Atlas of Wild Potatoes

Total Page:16

File Type:pdf, Size:1020Kb

Atlas of Wild Potatoes SYSTEMATIC AND ECOGEOGRAPHIC STUDIES ON CROP GENEPOOLS 10 Atlas of Wild Potatoes Robert J. Hijmans, David M. Spooner, Alberto R. Salas, Luigi Guarino and Jorge de la Cruz SYSTEMATIC AND ECOGEOGRAPHIC STUDIES ON CROP GENEPOOLS Atlas of Wild Potatoes Robert J. Hijmans1, David M. Spooner2, Alberto R. Salas1, Luigi Guarino3 and Jorge de la Cruz1 1 International Potato Center, Apartado 1558, Lima 12, Peru 2 USDA, Agricultural Research Service, Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison, Wisconsin 53706-1590 USA 3 International Plant Genetic Resources Institute, Office for the Americas, c/o CIAT, AA 6713, Cali, Colombia ii SYSTEMATIC AND ECOGEOGRAPHIC STUDIES ON CROP GENEPOOLS ATLAS OF WILD POTATOES iii TABLE OF CONTENTS Acknowledgments ix Abstract x 1. Introduction 1 2. Wild potatoes 2 Habitats 2 Shapes and colours 3 3. Potato taxonomy 6 A dynamic taxonomy 6 Ingroup and outgroup relationships 12 Cultivated species 14 Complicating factors for a stable potato taxonomy 14 Breeding barriers 16 4. Data and software 17 Collecting expeditions 17 Data sources 17 Data quality 18 Information quality 19 Software 23 5. Distribution maps 24 Methods 24 Guatemala, Mexico, and USA 26 Central America 37 Northern Andes 40 Peru 45 Bolivia 61 Southern Andes 67 Southern cone 79 Distribution of series 84 6. Ecogeographic statistics 92 Distribution by country 92 Distribution by species 93 Range size statistics 94 Altitude and climate 103 Species distribution by latitude 109 7. Diversity 111 Species richness 111 Scale effect 116 Series 118 8. Conclusion 122 9. References 123 iv SYSTEMATIC AND ECOGEOGRAPHIC STUDIES ON CROP GENEPOOLS List of Tables Table 1. Wild potato species (Solanum sect. Petota) and three outgroup relatives in sect. Etuberosum, their standard three- letter codes, the number of the map in chapter 5 showing their distribution, series membership (or section membership for Etuberosum), and ploidy and Endosperm Balance Number (EBN) where known. 7 Table 2. Names of series in Solanum sect. Petota, and number of species in each series 13 Table 3. Wild potato distribution by country. 92 Table 4 Ecogeographic distribution statistics for wild potato species. Order and three-letter species codes follow Table 1. Number of observations (Obs); Range size: MaxD and CA50; Mean and standard deviation (SD) of altitude (Alt), annual average temperature (Temp) and annual precipitation (Rain). 96 Table 5. Grid-based species richness statistics by country. 115 Table 6. Number of species and number of observations (Obs) in our database, and average number of observations over species for each series. 118 List of Figures Figure 1. Wild potato habitats. A: dry deciduous forest in Jalisco, Mexico (2080 m); B: paramo in Mérida State, Venezuela (3050 m); C: seashore in the Chonos Archipelago, Región Aisén, Chile; D: humid highlands in La Paz Department, Bolivia (3900 m). 2 Figure 2. Wild potato plant forms. A: Solanum hougasii; B: S. agrimonifolium; C: S. morelliforme; D: S. infundibuliforme. 4 Figure 3. Wild and cultivated potato flowers. A: Solanum bulbocastanum; B: S. paucijugum; C: S. tuberosum (cultivated species); D: S. colombianum. 4 Figure 4. Wild potato fruits. A: Solanum verrucosum; B: S. andreanum; C: S. schenckii; D: S. moscopanum. 5 Figure 5. Wild potato tubers. A: Solanum sparsipilum; B: S. polyadenium; C: S. acaule; D: S. chiquidenum; E: S. commersonii; F: S. piurae. 5 Figure 6. Number of accepted potato species over time. 6 Figure 7. Expected and observed distance from the road of locations where wild potatoes were observed in central Bolivia. 22 Figure 8. Number of observations by species in our database. 94 Figure 9. Illustration of the calculation procedure of MaxD (A) and CA50 (B) for S. jamesii in the USA and Mexico. 95 Figure 10. Two measures of range size of wild potato species. Maximum distance between two observations of one species (MaxD) and circular area (CA50). 101 ATLAS OF WILD POTATOES v Figure 11. Maximum distance (MaxD) versus circular area (CA50) for all wild potato species. 