Reviewing the Consequences of Genetic Purging on the Success of Rescue 3 Programs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effective Population Size and Genetic Conservation Criteria for Bull Trout
North American Journal of Fisheries Management 21:756±764, 2001 q Copyright by the American Fisheries Society 2001 Effective Population Size and Genetic Conservation Criteria for Bull Trout B. E. RIEMAN* U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station, 316 East Myrtle, Boise, Idaho 83702, USA F. W. A LLENDORF Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA Abstract.ÐEffective population size (Ne) is an important concept in the management of threatened species like bull trout Salvelinus con¯uentus. General guidelines suggest that effective population sizes of 50 or 500 are essential to minimize inbreeding effects or maintain adaptive genetic variation, respectively. Although Ne strongly depends on census population size, it also depends on demographic and life history characteristics that complicate any estimates. This is an especially dif®cult problem for species like bull trout, which have overlapping generations; biologists may monitor annual population number but lack more detailed information on demographic population structure or life history. We used a generalized, age-structured simulation model to relate Ne to adult numbers under a range of life histories and other conditions characteristic of bull trout populations. Effective population size varied strongly with the effects of the demographic and environmental variation included in our simulations. Our most realistic estimates of Ne were between about 0.5 and 1.0 times the mean number of adults spawning annually. We conclude that cautious long-term management goals for bull trout populations should include an average of at least 1,000 adults spawning each year. Where local populations are too small, managers should seek to conserve a collection of interconnected populations that is at least large enough in total to meet this minimum. -
Species Knowledge Review: Shrill Carder Bee Bombus Sylvarum in England and Wales
Species Knowledge Review: Shrill carder bee Bombus sylvarum in England and Wales Editors: Sam Page, Richard Comont, Sinead Lynch, and Vicky Wilkins. Bombus sylvarum, Nashenden Down nature reserve, Rochester (Kent Wildlife Trust) (Photo credit: Dave Watson) Executive summary This report aims to pull together current knowledge of the Shrill carder bee Bombus sylvarum in the UK. It is a working document, with a view to this information being reviewed and added when needed (current version updated Oct 2019). Special thanks to the group of experts who have reviewed and commented on earlier versions of this report. Much of the current knowledge on Bombus sylvarum builds on extensive work carried out by the Bumblebee Working Group and Hymettus in the 1990s and early 2000s. Since then, there have been a few key studies such as genetic research by Ellis et al (2006), Stuart Connop’s PhD thesis (2007), and a series of CCW surveys and reports carried out across the Welsh populations between 2000 and 2013. Distribution and abundance Records indicate that the Shrill carder bee Bombus sylvarum was historically widespread across southern England and Welsh lowland and coastal regions, with more localised records in central and northern England. The second half of the 20th Century saw a major range retraction for the species, with a mixed picture post-2000. Metapopulations of B. sylvarum are now limited to five key areas across the UK: In England these are the Thames Estuary and Somerset; in South Wales these are the Gwent Levels, Kenfig–Port Talbot, and south Pembrokeshire. The Thames Estuary and Gwent Levels populations appear to be the largest and most abundant, whereas the Somerset population exists at a very low population density, the Kenfig population is small and restricted. -
Inbreeding Effects in Wild Populations
230 Review TRENDS in Ecology & Evolution Vol.17 No.5 May 2002 43 Putz, F.E. (1984) How trees avoid and shed lianas. estimate of total aboveground biomass for an neotropical forest of French Guiana: spatial and Biotropica 16, 19–23 eastern Amazonian forest. J. Trop. Ecol. temporal variability. J. Trop. Ecol. 17, 79–96 44 Appanah, S. and Putz, F.E. (1984) Climber 16, 327–335 52 Pinard, M.A. and Putz, F.E. (1996) Retaining abundance in virgin dipterocarp forest and the 48 Fichtner, K. and Schulze, E.D. (1990) Xylem water forest biomass by reducing logging damage. effect of pre-felling climber cutting on logging flow in tropical vines as measured by a steady Biotropica 28, 278–295 damage. Malay. For. 47, 335–342 state heating method. Oecologia 82, 350–361 53 Chai, F.Y.C. (1997) Above-ground biomass 45 Laurance, W.F. et al. (1997) Biomass collapse in 49 Restom, T.G. and Nepstad, D.C. (2001) estimation of a secondary forest in Sarawak. Amazonian forest fragments. Science Contribution of vines to the evapotranspiration of J. Trop. For. Sci. 9, 359–368 278, 1117–1118 a secondary forest in eastern Amazonia. Plant 54 Putz, F.E. (1983) Liana biomass and leaf area of a 46 Meinzer, F.C. et al. (1999) Partitioning of soil Soil 236, 155–163 ‘terra firme’ forest in the Rio Negro basin, water among canopy trees in a seasonally dry 50 Putz, F.E. and Windsor, D.M. (1987) Liana Venezuela. Biotropica 15, 185–189 tropical forest. Oecologia 121, 293–301 phenology on Barro Colorado Island, Panama. -
