EAS Final 2014.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
I HIGH MASS ACCURACY COUPLED to SPATIALLY-DIRECTED
HIGH MASS ACCURACY COUPLED TO SPATIALLY-DIRECTED PROTEOMICS FOR IMPROVED PROTEIN IDENTIFICATIONS IN IMAGING MASS SPECTROMETRY EXPERIMENTS By David Geoffrey Rizzo Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry August, 2016 Nashville, Tennessee Approved: Richard M. Caprioli, Ph.D. Kevin L. Schey, Ph.D. John A. McLean, Ph.D. Michael P. Stone, Ph.D. i Copyright © 2016 by David Geoffrey Rizzo All Rights Reserved ii This work is dedicated to my family and friends, who have shown nothing but support for me in all of life’s endeavors. iii ACKNOWLEDGEMENTS “As we express our gratitude, we must never forget that the highest appreciation is not to utter words, but to live by them.” - John F. Kennedy – There are many people I must thank for showing kindness, encouragement, and support for me during my tenure as a graduate student. First and foremost, I would like to thank my research advisor, Richard Caprioli, for providing both ample resources and guidance that allowed me to grow as a scientist. Our discussions about my research and science in general have helped me become a much more focused and discerning analytical chemist. I must also thank my Ph.D. committee members, Drs. Kevin Schey, John McLean, and Michael Stone, who have brought valuable insight into my research and provided direction along the way. My undergraduate advisor, Dr. Facundo Fernández, encouraged me to begin research in his lab and introduced me to the world of mass spectrometry. -
Developing Next Generation Technologies for Spatially Targeted
Developing Next Generation Technologies for Spatially Targeted Proteomics By Daniel Joseph Ryan Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry June 30th, 2019 Nashville, Tennessee Approved: Richard M. Caprioli, Ph.D. Jeffrey M. Spraggins, Ph.D. John A. McLean, Ph.D. Lars Plate, Ph.D. Kevin L. Schey, Ph.D. Copyright © 2019 by Daniel Joseph Ryan All Rights Reserved ii ACKNOWLEDGEMENTS It is with the help of many people that I am afforded the unique privilege of being able to sit here and write out an acknowledgements section for my dissertation. First and foremost, I would like to thank both of advisors, Dr. Richard Caprioli and Dr. Jeff Spraggins. Richard, you have pushed me both scientifically and personally. You have led by example and I am very grateful to have had the opportunity to spend my graduate career in your laboratory, it is not something I take for granted. Jeff, you helped me gain traction upon entering the lab, gave me direction, and have been an integral part of my journey while at Vanderbilt. You went above and beyond what is expected of any advisor to help mold me into the scientist I am today, and I am grateful to call you a mentor and more importantly, a friend. To my entire committee, Kevin Schey, John McLean, and Lars Plate; I am forever thankful for the time you have taken to help push me towards excellence throughout this journey. I want to thank my lab mates, who are also my closest friends, for their support and friendship throughout this period of my life. -
Molecular Fingerprints the Search for Individualized Medicine
WINTER03 p.8 The Power of Proteins p.22 One protein’s story p.16 Discovery science p.26 The future of proteomics LensA New Way of Looking at Science Molecular fingerprints The search for individualized medicine. A PUBLICATION OF VANDERBILT UNIVERSITY MEDICAL CENTER Lens – A New Way of Looking at Science WINTER 2003 VOLUME 1, NUMBER 1 Lens is published by Vanderbilt University Medical Center in cooperation with the VUMC Office of News and Public Affairs and the Office of Research. © Vanderbilt University EDITOR Bill Snyder DIRECTOR OF PUBLICATIONS MEDICAL CENTER NEWS AND PUBLIC AFFAIRS Wayne Wood CONTRIBUTING WRITERS Mary Beth Gardiner Leigh MacMillan Bill Snyder PHOTOGRAPHY/ILLUSTRATION Dean Dixon Dominic Doyle The voyage of Dana Johnson Anne Rayner Pollo Brian Smale discovery consists