101 Figure 12. Circular area (CA50) versus number of observations of wild potato species. 102 Figure 13. Altitude distribution of wild potatoes, for observations and species. 103 Figure 14. Altitude distribution by latitude of wild potato observations. 107 Figure 15. Temperature distribution of wild potatoes, for observations and species. 108 Figure 16. Temperature distribution of wild potato (over observations) by latitude. 108 Figure 17. Precipitation distribution of wild potatoes, for observations and species. 109 Figure 18. Precipitation distribution of wild potato (over observations) by latitude. 110 Figure 19. Number of wild potato species by latitude. 110 Figure 20. Frequency distribution of the number of wild potato species per 50 x 50 km grid cell. 114 Figure 21. Ratio of the number of wild potato species to number of observations for each grid cell (obs. = 1247). 116 Figure 22. Number of series versus number of species by grid cell. 121 vi SYSTEMATIC AND ECOGEOGRAPHIC STUDIES ON CROP GENEPOOLS List of Maps Map 1. Collecting sites and roads in central Bolivia. 21 Map 2. Area of known distribution of wild potatoes (gray shade). 25 Map 3. First-level administrative subdivisions in Guatemala, Mexico, and the USA. 26 Map 4. Distribution of S. guerreroense and S. stoloniferum.27 Map 5. Distribution of S. brachistotrichum, S. bulbocastanum, and S. hjertingii.28 Map 6. Distribution of S. leptosepalum, S. polyadenium, S. stenophyllidium, and S. ×semidemissum.29 Map 7. Distribution of S. demissum, S. hougasii, S. macropilosum, and S. matehualae.30 Map 8. Distribution of S. fendleri, S. hintonii, S. ×michoacanum, S. ×sambucinum, S. tarnii, and S. trifidum.31 Map 9. Distribution of S. cardiophyllum, S. jamesii, and S. ×vallis-mexici.32 Map 10. Distribution of S. lesteri, S. pinnatisectum, S. schenckii, and S. verrucosum.33 Map 11. Distribution of S. ×edinense, S. oxycarpum, and S. wightianum.34 Map 12. Distribution of S. iopetalum, S. morelliforme, and S. nayaritense.35 Map 13. Distribution of S. brachycarpum and S. papita.36 Map 14. First-level administrative subdivisions in Central America. 37 Map 15. Distribution of S. agrimonifolium and S. woodsonii.38 Map 16. Distribution of S. clarum and S. longiconicum.39 Map 17. First-level administrative subdivisions in the northern Andes. 40 Map 18. Distribution of S. albornozii, S. colombianum, and S. paucijugum. 41 Map 19. Distribution of S. calacalinum, S. flahaultii, S. pamplonense, S. regularifolium, S. subpanduratum, and S. tundalomense.42 Map 20. Distribution of S. andreanum, S. burtonii, S. chilliasense, S. donachui, S. garcia-barrigae, S. lobbianum, and S. moscopanum.43 Map 21. Distribution of S. minutifoliolum, S. neovalenzuelae, S. orocense, S. otites, S. solisii, S. sucubunense, and S. tuquerrense.44 Map 22. First-level administrative subdivisions in Peru. 45 Map 23. Distribution of S. acroglossum, S. anamatophilum, S. bill-hookeri, S. chancayense, S. chomatophilum, S. guzmanguense, and S. velardei.46 Map 24. Distribution of S. acroscopicum, S. ambosinum, S. ayacuchense, S. aymaraesense, S. chiquidenum, and S. wittmackii.47 Map 25. Distribution of S. albicans, S. buesii, S. burkartii, S. sandemanii, S. tapojense, S. trinitense, and S. yamobambense.48 Map 26. Distribution of S. amayanum, S. ancoripae, S. ×arahuayum, S. sarasarae, S. tacnaense, S. taulisense, and S. pillahuatense.49 Map 27. Distribution of S. cajamarquense, S. coelestipetalum, S. dolichocremastrum, S. gracilifrons, and S. hypacrarthrum.50 Map 28. Distribution of S. chillonanum, S. hastiforme, S. huarochiriense, S. incahuasinum, S. ingifolium, and S. saxatilis.51 ATLAS OF WILD POTATOES vii Map 29. Distribution of S. ancophilum, S. ariduphilum, S. huancabambense, S. humectophilum, S. incasinum, and S. ortegae.52 Map 30. Distribution of S. irosinum, S. jaenense, S. jalcae, S. laxissimum, S. longiusculus, and S. multiinterruptum.53 Map 31. Distribution of S. augustii, S. limbaniense, S. lopez-camarenae, S. marinasense, S. medians, and S. ×blanco-galdosii.54 