Inbreeding and Endangered Species Management: Is New Zealand out of Step with the Rest of the World?
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Evolutionary Genetics and the Major Histocompatibility Complex of New Zealand Robins (Petroicidae)
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Evolutionary Genetics and the Major Histocompatibility Complex of New Zealand Robins (Petroicidae) Hilary C. Miller A thesis submitted for the degree of Doctor of Philosophy in Molecular BioSciences at Massey University, New Zealand June 2003 The founding black robin pair, Old Blue (above), and Old Yellow (right) Photo: Rod Morris The South Island robin Photo: J. Kendrick (DOe) Abstract The genes ofthe major histocompatibility complex (MHC) are highly polymorphic and play a direct role in disease resistance. Loss of variation at MHC loci may increase extinction risk in endangered species, due to an inability to combat a range of pathogens. In this thesis, the evolution of class II B MHC genes is investigated, and levels of variation at these loci are measured in two species of New Zealand robin, the endangered Chatham Island black robin (Petroica traversi), and the non-endangered South Island robin (Petroica australis australis). Transcribed class II B MHC loci from both black robin and South Island robin were characterised prior to analysis ofMHC variation. To this end, a non-lethal protocol fo r isolation of transcribed sequences from blood using 3'RA CE and RT-PCR was developed. Four class II B cDNA sequences were isolated frombla ck robin, and eight sequences were isolated from the South Island robin, indicating there are at least fo ur class II B loci. -
Disaggregation of Bird Families Listed on Cms Appendix Ii
Convention on the Conservation of Migratory Species of Wild Animals 2nd Meeting of the Sessional Committee of the CMS Scientific Council (ScC-SC2) Bonn, Germany, 10 – 14 July 2017 UNEP/CMS/ScC-SC2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II (Prepared by the Appointed Councillors for Birds) Summary: The first meeting of the Sessional Committee of the Scientific Council identified the adoption of a new standard reference for avian taxonomy as an opportunity to disaggregate the higher-level taxa listed on Appendix II and to identify those that are considered to be migratory species and that have an unfavourable conservation status. The current paper presents an initial analysis of the higher-level disaggregation using the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World Volumes 1 and 2 taxonomy, and identifies the challenges in completing the analysis to identify all of the migratory species and the corresponding Range States. The document has been prepared by the COP Appointed Scientific Councilors for Birds. This is a supplementary paper to COP document UNEP/CMS/COP12/Doc.25.3 on Taxonomy and Nomenclature UNEP/CMS/ScC-Sc2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II 1. Through Resolution 11.19, the Conference of Parties adopted as the standard reference for bird taxonomy and nomenclature for Non-Passerine species the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World, Volume 1: Non-Passerines, by Josep del Hoyo and Nigel J. Collar (2014); 2. -
The Black Robin :The Saving of the World's Most Endangered Bird, by David Butler & Don Merton, 1992
1992 235 REVIEWS The Black Robin :the Saving of the World's Most Endangered Bird, by David Butler & Don Merton, 1992. Oxford University Press, 304 pp., ISBN : 0-19-558260-8. Price $49.95. This book, so far seen only as proofs, is due for publication in late September or early October; it should be of wide interest to readers of Notonis. On the one hand, it provides a detailed record of how the Black Robin was brought back from the verge of extinction and, on the other, a lively and interesting account of the activities of the dedicated people who made this remarkable achievement possible despite many difficulties. The book is to have 91 photographs (21 in colour), 24 figures (including maps) and 18 tables, plus appendices and end notes. The first two of the 18 chapters provide an historical perspective covering the period from 1871, when the Black Robin was discovered by H. H. Travers, to 1938, when Fleming's expedition confiied the survival of the species on Little Mangere Island. The third chapter supplies useful information about the geological history of the Chatham Islands, their discovery and geography, and about the history and relationships of the flora and fauna. The fourth chapter, summarising events during the 1950s and 1960s, records the acquiring of reserve status for South East and Mangere Islands and the increasing involvement of the NZ Wildlife Service in the management of endangered bird species at the Chathams and elsewhere. The remaining chapters explain chronologically, and in detail, how the wildlife officers and their helpers reversed the decline in the Black Robin's population. -
The Debate on Plant and Crop Biodiversity and Biotechnology