DESIGN Diana Duren/Corporate Design, Nashville not in seeking new COVER ILLUSTRATION Dean Dixon landscapes, but in EDITORIAL OFFICE Office of News and Public Affairs having new eyes. CCC-3312 Medical Center North Vanderbilt University Nashville, Tennessee 37232-2390 615-322-4747 – MARCEL PROUST About the cover: Need help deciphering the fingerprint 'code?' Please turn to the back inside cover. Lens TABLE OF contents WINTER03 2 PUBLICATION OVERVIEW 3 EDITOR’S LETTER 4 MOLECULAR FINGERPRINTS The search for patterns of proteins in blood and tissue one day may help doctors diagnose diseases like cancer earlier and more accurately than ever before. These “molecular fingerprints” also may lead to new, more effective medicines and the ability to tailor treatments to individual patients. The ultimate aim: a more thor- ough understanding of disease and how to prevent it. -
Mass Spectrometry in Trace Organic Analysis
Pure & Appl. Chem.,Vol. 63, No. 11, pp. 1637-1646, 1991 Printed in Great Britain. @ 1991 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ANALYTICAL CHEMISTRY DIVISION COMMISSION ON MICROCHEMICAL TECHNIQUES AND TRACE ANALYSIS* WORKING GROUP ON ORGANIC TRACE ANALYSIS ANALYTICAL TECHNIQUES FOR TRACE ORGANIC COMPOUNDS-I11 MASS SPECTROMETRY IN TRACE ORGANIC ANALYSIS Prepared for publication by KLAUS BIEMANN Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA *Membership of the Commission during the period (1985-89) when this report was prepared was as follows: Chairman: 1985-89 B. Griepink (Netherlands); Secretary: 1985-89 D. E. Wells (UK); Titular Members: K. Biemann (USA; 1985-89); W. H. Gries (FRG; 1987-89); E. Jackwerth (FRG; 1985-87); M. Leroy (France; 1987-89); A. Lamotte (France; 1985-87); Z. Marczenko (Poland; 1985-89); D. G. Westmoreland (USA; 1987-89); Yu. A. Zolotov (USSR; 1985-87); Associate Members: K. Ballschmiter (FRG; 1985-87); R. Dams (Belgium; 1985-89); K. Fuwa (Japan; 1985-89); M. Grasserbauer (Austria; 1985-87); W. H. Gries (FRG; 1985-87); M. W. Linscheid (FRG; 1985-89); M. Morita (Japan; 1987-89); M. Huntau (Italy; 1985-89); M. J. Pellin (USA; 1985-89); L. Reutergardh (Sweden; 1987-89); B. D. Sawicka (Canada; 1987-89); E. A. Schweikert (USA; 1987-89); G. Scilla (USA; 1987-89); B. Ya. Spivakov (USSR; 1985-89); A. Townshend (UK; 1985-87); W. Wegscheider (Austria; 1987-89); D. G. Westmoreland (USA; 1985-87); National Representatives: R. Gijbels (Belgium; 1985-89); Z.-M. Ni (Chinese Chemical Society; 1985-89); G. Werner (GDR; 1987-89); M. -
MASS SPECTROMETRY by Michal Kliman Dissertation Submi
ADVANCED STRUCTURAL AND SPATIAL ANALYSIS OF LIPIDS USING ION MOBILITY – MASS SPECTROMETRY By Michal Kliman Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry August, 2011 Nashville, Tennessee Approved: Professor John A. McLean Professor Terry P. Lybrand Professor H. Alex Brown Professor Christopher J. Janetopoulos Dedicated to Viera, my loving wife, my companion and best friend, our loves Peter, Agatha and Esther, Dad Cyril, Mom Marianna, Sister Mariana, and the Brothers and Sisters in Faith. ii ACKNOWLEDGEMENTS I would like to first thank my advisor, Dr. John A. McLean, for unwavering encouragement, superb advice and for exemplifying and leading in the art of telling a good story. I was fortunate to join Dr. McLean’s laboratory when it first formed, and helped to set up and christen by work the first instruments and optics with and alongside great coworkers Larissa Fenn, Whitney Ridenour, Randi Gant-Branum, Sophie Zhao, Josh Kerr, Sevugarajan Sundarapandian, Ablatt Mahsut, Jeff Enders, Cody Goodwin, Jody May, Jay Forsythe, Seth Byers, Kelly Hines, and Alyssa Granger. I have since witnessed the growth and success of this group, and savored every fruitful conversation and collaboration within and without the laboratory. My academic journey was greatly enriched through training with Eric Dawson, Jarrod Smith, and Jonathan Sheehan, through collaborative work with Niranjana Vijayakrishnan, Dr. Kendal Broadie, Gus Wright, Libin Xu, Keri Tallman, Dr. Ned Porter, Dr. David Hercules, Dr. Zeljka Korade, and Dr. Brian Bachmann. Colleagues from outside of Vanderbilt campus, including Misha Ugarov, Tom Egan, Dr. -