Map 32. Distribution of S. huancavelicae, S. mochiquense, S. olmosense, S. simplicissimum, S. sogarandinum, and S. ×neoweberbaueri.55 Map 33. Distribution of S. immite, S. nemorosum, S. neovargasii, S. nubicola, and S. raphanifolium.56 Map 34. Distribution of S. cantense, S. contumazaense, S. lignicaule, S. paucissectum, S. peloquinianum, and S. santolallae.57 Map 35. Distribution of S. orophilum, S. pampasense, S. piurae, S. puchupuchense, S. sawyeri, and S. taratapanum.58 Map 36. Distribution of S. raquialatum, S. rhomboideilanceolatum, S. salasianum, S. scabrifolium, and S. urubambae.59 Map 37. Distribution of S. bukasovii.60 Map 38. First-level administrative subdivisions in Bolivia. 61 Map 39. Distribution of S. avilesii, S. gandarillasii, S. neocardenasii, S. soestii, and S. ugentii.62 Map 40. Distribution of S. arnezii, S. boliviense, S. circaeifolium, S. neovavilovii, and S. ×litusinum.63 Map 41. Distribution of S. alandiae, S. flavoviridens, S. hoopesii, S. virgultorum, and S. ×sucrense.64 Map 42. Distribution of S. achacachense, S. ×doddsii, and S. violaceimarmoratum.65 Map 43. Distribution of S. berthaultii and S. bombycinum.66 Map 44. First-level administrative subdivisions in the southern Andes. 67 Map 45. Distribution of S. acaule.68 Map 46. Distribution of S. ×bruecheri and S. okadae.69 Map 47. Distribution of S. ×setulosistylum and S. vidaurrei.70 Map 48. Distribution of S. tarijense.71 Map 49. Distribution of S. candolleanum, S. infundibuliforme, and S. yungasense.72 Map 50. Distribution of S. megistacrolonum.73 Map 51. Distribution of S. microdontum.74 Map 52. Distribution of S. brevicaule and S. vernei.75 Map 53. Distribution of S. oplocense.76 Map 54. Distribution of S. neorossii, S. sparsipilum, and S. spegazzinii.77 Map 55. Distribution of S. leptophyes.78 Map 56. First-level administrative subdivisions in the Southern cone. 79 Map 57. Distribution of S. calvescens, S. chacoense, S. maglia, and S. palustre.80 Map 58. Distribution of S. commersonii, S. fernandezianum, S. sanctae-rosae, S. ×rechei, and S. ×viirsoii.81 viii SYSTEMATIC AND ECOGEOGRAPHIC STUDIES ON CROP GENEPOOLS Map 59. Distribution of S.
Recommended publications
  • Breeding Virus Resistant Potatoes (Solanum Tuberosum): a Review of Traditional and Molecular Approaches
    Heredity 86 (2001) 17±35 Received 22 December 1999, accepted 20 September 2000 Breeding virus resistant potatoes (Solanum tuberosum): a review of traditional and molecular approaches RUTH M. SOLOMON-BLACKBURN* & HUGH BARKER Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, U.K. Tetraploid cultivated potato (Solanum tuberosum) is the World's fourth most important crop and has been subjected to much breeding eort, including the incorporation of resistance to viruses. Several new approaches, ideas and technologies have emerged recently that could aect the future direction of virus resistance breeding. Thus, there are new opportunities to harness molecular techniques in the form of linked molecular markers to speed up and simplify selection of host resistance genes. The practical application of pathogen-derived transgenic resistance has arrived with the ®rst release of GM potatoes engineered for virus resistance in the USA. Recently, a cloned host virus resistance gene from potato has been shown to be eective when inserted into a potato cultivar lacking the gene. These and other developments oer great opportunities for improving virus resistance, and it is timely to consider these advances and consider the future direction of resistance breeding in potato. We review the sources of available resistance, conventional breeding methods, marker-assisted selection, somaclonal variation, pathogen-derived and other transgenic resistance, and transformation with cloned host genes. The relative merits of the dierent methods are discussed, and the likely direction of future developments is considered. Keywords: breeding, host gene, potato virus, resistance, review, transgenic. The viruses whether the infection is primary (current season infec- tion) or secondary (tuber-borne).
