Geo.Alp, Vol. 7, S. 1–17, 2010 SPORE ULTRASTRUCTURE OF SELAGINELLITES LEONARDII AND DIVERSITY OF SELAGINELLALEAN SPORES Natalia Zavialova1, Evelyn Kustatscher2 & Johanna H.A. van Konijnenburg-van Cittert3 With 2 tables and 3 plates 1 Borissiak Palaeontological Institute, Russian Academy of Sciences, Profsoyusnaya st., 123, Moscow, 117647, Russia, e-mail
[email protected]. 2 Naturmuseum Südtirol, Bindergasse 1, 39100 Bolzano/Bozen, Italy, e-mail
[email protected]. 3 Johanna H.A. van Konijnenburg-van Cittert, Laboratory of Palaeobotany and Palynology, Budapestlaan 4, 3584 CD Utrecht, e-mail
[email protected] and National Centre for Biodiversity Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands, e-mail:
[email protected]. Abstract The morphology and ultrastructure of spores of Selaginellites leonardii Kustatscher et al. 2010 from the Anisian (Middle Triassic) of the Dolomites is studied. The microspores are assignable to Uvaesporites Döring, 1965. Distally and equato- rially they are covered with verrucae fused into rugae; proximally they are smooth or finely granulate. The sporoderm includes two layers, which appear homogeneous; the outer layer greatly varies in thickness at the expense of the sculptural elements, is much thicker and slightly less electron dense than the inner layer. The microspores were pro- bably originally acavate, with an homogeneous sporoderm. Although a multi-layered sporoderm forming a cavum is the most common type occurring in selaginellalean microspores, acavate sporoderms are also known with a very high ratio between sporopollenin units and the spaces between them. The megaspores are rounded to rounded-triangular, with a very dense two-layered sporoderm, with the outer layer many times as thick as the inner layer.