitat associations could be determined among the 118 analyzed M. -
Fungal Pathogens Occurring on <I>Orthopterida</I> in Thailand
Persoonia 44, 2020: 140–160 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.44.06 Fungal pathogens occurring on Orthopterida in Thailand D. Thanakitpipattana1, K. Tasanathai1, S. Mongkolsamrit1, A. Khonsanit1, S. Lamlertthon2, J.J. Luangsa-ard1 Key words Abstract Two new fungal genera and six species occurring on insects in the orders Orthoptera and Phasmatodea (superorder Orthopterida) were discovered that are distributed across three families in the Hypocreales. Sixty-seven Clavicipitaceae sequences generated in this study were used in a multi-locus phylogenetic study comprising SSU, LSU, TEF, RPB1 Cordycipitaceae and RPB2 together with the nuclear intergenic region (IGR). These new taxa are introduced as Metarhizium grylli entomopathogenic fungi dicola, M. phasmatodeae, Neotorrubiella chinghridicola, Ophiocordyceps kobayasii, O. krachonicola and Petchia new taxa siamensis. Petchia siamensis shows resemblance to Cordyceps mantidicola by infecting egg cases (ootheca) of Ophiocordycipitaceae praying mantis (Mantidae) and having obovoid perithecial heads but differs in the size of its perithecia and ascospore taxonomy shape. Two new species in the Metarhizium cluster belonging to the M. anisopliae complex are described that differ from known species with respect to phialide size, conidia and host. Neotorrubiella chinghridicola resembles Tor rubiella in the absence of a stipe and can be distinguished by the production of whole ascospores, which are not commonly found in Torrubiella (except in Torrubiella hemipterigena, which produces multiseptate, whole ascospores). Ophiocordyceps krachonicola is pathogenic to mole crickets and shows resemblance to O. nigrella, O. ravenelii and O. barnesii in having darkly pigmented stromata. Ophiocordyceps kobayasii occurs on small crickets, and is the phylogenetic sister species of taxa in the ‘sphecocephala’ clade. -
Current Knowledge of the Entomopathogenic Fungal Species Metarhizium flavoviride Sensu Lato and Its Potential in Sustainable Pest Control
insects Review Current Knowledge of the Entomopathogenic Fungal Species Metarhizium flavoviride Sensu Lato and Its Potential in Sustainable Pest Control Franciska Tóthné Bogdányi 1 , Renáta Petrikovszki 2 , Adalbert Balog 3, Barna Putnoky-Csicsó 3, Anita Gódor 2,János Bálint 3,* and Ferenc Tóth 2,* 1 FKF Nonprofit Zrt., Alföldi str. 7, 1081 Budapest, Hungary; [email protected] 2 Plant Protection Institute, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly srt. 1, 2100 Gödöll˝o,Hungary; [email protected] (R.P.); [email protected] (A.G.) 3 Department of Horticulture, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Allea Sighis, oarei 1C, 540485 Targu Mures/Corunca, Romania; [email protected] (A.B.); [email protected] (B.P.-C.) * Correspondence: [email protected] (J.B.); [email protected] (F.T.); Tel.: +40-744-782-982 (J.B.); +36-30-5551-255 (F.T.) Received: 17 July 2019; Accepted: 31 October 2019; Published: 2 November 2019 Abstract: Fungal entomopathogens are gaining increasing attention as alternatives to chemical control of arthropod pests, and the literature on their use under different conditions and against different species keeps expanding. Our review compiles information regarding the entomopathogenic fungal species Metarhizium flavoviride (Gams and Rozsypal 1956) (Hypocreales: Clavicipitaceae) and gives account of the natural occurrences and target arthropods that can be controlled using M. flavoviride. Taxonomic problems around M. flavoviride species sensu lato are explained. Bioassays, laboratory and field studies examining the effect of fermentation, culture regimes and formulation are compiled along with studies on the effect of the fungus on target and non-target organisms and presenting the effect of management practices on the use of the fungus. -
Metarhizium Dendrolimatilis, a Novel Metarhizium Species Parasitic on Dendrolimus Sp