The Debate on Plant and Crop Biodiversity and Biotechnology
The Debate on Plant and Crop Biodiversity and Biotechnology Klaus Ammann, [email protected] Version from December 15, 2017, 480 full text references, 117 pp. ASK-FORCE contribution No. 11 Nearly 470 references on biodiversity and Agriculture need still to be screened and selected. Contents: 1. Summary ........................................................................................................................................................................... 3 2. The needs for biodiversity – the general case ................................................................................................................ 3 3. Relationship between biodiversity and ecological parameters ..................................................................................... 5 4. A new concept of sustainability ....................................................................................................................................... 6 4.1. Revisiting the original Brundtland definition of sustainable development ...............................................................................................................7 4.2. Redefining Sustainability for Agriculture and Technology, see fig. 1 .........................................................................................................................8 5. The Issue: unnecessary stigmatization of GMOs .......................................................................................................... 12 6. Types of Biodiversity ...................................................................................................................................................... -
RSPB CENTRE for CONSERVATION SCIENCE RSPB CENTRE for CONSERVATION SCIENCE Where Science Comes to Life
RSPB CENTRE FOR CONSERVATION SCIENCE RSPB CENTRE FOR CONSERVATION SCIENCE Where science comes to life Contents Knowing 2 Introducing the RSPB Centre for Conservation Science and an explanation of how and why the RSPB does science. A decade of science at the RSPB 9 A selection of ten case studies of great science from the RSPB over the last decade: 01 Species monitoring and the State of Nature 02 Farmland biodiversity and wildlife-friendly farming schemes 03 Conservation science in the uplands 04 Pinewood ecology and management 05 Predation and lowland breeding wading birds 06 Persecution of raptors 07 Seabird tracking 08 Saving the critically endangered sociable lapwing 09 Saving South Asia's vultures from extinction 10 RSPB science supports global site-based conservation Spotlight on our experts 51 Meet some of the team and find out what it is like to be a conservation scientist at the RSPB. Funding and partnerships 63 List of funders, partners and PhD students whom we have worked with over the last decade. Chris Gomersall (rspb-images.com) Conservation rooted in know ledge Introduction from Dr David W. Gibbons Welcome to the RSPB Centre for Conservation The Centre does not have a single, physical Head of RSPB Centre for Conservation Science Science. This new initiative, launched in location. Our scientists will continue to work from February 2014, will showcase, promote and a range of RSPB’s addresses, be that at our UK build the RSPB’s scientific programme, helping HQ in Sandy, at RSPB Scotland’s HQ in Edinburgh, us to discover solutions to 21st century or at a range of other addresses in the UK and conservation problems. -
Equilibrium Theory of Island Biogeography: a Review
Equilibrium Theory of Island Biogeography: A Review Angela D. Yu Simon A. Lei Abstract—The topography, climatic pattern, location, and origin of relationship, dispersal mechanisms and their response to islands generate unique patterns of species distribution. The equi- isolation, and species turnover. Additionally, conservation librium theory of island biogeography creates a general framework of oceanic and continental (habitat) islands is examined in in which the study of taxon distribution and broad island trends relation to minimum viable populations and areas, may be conducted. Critical components of the equilibrium theory metapopulation dynamics, and continental reserve design. include the species-area relationship, island-mainland relation- Finally, adverse anthropogenic impacts on island ecosys- ship, dispersal mechanisms, and species turnover. Because of the tems are investigated, including overexploitation of re- theoretical similarities between islands and fragmented mainland sources, habitat destruction, and introduction of exotic spe- landscapes, reserve conservation efforts have attempted to apply cies and diseases (biological invasions). Throughout this the theory of island biogeography to improve continental reserve article, theories of many researchers are re-introduced and designs, and to provide insight into metapopulation dynamics and utilized in an analytical manner. The objective of this article the SLOSS debate. However, due to extensive negative anthropo- is to review previously published data, and to reveal if any genic activities, overexploitation of resources, habitat destruction, classical and emergent theories may be brought into the as well as introduction of exotic species and associated foreign study of island biogeography and its relevance to mainland diseases (biological invasions), island conservation has recently ecosystem patterns. become a pressing issue itself. -