    [Show full text]
  • Potato - Wikipedia, the Free Encyclopedia
    Potato - Wikipedia, the free encyclopedia Log in / create account Article Talk Read View source View history Our updated Terms of Use will become effective on May 25, 2012. Find out more. Main page Potato Contents From Wikipedia, the free encyclopedia Featured content Current events "Irish potato" redirects here. For the confectionery, see Irish potato candy. Random article For other uses, see Potato (disambiguation). Donate to Wikipedia The potato is a starchy, tuberous crop from the perennial Solanum tuberosum Interaction of the Solanaceae family (also known as the nightshades). The word potato may Potato Help refer to the plant itself as well as the edible tuber. In the region of the Andes, About Wikipedia there are some other closely related cultivated potato species. Potatoes were Community portal first introduced outside the Andes region four centuries ago, and have become Recent changes an integral part of much of the world's cuisine. It is the world's fourth-largest Contact Wikipedia food crop, following rice, wheat and maize.[1] Long-term storage of potatoes Toolbox requires specialised care in cold warehouses.[2] Print/export Wild potato species occur throughout the Americas, from the United States to [3] Uruguay. The potato was originally believed to have been domesticated Potato cultivars appear in a huge variety of [4] Languages independently in multiple locations, but later genetic testing of the wide variety colors, shapes, and sizes Afrikaans of cultivars and wild species proved a single origin for potatoes in the area
    [Show full text]
  • Wildpotato Collecting Expedition in Southern Peru
    A Arner J of Potato Res (1999) 76:103-119 103 Wild Potato Collecting Expedition in Southern Peru (Departments of Apurimac, Arequipa, Cusco, Moquegua Puno, Tacna) in 1998: Taxonomy and New Genetic Resources David M. Spooner*\ Alberto Salas L6pez2,Z6simo Huaman2, and Robert J. Hijmans2 'United States Department of Agriculture, Agricultural Research Service, Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison, WI, 53706-1590. Tel: 608-262-0159; FAX: 608-262-4743; email: [email protected]) 'International Potato Center (CIP), Apartado 1558, La Molina, Lima 12, Peru. ABSTRACT INTRODUCTION Peruhas 103 taxa of wild potatoes (species, sub- Wild and cultivated tuber-bearing potatoes (Solanum species, varieties, and forms) according to Hawkes sect. Petota) are distributed from the southwestern United (1990; modified by us by a reduction of species in the States to south-central Chile. The latest comprehensive tax- Solanum brevicaule complex) and including taxa onomic treatment of potatoes (Hawkes, 1990) recogllized 216 described by C. Ochoa since 1989. Sixty-nine of these tuber-bearing species, with 101 taxa (here to include species, 103 taxa (67%) were unavailable from any ofthe world's subspecies, varieties and forms) from Peru. Ochoa (1989, genebanks and 85 of them (83%) had less than three 1992b, 1994a,b) described ten additional Peruvian taxa rais- germplasm accessions. We conducted a collaborative ing the total to 111. We lower this number to 103 with a mod- Peru(INIA), United States (NRSP-6), and International ification of species in the Solanum brevicaule complex. Potato Center (CIP) wild potato (Solanum sect. Petota) Sixty-nine of these 103 species (67%) were unavailable from collecting expedition in Peru to collect germplasm and any ofthe world's genebanks and 85 of them (83%) had less gather taxonomic data.
    [Show full text]
  • How Does Genome Size Affect the Evolution of Pollen Tube Growth Rate, a Haploid Performance Trait?