Mycosphere 8(1): 31–37 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/1/4 Copyright © Guizhou Academy of Agricultural Sciences Metarhizium dendrolimatilis, a novel Metarhizium species parasitic on Dendrolimus sp. larvae Chen WH1, 2, Han YF2, Liang JD3, Liang ZQ2 and Jin DC1 1 Institute of Entomology, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, China 2 Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China 3Department of Microbiology, School of Basic Medical Science, Guiyang College of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China Chen WH, Han YF, Liang JD, Liang ZQ, Jin DC 2017 –Metarhizium dendrolimatilis, a novel Metarhizium species parasitic on Dendrolimus sp. larvae. Mycosphere 8(1), 31–37, Doi 10.5943/mycosphere/8/1/4 Abstract A novel species of the genus Meatrhizium, Metarhizium dendrolimatilis, parasitic on Dendrolimus sp. larvae, collected in Huaxi, Guiyang, Guizhou Province, China, is described based on morphological and phylogenetic evidences. This species differs morphologically from other species in the genus by its determinate synnemata, ellipsoidal conidia, and globose phialides. The phylogenetic analyses based on four loci (EF1a, RPB1, RPB2 and TUB), strongly support the novel species designation of this fungus within the Metarhizium genus, Metarhizium dendrolimatilis sp. nov. Key words – entomopathogenic fungi – morphology – multi-gene – phylogeny Introduction The genus Metarhizium (Metschn.) Sorokin consists of a diverse group of asexual entomopathogenic fungi with a global distribution and a wide range of host insects. The organism has been used as bio pesticide (Roberts & St. Leger 2004) for mite and tick control (Maniania et al. -
Expert Consultation and Risk Assessment on the Importation and Large-Scale Use of Mycopesticides Against Locusts
Report Expert Consultation and Risk Assessment on the Importation and Large-Scale Use of Mycopesticides against Locusts Rome, 2-7 December 2001 Food and Agriculture Organization of the United Nations 2002 2 Table of Contents PART 1. INTRODUCTION ...................................................................................................................................4 Objectives of the Expert Consultation.......................................................................................................................4 Opening .....................................................................................................................................................................5 Agenda and Chair.......................................................................................................................................................5 Special Considerations ...............................................................................................................................................5 Part 2 Use of Metarhizium against Locusts and Grasshoppers..........................................................................6 Recent developments in the use of Metarhizium ..............................................................................................6 Similarity of Metarhizium isolates.............................................................................................................................7 Efficacy.......................................................................................................................................................................8 -
Optimization of Nutritional Requirements for Mycelial Growth and Sporulation of Entomogenous Fungus Aschersonia Aleyrodis Webber
Brazilian Journal of Microbiology (2008) 39:770-775 ISSN 1517-8382 OPTIMIZATION OF NUTRITIONAL REQUIREMENTS FOR MYCELIAL GROWTH AND SPORULATION OF ENTOMOGENOUS FUNGUS ASCHERSONIA ALEYRODIS WEBBER Yanping Zhu; Jieru Pan; Junzhi Qiu; Xiong Guan* Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China Submitted: September 14, 2007; Returned to authors for corrections: January 11, 2008; Approved: November 02, 2008. ABSTRACT The objective of the present study was to investigate the optimal nutritional requirements for mycelial growth and sporulation of entomopathogenic fungus Aschersonia aleyrodis Webber by orthogonal layout methods. Herein the order of effects of nutrient components