Translocations and the 'Genetic Rescue' of Bottlenecked Populations
Translocations and the ‘genetic rescue’ of bottlenecked populations ATHESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN WILDLIFE CONSERVATION AT THE UNIVERSITY OF CANTERBURY SOL HEBER SEPTEMBER 2012 Abstract Many species around the world have passed through severe population bottlenecks due to an- thropogenic influences such as habitat loss or fragmentation, the introduction of exotic predators, pollution and excessive hunting. Severe bottlenecks are expected to lead to increased inbreed- ing depression and the loss of genetic diversity, and hence reduce the long-term viability of post- bottlenecked populations. The objective of this thesis was to examine both the consequences of severe bottlenecks and the use of translocations to ameliorate the effects of inbreeding due to bot- tlenecks. Given the predicted increase in probability of inbreeding in smaller populations, one would expect inbreeding depression to increase as the size of a population bottleneck decreases. Deter- mining the generality of such a relationship is critical to conservation efforts aimed at minimising inbreeding depression among threatened species. I therefore investigated the relationship between bottleneck size and population viability using hatching failure as a fitness measure in a sample of threatened bird species worldwide. Bottleneck size had a significant negative effect on hatch- ing failure, and this relationship held when controlling for confounding effects of phylogeny, body size, clutch size, time since bottleneck, and latitude. All species passing through bottlenecks of ∼100–150 individuals exhibited increased hatching failure. My results confirm that the negative consequences of bottlenecks on hatching success are widespread, and highlight the need for conser- vation managers to prevent severe bottlenecks. -
Saving Seeds: Optimally Planning Our Ex Situ Conservation Collections to Ensure Species' Evolutionary Potential1
Gene Conservation of Tree Species—Banking on the Future Saving Seeds: Optimally Planning Our Ex Situ Conservation Collections to Ensure Species' 1 Evolutionary Potential Sean M. Hoban2,3 In the face of ongoing environmental change, conservation and natural resource agencies are initiating or expanding ex situ seed collections from natural plant populations. Seed collections have many uses, including in provenance trials, breeding programs, seed orchards, gene banks for long-term conservation (live plants or seeds), restoration, reforestation, and scientific study of plant germination or other plant ecology studies. Well-known examples of ex situ collections include the Millennium Seed Bank Partnership, Australian Seed Bank Partnership, United Kingdom National Tree Seed Program, United States National Plant Germplasm System, and South African Regional Seed Bank. Some collections focus on rare species, species with relevance to agriculture or forestry, or regional flora. Other collections are in response to immediate threats, such as damaging insects and pathogens (e.g., emerald ash borer). In this talk I will discuss how to sample seeds to most optimally conserve the evolutionary potential of a species to ensure its long-term survival. A useful seed collection captures as much phenotypic and genetic diversity from natural populations as possible. Choices for a collector include how many populations, maternal plants, and seeds per plant to collect. A collector wishes to achieve efficiency—to not waste limited time, resources, personnel, and storage space, but also to achieve effectiveness—to be as complete as possible in case important genetic variants are lost from natural populations. In a series of papers starting in 1975, Brown and Marshall (1975) proposed some solutions to this general sampling problem. -
Central Concepts and Issues of Landscape Ecology
1 Central Concepts and Issues of Landscape Ecology JOHN A. H ••• the grand challenge is to forge a conceptual and theoretical ogy, embracing in one manner or another individual responses and population dynamics, and explaining patterns in species abundance caused by complex landscapes and patterns driven by complex dynamics" (Hanski 1999:264). 1.1 Introduction The objective of biological conservation is the long-term maintenance of popula tions or species or, more broadly, of the Earth's biodiversity. Many of the threats that elicit conservation concern result in one way or another from human land use. Population sizes may become prccariously small when suitablc habitat is lost or becomes spatially fragmented, increasing the likelihood of extinction. ChangeI'> in land cover may affect interactions between predator and prey or parasite and host populations. The spread of invasive or exotic species, disease, or distur bances such as fire may be enhanced by shifts in the distribution of natural, agri cultural, or urbanized areas. The inful'>ion of pollutants into aquatic ecosystems from terrestrial sources such as agriculture may be enhanced or reduced by the characteristics of the landscape between source and end point. Virtually all con servation issues are ultimately land-use issues. Landscape ecology deals with the causes and consequences of the spatial com position and configuration of landscape mosaics. Because changes in land use alter landscape composition and configuration, landscape ecology and biological conservation are obviously closely linked. Both landscape ecology and conserva tion biology are relatively young disciplines, however, so this conceptual mar riage has yet to be fully consurmnated. -