    Manuscript bioRxiv preprint doi: https://doi.org/10.1101/462663; this version postedClick April here18, 2019. to The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv aaccess/download;Manuscript;PTGR.genome.evolution.15April20 license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Effects of genome size on pollen performance 2 3 4 5 How does genome size affect the evolution of pollen tube growth rate, a haploid 6 performance trait? 7 8 9 10 11 John B. Reese1,2 and Joseph H. Williams2 12 Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 13 37996, U.S.A. 14 15 16 17 1Author for correspondence: 18 John B. Reese 19 Tel: 865 974 9371 20 Email: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/462663; this version posted April 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 ABSTRACT 23 Premise of the Study – Male gametophytes of most seed plants deliver sperm to eggs via a 24 pollen tube. Pollen tube growth rates (PTGRs) of angiosperms are exceptionally rapid, a pattern 25 attributed to more effective haploid selection under stronger pollen competition. Paradoxically, 26 whole genome duplication (WGD) has been common in angiosperms but rare in gymnosperms.
    [Show full text]
  • Comparative Evaluation of the Effects of Gibberellic Acid Concentrations
    Comparative Evaluation of the Effects of Below the surface of the soil, a potato plant produces both roots Gibberellic Acid Concentrations on Dormancy and stem organs called stolons. Flow- ering in potato plants generally coin- Break in Tubers of Solanum chacoense cides with the swelling of stolon tips in which a majority of the tuber is formed 1 1 by randomly oriented cell division and Christian T. Christensen , Lincoln Zotarelli , expansion (Jackson, 1999). Deposited Kathleen G. Haynes2, and Charles Ethan Kelly1 in these cells are storage carbohydrates and proteins, including starch and patatin, respectively (Shewry, 2003), ADDITIONAL INDEX WORDS. potato, sprout number, tuber size making tubers strong storage sink or- gans (Fernie and Willmitzer, 2001). SUMMARY. Solanum chacoense is a wild relative of potato (Solanum tuberosum) that is of interest because of its many desirable traits, but it exhibits variations in tuber Coinciding with tuber formation is the dormancy across accessions. The objective of this study was to determine an appro- onset of dormancy. Dormancy can be priate gibberellic acid (GA3) concentration and soak time treatment to encourage described as the halting of all meriste- sprout development across four accessions of S. chacoense (A,B,C,andD)fromthe matic activity in the stolon apex and 174 accessions of the U.S. Department of Agriculture Potato Genebank. Twelve nodes (Sonnewald, 2001; Xu et al., treatments were created by using four concentrations of GA3 (0, 50, 100, and 150 1998), and it serves physiological ad- m Á L1 g mL ) across three soak periods (5, 45, and 90 minutes). Small (average weight, aptation by allowing survival during 1.4 g), medium (2.6 g), and large (5.6 g) tubers were distributed among all treat- periods of unfavorable conditions ments.
    [Show full text]
  • Diversity in the Wild Potato Species Solanum Chacoense Bitt
    Euphytica 37:149-156 (1988) @ Kluwer Academic Publishers, Dordrecht -Printed in the Netherlands Diversity in the wild potato species Solanum chacoenseBitt. SusanA. Juned,M. T. Jacksonand JanetP. Catty Department of Plant Biology, University of Birmingham, P.O. Box 363, Birmingham B15 2TT 25 November 1986; accepted in revised form 13 March 1987 Key words: Solanum chacoense,potato, wild species, diversity, multivariate analysis, isozymes, allozyme variation, in situ conservation Summary The morphologicat and isozyme variation was studied in 22 accessionsof Solanum chacoensefrom Paraguay and Argentina. Clear geographic groups were identified through the use of multivariate analyses. S. chacoensefrom mountain sites in Argentina could be readily distinguished from plains forms from Paraguay, on the basisof severalcorrelated morphological characters. Three isozyme systems,namely phosphoglucose isomerase (PGI), glutamate-oxaloacetate transaminase (GOT) and peroxidase (PRX) were studied using starch gel electrophoresis. The banding patterns indicated that for each isozyme there were several loci, which were polymorphic. A genetic interpretation of one of the PGI loci was made, and indices of genetic diversity and genetic identity calculated. Principal components analysis, cluster analysisand genetic diversity indicated a close relationship between the geographicalgroups. Theseresults are discussedin the context of in situ genetic conservation. Introduction through gene introgression from speciesof higher altitudes, such as S. microdontum (Hawkes & Solanum chacoenseBitt. is considered by Hawkes Hjerting, 1969). & Hjerting (1969) to be the commonest, most ag- This apparant introgression of alien germplasm gressiveand most adaptable of the South American has enabled S. chacoenseto extend its range of wild potato species. It is found in Argentina, Para- biotypes and become adapted to a wider range of guay, Uruguay and south-eastern Brazil, with ecological conditions.