The Debate on Plant and Crop Biodiversity and Biotechnology Klaus Ammann, [email protected] Version from December 15, 2017, 480 full text references, 117 pp. ASK-FORCE contribution No. 11 Nearly 470 references on biodiversity and Agriculture need still to be screened and selected. Contents: 1. Summary ........................................................................................................................................................................... 3 2. The needs for biodiversity – the general case ................................................................................................................ 3 3. Relationship between biodiversity and ecological parameters ..................................................................................... 5 4. A new concept of sustainability ....................................................................................................................................... 6 4.1. Revisiting the original Brundtland definition of sustainable development ...............................................................................................................7 4.2. Redefining Sustainability for Agriculture and Technology, see fig. 1 .........................................................................................................................8 5. The Issue: unnecessary stigmatization of GMOs .......................................................................................................... 12 6. Types of Biodiversity ...................................................................................................................................................... -
Report of the Workshop on Assessing the Population Viability of Endangered Marine Mammals in U.S
Report of the Workshop on Assessing the Population Viability of Endangered Marine Mammals in U.S. Waters 13–15 September 2005 Savannah, Georgia Prepared by the Marine Mammal Commission 2007 This is one of five reports prepared in response to a directive from Congress to the Marine Mammal Commission to assess the cost-effectiveness of protection programs for the most endangered marine mammals in U.S. waters TABLE OF CONTENTS List of Tables ..................................................................................................................... iv Executive Summary.............................................................................................................v I. Introduction..............................................................................................................1 II. Biological Viability..................................................................................................1 III. Population Viability Analysis..................................................................................5 IV. Viability of the Most Endangered Marine Mammals ..............................................6 Extinctions and recoveries.......................................................................................6 Assessment of biological viability...........................................................................7 V. Improving Listing Decisions..................................................................................10 Quantifying the listing process ..............................................................................10 -
Downloaded from the CSIRO Data Portal [45] and Resampled to the Same Grid As the CHELSA Climate Data
diversity Article All Populations Matter: Conservation Genomics of Australia’s Iconic Purple Wattle, Acacia purpureopetala Marlien M. van der Merwe 1,* , Jia-Yee S. Yap 1, Peter D. Wilson 1, Helen T. Murphy 2 and Andrew Ford 2 1 Research Centre for Ecosystem Resilience, Royal Botanic Garden Sydney, Mrs Macquaries Road, Sydney, NSW 2000, Australia; [email protected] (J.-Y.S.Y.); [email protected] (P.D.W.) 2 CSIRO Land and Water, Tropical Forest Research Centre, Maunds Road, Atherton, QLD 4883, Australia; [email protected] (H.T.M.); [email protected] (A.F.) * Correspondence: [email protected]; Tel.: +61-292318077 Abstract: Maximising genetic diversity in conservation efforts can help to increase the chances of survival of a species amidst the turbulence of the anthropogenic age. Here, we define the distribution and extent of genomic diversity across the range of the iconic but threatened Acacia purpureopetala, a beautiful sprawling shrub with mauve flowers, restricted to a few disjunct populations in far north Queensland, Australia. Seed production is poor and germination sporadic, but the species occurs in abundance at some field sites. While several thousands of SNP markers were recovered, comparable to other Acacia species, very low levels of heterozygosity and allelic variation suggested inbreeding. Limited dispersal most likely contributed towards the high levels of divergence amongst field sites and, using a generalised dissimilarity modelling framework amongst environmental, spatial and floristic data, spatial distance was found to be the strongest factor explaining the current distribution of genetic diversity. We illustrate how population genomic data can be utilised to design Citation: van der Merwe, M.M.; Yap, a collecting strategy for a germplasm conservation collection that optimises genetic diversity. -
Diversification of Petroica Robins Across the Australo-Pacific Region: First Insights Into the Phylogenetic Affinities of New Guinea’S Highland Robin Species