on mycelial growth was tryptone > Ca2+ > soluble starch > folacin, corresponding to the following optimal concentrations: 1.58% Soluble Starch, 3.16% Tryptone, 0.2 -1 2+ mmol l Ca and 0.005% Folacin. The optimal concentration of each factors for sporulation was 1.16% -1 2+ lactose, 0.394% tryptone, 0.4 mmol l Fe and 0.00125% VB1, and the effects of medium components on 2+ sporulation were found to be in the order lactose > VB1 > Fe > tryptone. Under the optimal culture conditions, the maximum production of mycelial growth achieved 20.05 g l-1 after 7 days of fermentation, while the maximum spore yield reached 5.23 ×1010 spores l-1 after 22 days of cultivation. This is the first report on optimization of nutritional requirements and design of simplified semi-synthetic media for mycelial growth and sporulation of A. aleyrodis. Key words: Entomogenous fungus, Aschersonia aleyrodis, Orthogonal matrix method, Mycelial Growth, Sporulation INTRODUCTION subtropics (4). -
Five New Species of Moelleriella with Aschersonia-Like Anamorphs Infecting Scale Insects (Coccidae) in Thailand
Five New Species of Moelleriella With Aschersonia-like Anamorphs Infecting Scale Insects (Coccidae) in Thailand Artit Khonsanit National Center for Genetic Engineering and Biotechnology Wasana Noisripoom National Center for Genetic Engineering and Biotechnology Suchada Mongkolsamrit National Center for Genetic Engineering and Biotechnology Natnapha Phosrithong National Center for Genetic Engineering and Biotechnology Janet Jennifer Luangsa-ard ( [email protected] ) National Center for Genetic Engineering and Biotechnology https://orcid.org/0000-0001-6801-2145 Research Article Keywords: Clavicipitaceae, Entomopathogenic fungi, Hypocreales, Phylogeny, Taxonomy Posted Date: February 25th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-254595/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/29 Abstract The genus Moelleriella and its aschersonia-like anamorph mostly occur on scale insects and whiteies. It is characterized by producing brightly colored stromata, obpyriform to subglobose perithecia, cylindrical asci, disarticulating ascospores inside the ascus and fusiform conidia, predominantly found in tropical and occasionally subtropical regions. From our surveys and collections of entomopathogenic fungi, scale insects and whiteies pathogens were found. Investigations of morphological characters and multi-locus phylogenetic analyses based on partial sequences of LSU, TEF and RPB1 were made. Five new species of Moelleriella and their aschersonia-like anamorphs are described here, including M. chiangmaiensis, M. ava, M. kanchanaburiensis, M. nanensis and M. nivea. They were found on scale insects, mostly with at to thin, umbonate, whitish stromata. Their anamorphic and telemorphic states were mostly found on the same stroma, possessing obpyriform perithecia, cylindrical asci with disarticulating ascospores. Their conidiomata are widely open with several locules per stroma, containing cylindrical phialides and fusiform conidia. -
<I>Aschersonia Conica</I>
ISSN (print) 0093-4666 © 2011. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/118.325 Volume 118, pp. 325–329 October–December 2011 Aschersonia conica sp. nov. (Clavicipitaceae) from Hainan Province, China Jun-Zhi Qiu, Yu-Bin Su, Chong-Shuang Weng & Xiong Guan* Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, P. R. China * Correspondence to: [email protected] Abstract — Aschersonia conica, a new anamorphic species of the family Clavicipitaceae, is described and illustrated based on specimens collected in Hainan Province, China. The entomogenous fungus is characterized by conical, whitish to pale yellow stromata that are surrounded by a hypothallus and a wide base, wide ostiolar openings, cylindrical conidiogenous cells in a compact palisade, filiform sterile elements, and fusiform conidia. Key words — morphology, taxonomy, new taxon Introduction Aschersonia Mont., a large genus in the family Clavicipitaceae, has been well studied, especially in America and Europe (Hywel-Jones & Evans 1993; Liu et al. 2005). Recently, new studies on Aschersonia and Hypocrella were