    [Show full text]
  • Phd Thesis, Wageningen University, Wageningen, NL (2014) with References, with Summaries in Dutch, Spanish and English
    Conserving the genetic diversity of Bolivian wild potatoes Ximena Cadima Fuentes Thesis committee Promotor Prof. Dr M.S.M. Sosef Professor of Biosystematics Wageningen University Co-promotors Dr R.G. van den Berg Associate professor, Biosystematics Group Wageningen University Dr R. van Treuren Researcher, Centre for Genetic Resources, the Netherlands (CGN) Wageningen University and Research Centre Other members Prof. Dr P.C. Struik, Wageningen University Prof. Dr J.C. Biesmeijer, Naturalis Biodiversity Center, Leiden Dr M.J.M. Smulders, Wageningen University and Research Centre Dr S. de Haan, International Potato Centre, Lima, Peru This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. Conserving the genetic diversity of Bolivian wild potatoes Ximena Cadima Fuentes Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 8 December 2014 at 4 p.m. in the Aula. Ximena Cadima Fuentes Conserving the genetic diversity of Bolivian wild potatoes, 229 pages. PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch, Spanish and English ISBN 978-94-6257-168-6 Biogeographic province Wild potato species Yungas Bolivian Puna Puna (800- Tucuman Mesophytic Xerophytic 4200 m) (500 (2300- (3200- 5000 m) 5200 m) 5200 m) Solanum acaule Bitter X X X S. achacachense Cárdenas X S. alandiae Cárdenas X S. arnezii Cárdenas X S. avilesii Hawkes & Hjrt. X S. berthaultii Hawkes X S.
    [Show full text]
  • First Progress Report
    Proyecto Base de Datos de Especies Invasoras del Paraguay Informe Final Data Content Grants under the Invasive Species Thematic Network Preparado por: Cristina Morales, Oscar Rodas, Juana de Egea, Silvia Centrón, Verónica Morales y Alberto Yanosky Asociación Guyra Paraguay 5/Junio/2007 1 RESUMEN El documento presenta los logros del proyecto “Construyendo Capacidades para el Desarrollo de la Red Paraguaya de Especies Invasoras” el cual tuvo como objetivo establecer, actualizar y mantener una base de datos I3N de especies exóticas invasoras en Paraguay. El proyecto se inició en mayo de 2006 y fue lanzado durante el Seminario de entrenamiento sobre herramientas para la organización y el intercambio de información sobre invasiones biológicas, realizado con el apoyo de Sergio Zalva, y Silvia Ziller. Participaron del taller 27 representantes de Instituciones gubernamentales y no gubernamentales conservacionistas, académicos, investigadores, estudiantes de pre-grado. Como resultado del evento se creó una red instituciones que aportan información a la base de datos: el Museo Nacional de Historia Natural del Paraguay, la Fundación Moisés Bertoni, Guyra Paraguay, como administrador y proveedor de datos y el Centro de Datos para la Conservación, como entidad supervisora y de validación de datos. La base de datos de especies exóticas invasoras, desarrollada durante el presente proyecto, se basó en el análisis y actualización de los listados previos realizados por el Centro de Datos para la Conservación en el año 2002, el cual cuenta con 422 especies y por la Dirección de Vida Silvestre en el año 2006 que cuenta con un listado de 172 especies. Como resultado de la evaluación de estas dos listas, se obtuvo una lista revisada de 135 especies exóticas invasoras y 1185 registros.