Emu - Austral Ornithology ISSN: 0158-4197 (Print) 1448-5540 (Online) Journal homepage: http://www.tandfonline.com/loi/temu20 Diversification of Petroica robins across the Australo-Pacific region: first insights into the phylogenetic affinities of New Guinea’s highland robin species Anna M. Kearns, Leo Joseph, Aude Thierry, John F. Malloy, Maria Nandadevi Cortes-Rodriguez & Kevin E. Omland To cite this article: Anna M. Kearns, Leo Joseph, Aude Thierry, John F. Malloy, Maria Nandadevi Cortes-Rodriguez & Kevin E. Omland (2018): Diversification of Petroica robins across the Australo- Pacific region: first insights into the phylogenetic affinities of New Guinea’s highland robin species, Emu - Austral Ornithology, DOI: 10.1080/01584197.2018.1498744 To link to this article: https://doi.org/10.1080/01584197.2018.1498744 View supplementary material Published online: 06 Aug 2018. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=temu20 EMU - AUSTRAL ORNITHOLOGY https://doi.org/10.1080/01584197.2018.1498744 Diversification of Petroica robins across the Australo-Pacific region: first insights into the phylogenetic affinities of New Guinea’s highland robin species Anna M. Kearns a,b, Leo Josephc, Aude Thierryd, John F. Malloya, Maria Nandadevi Cortes-Rodrigueza,e and Kevin E. Omlanda aDepartment of Biological Sciences, University of Maryland, Baltimore, USA; bCenter for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA; cAustralian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Australia; dSchool of Biological Sciences, University of Canterbury, Christchurch, New Zealand; eDepartment of Biology, Center for Natural Sciences, Ithaca College, Ithaca, USA ABSTRACT ARTICLE HISTORY Complex spatial and temporal phylogenetic patterns have emerged among Pacific Island radiations Received 13 December 2017 and their Australian and New Guinean congeners. -
An Evolutionary Perspective on Contemporary Genetic Load In
An evolutionary perspective on contemporary genetic load in threatened species to inform future conservation efforts Samarth Mathur1, John Tomeˇcek2, Luis Tarango-Ar´ambula3, Robert Perez4, and Andrew DeWoody1 1Purdue University 2Texas A&M University 3Colegio de Postgraduados Campus San Luis Potosi 4Texas Parks and Wildlife Department June 29, 2021 Abstract In theory, genomic erosion can be reduced in fragile “recipient” populations by translocating individuals from genetically diverse “donor” populations. However, recent simulation studies have argued that such translocations can, in principle, serve as a conduit for new deleterious mutations to enter recipient populations. A reduction in evolutionary fitness is associated with a higher load of deleterious mutations and thus, a better understanding of evolutionary processes driving the empirical distribution of deleterious mutations is crucial. Here, we show that genetic load is evolutionarily dynamic in nature and that demographic history greatly influences the distribution of deleterious mutations over time. Our analyses, based on both demographically explicit simulations as well as whole genome sequences of potential donor-recipient pairs of Montezuma Quail (Cyrtonyx montezumae) populations, indicate that all populations tend to lose deleterious mutations during bottlenecks, but that genetic purging is pronounced in smaller populations with stronger bottlenecks. Despite carrying relatively fewer deleterious mutations, we demonstrate how small, isolated populations are more likely to suffer inbreeding depression as deleterious mutations that escape purging are homogenized due to drift, inbreeding, and ineffective purifying selection. We apply a population genomics framework to showcase how the phylogeography and historical demography of a given species can enlighten genetic rescue efforts. Our data suggest that small, inbred populations should benefit the most when assisted gene flow stems from genetically diverse donor populations that have the lowest proportion of deleterious mutations. -
Reviewing the Consequences of Genetic Purging on the Success of Rescue 3 Programs
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452459; this version posted July 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Authors: Noelia Pérez-Pereiraa, Armando Caballeroa and Aurora García-Doradob 2 Article title: Reviewing the consequences of genetic purging on the success of rescue 3 programs 4 5 6 a Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, 36310 Vigo, 7 Spain. 8 9 b Departamento de Genética, Fisiología y Microbiología, Universidad Complutense, Facultad 10 de Biología, 28040 Madrid, Spain. 11 12 13 Corresponding author: Aurora García-Dorado. Departamento de Genética, Fisiología y 14 Microbiología, Universidad Complutense, Facultad de Biología, 28040 Madrid, Spain. 15 Email address: [email protected] 16 17 ORCID CODES: 18 Noelia Pérez-Pereira: 0000-0002-4731-3712 19 Armando Caballero: 0000-0001-7391-6974 20 Aurora García-Dorado: 0000-0003-1253-2787 21 22 23 24 25 26 27 28 29 30 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452459; this version posted July 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 31 DECLARATIONS: 32 Funding: This work was funded by Agencia Estatal de Investigación (AEI) (PGC2018- 33 095810-B-I00 and PID2020-114426GB-C21), Xunta de Galicia (GRC, ED431C 2020-05) 34 and Centro singular de investigación de Galicia accreditation 2019-2022, and the European 35 Union (European Regional Development Fund - ERDF), Fondos Feder “Unha maneira de 36 facer Europa”. -
Footwear to Allow Researchers to Cross Densely Burrowed Terrain Without Damage to Seabird Habitat