Downloaded from the CSIRO Data Portal [45] and Resampled to the Same Grid As the CHELSA Climate Data
diversity Article All Populations Matter: Conservation Genomics of Australia’s Iconic Purple Wattle, Acacia purpureopetala Marlien M. van der Merwe 1,* , Jia-Yee S. Yap 1, Peter D. Wilson 1, Helen T. Murphy 2 and Andrew Ford 2 1 Research Centre for Ecosystem Resilience, Royal Botanic Garden Sydney, Mrs Macquaries Road, Sydney, NSW 2000, Australia; [email protected] (J.-Y.S.Y.); [email protected] (P.D.W.) 2 CSIRO Land and Water, Tropical Forest Research Centre, Maunds Road, Atherton, QLD 4883, Australia; [email protected] (H.T.M.); [email protected] (A.F.) * Correspondence: [email protected]; Tel.: +61-292318077 Abstract: Maximising genetic diversity in conservation efforts can help to increase the chances of survival of a species amidst the turbulence of the anthropogenic age. Here, we define the distribution and extent of genomic diversity across the range of the iconic but threatened Acacia purpureopetala, a beautiful sprawling shrub with mauve flowers, restricted to a few disjunct populations in far north Queensland, Australia. Seed production is poor and germination sporadic, but the species occurs in abundance at some field sites. While several thousands of SNP markers were recovered, comparable to other Acacia species, very low levels of heterozygosity and allelic variation suggested inbreeding. Limited dispersal most likely contributed towards the high levels of divergence amongst field sites and, using a generalised dissimilarity modelling framework amongst environmental, spatial and floristic data, spatial distance was found to be the strongest factor explaining the current distribution of genetic diversity. We illustrate how population genomic data can be utilised to design Citation: van der Merwe, M.M.; Yap, a collecting strategy for a germplasm conservation collection that optimises genetic diversity. -
Can Darwin's Finches and Their Native Ectoparasites Survive the Control of Th
Insect Conservation and Diversity (2017) 10, 193–199 doi: 10.1111/icad.12219 FORUM & POLICY Coextinction dilemma in the Galapagos Islands: Can Darwin’s finches and their native ectoparasites survive the control of the introduced fly Philornis downsi? 1 2 MARIANA BULGARELLA and RICARDO L. PALMA 1School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand and 2Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand Abstract. 1. The survival of parasites is threatened directly by environmental alter- ation and indirectly by all the threats acting upon their hosts, facing coextinction. 2. The fate of Darwin’s finches and their native ectoparasites in the Galapagos Islands is uncertain because of an introduced avian parasitic fly, Philornis downsi, which could potentially drive them to extinction. 3. We documented all known native ectoparasites of Darwin’s finches. Thir- teen species have been found: nine feather mites, three feather lice and one nest mite. No ticks or fleas have been recorded from them yet. 4. Management options being considered to control P. downsi include the use of the insecticide permethrin in bird nests which would not only kill the invasive fly larvae but the birds’ native ectoparasites too. 5. Parasites should be targeted for conservation in a manner equal to that of their hosts. We recommend steps to consider if permethrin-treated cotton sta- tions are to be deployed in the Galapagos archipelago to manage P. downsi. Key words. Chewing lice, coextinction, Darwin’s finches, dilemma, ectoparasites, feather mites, Galapagos Islands, permethrin, Philornis downsi. Introduction species have closely associated species which are also endangered (Dunn et al., 2009). -
Genetic Applications in Avian Conservation
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2011 Genetic Applications in Avian Conservation Susan M. Haig U.S. Geological Survey, [email protected] Whitcomb M. Bronaugh Oregon State University Rachel S. Crowhurst Oregon State University Jesse D'Elia U.S. Fish and Wildlife Service Collin A. Eagles-Smith U.S. Geological Survey See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Haig, Susan M.; Bronaugh, Whitcomb M.; Crowhurst, Rachel S.; D'Elia, Jesse; Eagles-Smith, Collin A.; Epps, Clinton W.; Knaus, Brian; Miller, Mark P.; Moses, Michael L.; Oyler-McCance, Sara; Robinson, W. Douglas; and Sidlauskas, Brian, "Genetic Applications in Avian Conservation" (2011). USGS Staff -- Published Research. 668. https://digitalcommons.unl.edu/usgsstaffpub/668 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Susan M. Haig, Whitcomb M. Bronaugh, Rachel S. Crowhurst, Jesse D'Elia, Collin A. Eagles-Smith, Clinton W. Epps, Brian Knaus, Mark P. Miller, Michael L. Moses, Sara Oyler-McCance, W. Douglas Robinson, and Brian Sidlauskas This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usgsstaffpub/668 The Auk 128(2):205–229, 2011 The American Ornithologists’ Union, 2011. Printed in USA. SPECIAL REVIEWS IN ORNITHOLOGY GENETIC APPLICATIONS IN AVIAN CONSERVATION SUSAN M. HAIG,1,6 WHITCOMB M. BRONAUGH,2 RACHEL S.