Pittsburgh Conference
Journal of Automatic Chemistry, Vol. 16, No. 3 (May-June 1994), pp. 75-116 Abstracts of papers presented at the 1994 Pittsburgh Conference The following are the abstracts of the papers read at March 1994s Pittcon which are important to readers of 'Journal of Automatic Chemistry'. 1995s Pittcon will be held in New Orleans from 5 to 10 March. Details from The Pittsburgh Conference, 300 Penn Center Boulevard, Suite 332, Pittsburgh, PA 15235-5503, USA. Reflecting on the past; creating for the future interest in the determination of the structure of natural products. Therefore, no preconceived notions prevented Howard V. Malmstadt, University of the Nations, Kailua-Kona, him from applying mass spectrometry to the structure HI 96740 elucidation of new alkaloids, amino acids and peptides. A particularly field was the determination of Powerful and elegant analytical methods and instruments productive the structure of many indole alkaloids. By classical are used daily in industry, hospitals, R & D laboratories chemical methods this was difficult and very time and process control systems. Major improvements in but with the use of mass sensitivity, detectability, accuracy, speed and reliability consuming, spectrometry combined with a few chemical reactions, the task could provide the necessary data for dramatic breakthroughs in be accomplished quickly and with minimal material. science and technology. The speaker reflected on some of Thus, the early work brought mass spectrometry to the the developments on which he had helped pioneer. attention of the organic chemist. The story behind the story often starts with a simple In the 1960s, high resolution mass spectrometry was question or comment. -
Nature Milestones Mass Spectrometry October 2015
October 2015 www.nature.com/milestones/mass-spec MILESTONES Mass Spectrometry Produced with support from: Produced by: Nature Methods, Nature, Nature Biotechnology, Nature Chemical Biology and Nature Protocols MILESTONES Mass Spectrometry MILESTONES COLLECTION 4 Timeline 5 Discovering the power of mass-to-charge (1910 ) NATURE METHODS: COMMENTARY 23 Mass spectrometry in high-throughput 6 Development of ionization methods (1929) proteomics: ready for the big time 7 Isotopes and ancient environments (1939) Tommy Nilsson, Matthias Mann, Ruedi Aebersold, John R Yates III, Amos Bairoch & John J M Bergeron 8 When a velocitron meets a reflectron (1946) 8 Spinning ion trajectories (1949) NATURE: REVIEW Fly out of the traps (1953) 9 28 The biological impact of mass-spectrometry- 10 Breaking down problems (1956) based proteomics 10 Amicable separations (1959) Benjamin F. Cravatt, Gabriel M. Simon & John R. Yates III 11 Solving the primary structure of peptides (1959) 12 A technique to carry a torch for (1961) NATURE: REVIEW 12 The pixelation of mass spectrometry (1962) 38 Metabolic phenotyping in clinical and surgical 13 Conquering carbohydrate complexity (1963) environments Jeremy K. Nicholson, Elaine Holmes, 14 Forming fragments (1966) James M. Kinross, Ara W. Darzi, Zoltan Takats & 14 Seeing the full picture of metabolism (1966) John C. Lindon 15 Electrospray makes molecular elephants fly (1968) 16 Signatures of disease (1975) 16 Reduce complexity by choosing your reactions (1978) 17 Enter the matrix (1985) 18 Dynamic protein structures (1991) 19 Protein discovery goes global (1993) 20 In pursuit of PTMs (1995) 21 Putting the pieces together (1999) CITING THE MILESTONES CONTRIBUTING JOURNALS UK/Europe/ROW (excluding Japan): The Nature Milestones: Mass Spectroscopy supplement has been published as Nature Methods, Nature, Nature Biotechnology, Nature Publishing Group, Subscriptions, a joint project between Nature Methods, Nature, Nature Biotechnology, Nature Chemical Biology and Nature Protocols. -
Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of ZP1609 and Amyloid Beta