Kennedy & Pachlatko: Footwear to avoid damage to seabird habitat 53 FOOTWEAR TO ALLOW RESEARCHERS TO CROSS DENSELY BURROWED TERRAIN WITHOUT DAMAGE TO SEABIRD HABITAT EUAN S. KENNEDY1 & THOMAS PACHLATKO2 1Department of Conservation, Private Bag 4715, Christchurch 8011, New Zealand ([email protected]) 2Wildtier Schweiz, Strickhofstrasse 39, CH-8057 Zürich, Switzerland Received 4 January 2012, accepted 7 March 2012 SUMMARY KENNEDY, E.S. & PACHLATKO, T. 2012. Footwear to allow researchers to cross densely burrowed terrain without damage to seabird habitat. Marine Ornithology 40: 53–56. Damage to breeding burrows is an inevitable consequence of human activities on densely populated seabird colonies. Few of the ad hoc mitigation measures reported in the literature offer means of working freely and effectively in such environments without collapsing burrows. This paper describes a simple snowshoe-like attachment to footwear that enables individuals to walk relatively comfortably across terrain heavily burrowed by smaller seabird species (≤ 300 mm body length). We outline the design principles for these versatile, easily made fittings and discuss their benefits and limitations. Key words: petrels, habitat, disturbance, conservation, New Zealand INTRODUCTION hemisphere’s most important sanctuaries for threatened marine and terrestrial biota. The island, situated 800 km east of New Zealand in Conservation managers, researchers and other visitors to oceanic the Chatham Island archipelago (44°20'S, 176°10'W), supports the seabird islands commonly experience difficulties of access and only substantial populations of four species of endangered endemic movement across densely burrowed terrain (Taylor 1995, Ussher birds (terrestrial and marine), along with communities of at-risk 1999, Ryan 2005). Frequent burrow collapses tend to be unavoidable, endemic birds, invertebrates and plants (Miskelly 2008). -
Detection of Genetic Purging and Predictive Value of Purging Parameters Estimated in Pedigreed Populations
Heredity (2018) 121:38–51 https://doi.org/10.1038/s41437-017-0045-y ARTICLE Detection of genetic purging and predictive value of purging parameters estimated in pedigreed populations 1 1 2 1 Eugenio López-Cortegano ● Diego Bersabé ● Jinliang Wang ● Aurora García-Dorado Received: 24 July 2017 / Revised: 7 December 2017 / Accepted: 9 December 2017 / Published online: 13 February 2018 © The Genetics Society 2018 Abstract The consequences of inbreeding for fitness are important in evolutionary and conservation biology, but can critically depend on genetic purging. However, estimating purging has proven elusive. Using PURGd software, we assess the performance of the Inbreeding–Purging (IP) model and of ancestral inbreeding (Fa) models to detect purging in simulated pedigreed populations, and to estimate parameters that allow reliably predicting the evolution of fitness under inbreeding. The power to detect purging in a single small population of size N is low for both models during the first few generations of inbreeding (t ≈ N/2), but increases for longer periods of slower inbreeding and is, on average, larger for the IP model. The ancestral inbreeding approach overestimates the rate of inbreeding depression during long inbreeding periods, and produces joint fi 1234567890();,: estimates of the effects of inbreeding and purging that lead to unreliable predictions for the evolution of tness. The IP estimates of the rate of inbreeding depression become downwardly biased when obtained from long inbreeding processes. However, the effect of this bias is canceled out by a coupled downward bias in the estimate of the purging coefficient so that, unless the population is very small, the joint estimate of these two IP parameters yields good predictions of the evolution of mean fitness in populations of different sizes during periods of different lengths. -
Inbreeding Depression in the Speke's Gazelle Captive Breeding Program
Contributed Papers Inbreeding Depression in the Speke’s Gazelle Captive Breeding Program STEVEN T. KALINOWSKI,*‡ PHILIP W. HEDRICK,* AND PHILIP S. MILLER† *Department of Biology, Arizona State University, Tempe, AZ 85287–1501, U.S.A. †Conservation Breeding Specialist Group, 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124–8151, U.S.A. Abstract: The Speke’s gazelle (Gazella spekei) captive breeding program has been presented as one of the few examples of selection reducing the genetic load of a population and as a potential model for the captive breeding of endangered species founded from a small number of individuals. In this breeding program, three generations of mate selection apparently increased the viability of inbred individuals. We reanalyzed the Speke’s gazelle studbook and examined potential causes for the reduction of inbreeding depression. Our analysis indicates that the decrease in inbreeding depression is not consistent with any model of genetic im- provement in the herd. Instead, we found that the effect of inbreeding decreased from severe to moderate dur- ing the first generation of inbreeding, and that this change is responsible for almost all of the decline in in- breeding depression observed during the breeding program. This eliminates selection as a potential explanation for the decrease in inbreeding depression and suggests that inbreeding depression may be more sensitive to environmental influences than is usually thought. Depresión por Intracruza en el Programa de Reproducción en Cautiverio para la Gacela de Speke Resumen: El programa de reproducción en cautiverio para la gacela de Speke (Gazella spekei) ha sido pre- sentado como uno de los pocos ejemplos de selección que reducen la carga genética de una población y un modelo potencial para la reproducción en cautiverio de especies en peligro fundado a partir de un número pequeño de individuos.