carried out using both morphological and molecular techniques (Liu et al. 2006; Spatafora et al. 2007; Sung et al. 2007). Chaverri et al. (2008), who have provided the most extensive revision of Aschersonia since Petch (1921), accepted 32 species. They showed that Aschersonia is a form genus that shares similar anamorph morphologies with Moelleriella and Hypocrella but that both teleomorphic genera can be distinguished by their ascospore disarticulation and conidial shape and size. Mongkolsamrit et al. (2009) later published three additional species based on morphology combined with ITS and β-tubulin sequence analysis. -
A New Species of <I>Aschersonia</I>
MYCOTAXON Volume 111, pp. 471–475 January–March 2010 A new species of Aschersonia (Clavicipitaceae, Hypocreales) from China Jun-Zhi Qiu & Xiong Guan* [email protected] & [email protected] Key Laboratory of Biopesticide and Chemical Biology Ministry of Education, Fujian Agriculture and Forestry University Fuzhou, 350002 Fujian, P. R. China Abstract — A new species of the Clavicipitaceae, Aschersonia macrostromatica, collected from Hainan Province of China is described and illustrated. This fungus differs from other related Aschersonia species in its brownish-yellow, globose, tubercular, large stromata and absence of ostiolar openings, paraphyses, and hypothallus. Key words — morphology, taxonomy, entomogenous fungus Introduction The genus Aschersonia Mont. (Clavicipitaceae, Hypocreales) was established and typified with A. taitensis Mont. from the tropics (Montagne 1848). Forty- four species are currently accepted in Aschersonia (Chaverri et al. 2005). The genus is characterized by pycnidia that range from cupulate depressions to locules totally immersed in pulvinate to globose stromata that are typically brightly colored, fleshy and unicellular, fusiform, hyaline phialoconidia that are extruded from the locules in brightly colored waxy cirrhi (Petch 1921, 1925, Mains 1959). The only known teleomorphs are in the genera Hypocrella, Moelleriella, and Samuelsia, all members of the Clavicipitaceae (Hypocreales, Chaverri et al. 2008). All species are parasites of scale insects. During an investigation on the diversity of microfungi in Hainan Province of China, an interesting entomogenous fungus was found in Xinglong Tropical Botanical Garden. The general morphological characteristics of globose pycnidia formed in hemispherical or cushion-shaped (pulvinate) stroma, slender branched conidiophores, hyaline, mostly fusoid, and smooth one- celled conidia and parasitism on homopteran insects fit the generic concept for Aschersonia well. -
Diversity and Function of Fungi Associated with the Fungivorous Millipede, Brachycybe
bioRxiv preprint doi: https://doi.org/10.1101/515304; this version posted January 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Diversity and function of fungi associated with the fungivorous millipede, Brachycybe lecontii † Angie M. Maciasa, Paul E. Marekb, Ember M. Morrisseya, Michael S. Brewerc, Dylan P.G. Shortd, Cameron M. Staudera, Kristen L. Wickerta, Matthew C. Bergera, Amy M. Methenya, Jason E. Stajiche, Greg Boycea, Rita V. M. Riof, Daniel G. Panaccionea, Victoria Wongb, Tappey H. Jonesg, Matt T. Kassona,* a Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA b Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA c Department of Biology, East Carolina University, Greenville, NC 27858, USA d Amycel Spawnmate, Royal Oaks, CA, 95067, USA e Department of Microbiology and Plant Pathology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA f Department of Biology, West Virginia University, Morgantown, WV, 26506, USA g Department of Chemistry, Virginia Military Institute, Lexington, VA, 24450, USA † Scientific article No. XXXX of the West Virginia Agricultural and Forestry Experiment Station, Morgantown, West Virginia, USA, 26506. * Corresponding author. Current address: G103 South Agricultural Sciences Building, Morgantown, WV, 26506, USA. E-mail address: [email protected] (M.T. Kasson). bioRxiv preprint doi: https://doi.org/10.1101/515304; this version posted January 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.