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 9-11-2018 2:00 PM Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of ZP1609 and Amyloid Beta Jasmine S. H. Wang The University of Western Ontario Supervisor Yeung, Ken K.-C. The University of Western Ontario Co-Supervisor Whitehead, Shawn N. The University of Western Ontario Graduate Program in Chemistry A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Jasmine S. H. Wang 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Analytical Chemistry Commons Recommended Citation Wang, Jasmine S. H., "Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of ZP1609 and Amyloid Beta" (2018). Electronic Thesis and Dissertation Repository. 5744. https://ir.lib.uwo.ca/etd/5744 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The revolutionary development of soft ionization techniques like matrix-assisted laser desorption/ionization (MALDI) has opened up the possibilities for mass spectrometry (MS) in protein detection, identification, and sequencing. The ability of MALDI MS to acquire images of intact tissue sections offer an additional dimension of analysis where location information can be attained. Visualization of biological systems help to unravel the complexities of cells, drug pathways, and disease pathology. However, the capabilities of MALDI MS imaging are often being questioned, as signals are typically biased towards the most abundant component within a complex sample. -
Original Filepdf
CHEMICAL HERITAGE FOUNDATION NICO M. NIBBERING Transcript of an Interview Conducted by Michael A. Grayson at Home of Michael Gross St. Louis Park, Minnesota on 7 and 8 June 2013 (With Subsequent Corrections and Additions) NICO M. NIBBERING ACKNOWLEDGMENT This oral history is one in a series initiated by the Chemical Heritage Foundation on behalf of the American Society for Mass Spectrometry. The series documents the personal perspectives of individuals related to the advancemen t of mass spectrometric instrumentation, and records the human dimensions of the growth of mass spectrometry in academic, industrial, and governmental laboratories during the twentieth century. This project is made possible through the generous support of the American Society for Mass Spectrometry This oral history is designated Free Access. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation (CHF) Center for Oral History to credit CHF using the format below: Nico M. Nibbering, interview by Michael A. Grayson at the home of Michael Gross St. Louis Park, Minnesota, 7 and 8 June 2013 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0709). Chemical Heritage Foundation Center for Oral History 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society. -
Science History Institute Ronald D. Macfarlane
SCIENCE HISTORY INSTITUTE RONALD D. MACFARLANE Transcript of an Interview Conducted by Michael A. Grayson at Texas A&M University College Station, Texas on 26 May 2011 (With Subsequent Corrections and Additions) Ronald D. Macfarlane ACKNOWLEDGMENT This oral history is one in a series initiated by the Chemical Heritage Foundation on behalf of the American Society for Mass Spectrometry. The series documents the personal perspectives of individuals related to the advancement of mass spectrometric instrumentation, and records the human dimensions of the growth of mass spectrometry in academic, industrial, and governmental laboratories during the twentieth century. This project is made possible through the generous support of the American Society for Mass Spectrometry. This oral history is designated Free Access. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Center for Oral History, Science History Institute, to credit the Science History Institute using the format below: Ronald D. MacFarlane, interview by Michael Grayson at Texas A&M University, College Station, Texas, 26 May 2011 (Philadelphia: Science History Institute, Oral History Transcript #0877). Formed by the merger of the Chemical Heritage Foundation and the Life Sciences Foundation, the Science History Institute collects and shares the stories of innovators and of discoveries that shape our lives. We preserve and interpret the history of chemistry, chemical engineering, and the life sciences. Headquartered in Philadelphia, with offices in California and Europe, the Institute houses an archive and a library for historians and researchers, a fellowship program for visiting scholars from around the globe, a community of researchers who examine historical and contemporary issues, and an acclaimed museum that is free and open to the public. -
Ronald A. Hites
RONALD A. HITES School of Public and Environmental Affairs Indiana University Bloomington, IN 47405 (812) 855-0193 [email protected] PROFESSIONAL EXPERIENCE Distinguished Professor, Indiana University, Bloomington, 1989-present Professor of Public and Environmental Affairs and of Chemistry, Indiana University, Bloomington, 1979-1989 Associate and Assistant Professor of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, 1972-1979 Research Staff, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, 1969-1972 National Academy of Sciences Postdoctoral Associate, Agricultural Research Service, Peoria, Illinois, 1968- 1969 EDUCATION Doctor of Philosophy in Analytical Chemistry, Massachusetts Institute of Technology, Cambridge, 1968; stud- ied with Professor Klaus Biemann (member of the National Academy of Sciences) Bachelor of Arts in Chemistry, Oakland University, Rochester, Michigan, 1964 HONORS (SELECTED) Lifetime Achievement Award, International Association for Great Lakes Research, 2016 “Ronald A. Hites Tribute Issue,” Environmental Science & Technology, 1 December 2015 Society of Environmental Toxicology and Chemistry Charter Fellow, 2014-present American Chemical Society Charter Fellow, 2009-present Ron Hites Award for an Outstanding Research Publication in the Journal of the American Society for Mass Spectrometry, named in Prof. Hites’ honor in November 2008 President, Board of Directors, International Association for Great Lakes Research, 2008-2009 Associate Editor, Environmental Science -
Focus in Honor of Carol V. Robinson, 2003 Biemann Medal Awardee
EDITORIAL Focus in Honor of Carol V. Robinson, 2003 Biemann Medal Awardee Figure 1. Carol Robinson (Photo by Nathan Pitt). The Biemann Medal recognizes a significant achieve- technician at Pfizer Pharmaceutical (in Sandwich, UK), ment in basic or applied mass spectrometry made by an where she began to be exposed to mass spectrometry. individual early in his or her career. The award is This propelled Carol to pursue further training in the presented in honor of Professor Klaus Biemann and is field of mass spectrometry. After receiving her degrees endowed by contributions from his students, postdoc- and after an eight-year hiatus while her children were toral associates, and friends. The 2003 Medal was pre- young, she received a Royal Society Research Fellow- sented to Professor Carol V. Robinson (Figure 1) of ship in 1995 and assumed the position of Director of Cambridge University for her achievements and contri- Mass Spectrometry at the Oxford Centre for Molecular butions to the areas of protein mass spectrometry and Sciences. In 1999 she became one of the youngest structural biology (Figure 2). professors and also one of only 17 women with the title Carol received her Master of Science degree under of Professor at Oxford University. She moved recently the tutelage of Professor John Beynon at the University to Cambridge University, where she holds the rank of of Wales, Swansea and her Ph.D. degree from Cam- University Professor in the Department of Chemistry. bridge University under the supervision of Professor Mass spectrometry has become a technique to study Dudley Williams. Carol’s research career has always the structure and dynamics of macromolecules and to been focused on the mass spectrometric analysis of describe their folding and assembly, largely because of large biomolecules.