    [Show full text]
  • Divergencia De Loci Microsatélites Entre Papas Silvestres Y Cultivadas (Familia Solanaceae Género Solanum Sección Petota)
    ! "#$#" # %%" ""#" & #" '! ($ ! ) *# #+ ! "# $! %!$ &! ! ' ( !) $ * (, - , . * / 0112 Una vez más, La palabra se pronuncia en mi. Y sus ecos resuenan, En los labios de mis amigos. Una vez más, El sol palpita en mi pecho. Y su calidez destella, En la sonrisa de mi rostro. Una vez más, La sal persuade mis sentimientos. Y soy de nuevo capaz, De amar en libertad. Me pongo de pie, Una vez más, Y tengo la voluntad De esforzarme en el camino Para que la humanidad, Una vez más, Camine conmigo Tratando de dar Pasos de ser humano, Sin nunca lograrlo. Oscar Onire A mis padres y mi familia. A mi abuela M aría Teresa, por señalar el camino. Agradecimientos Son muchas las personas a las que les debo mucho. Sin su ayuda esta investigación nunca se hubiera logrado. Quiero empezar por agradecer a mis padres, sin su apoyo nada de esto hubiera sido posible. A mi madre por enseñarme con el ejemplo, por nunca dejarme renunciar. A mi padre por toda su ayuda, por compartir sus experiencias conmigo. A Tati por escucharme y apoyarme, por permitirme darme cuenta que es posible lograr lo que uno quiere. Desde luego tengo que agradecer a todos los miembros del laboratorio por su invaluable ayuda. A Marc Ghislain por darme esta gran oportunidad profesional. A Rosario Herrera por nunca permitir que un obstáculo me detenga, sin ella mi tesis no habría terminado aún. A David Spooner por su cálida y brillante asesoría. Quisiera también aprovechar para agradecer a los asistentes de investigación porque todos me han hecho más de un favor, en especial a Genoveva Rossel, Matilde Orrillo, Leticia Portal e Ida Bartolini.
    [Show full text]
  • Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes
    Bot. Rev. (2014) 80:283–383 DOI 10.1007/s12229-014-9146-y Systematics, Diversity, Genetics, and Evolution of Wild and Cultivated Potatoes David M. Spooner1,6 & Marc Ghislain2 & Reinhard Simon3 & Shelley H. Jansky1 & Tatjana Gavrilenko4,5 1 USDA Agricultural Research Service, Department of Horticulture, University of Wisconsin, Madison, WI 53706-1590, USA; e-mail: [email protected] 2 Genomics & Biotechnology Global Program, Centro International de la Papa (CIP), SSA Regional Office, CIP ILRI Campus, Old Naivasha Road, P.O. Box 25171, Nairobi 00603, Kenya; e-mail: [email protected] 3 Integrated IT and Computational Research Unit, International Potato Center, Avenida La Molina 1895, La Molina, Lima, Peru; e-mail: [email protected] 4 Department of Biotechnology, N.I. Vavilov Institute of Plant Industry (VIR), Bolshaya Morskaya Street, 42- 44, 190000 St. Petersburg, Russia; e-mail: [email protected] 5 St. Petersburg State University, Universitetskaya nab., 7/9, 199034 St. Petersburg, Russia 6 Author for Correspondence; e-mail: [email protected] Published online: 19 December 2014 # The New York Botanical Garden (outside the USA) 2014 Abstract The common potato, Solanum tuberosum L., is the third most important food crop and is grown and consumed worldwide. Indigenous cultivated (landrace) potatoes and wild potato species, all classified as Solanum section Petota, are widely used for potato improvement. Members of section Petota are broadly distributed in the Americas from the southwestern United States to the Southern Cone of South America. The latest comprehensive taxonomic treatment of section Petota was pub- lished by John (Jack) Hawkes in 1990; it recognized seven cultivated species and 228 wild species, divided into 21 taxonomic series.
    [Show full text]
  • Heritability of Field Resistance to Potato Leafrou Virus in Cultivated Potato
    Plant Breeding 116, 585—588 (1997) © 1997 Blackwell Wissenschafts-Verlag, Berlin ISSN 0179-9541 Heritability of field resistance to potato leafroU virus in cultivated potato C. R. BROWN', D. CORSINI^ J. PAVEK^ and P. E. THOMAS' ' USDA/ARS, 24106 North Bunn Road, Prosser, WA, 99350, USA; ^USDA/ARS, PO Box AA, Aberdeen, ID, 83210, USA IVlth 1 figure and I table Received February 3. 1997jAccepted July 15, 1997 Communicated by W. E. Weber Abstract resistance to late blight (Ross 1958, 1966). Resistance to infec- Potato progenies in a line x tester mating design and the clonal parents tion appears to have been introduced to many pedigrees were screened for field resistance to potato leafroll virus (PLRV) to through use of the variety 'Aquila' in crossing programmes determine the heritability of this trait. Twelve advanced potato clones (Davidson 1980). Combining ability for resistance to infection or varieties were crossed as pistillate parents to two pollen testers. in STT cultivars and advanced breeding clones has been The seedling progenies and clonal parents were exposed to aphid- explored by Baerecke (1955, 1958) Brown (1979, 1984), and transmitted potato leafroll virus for two growing seasons. Cumulative Brown et al. (1984a,b) and Brandolini and coworkers (1992). infection by potato leafroll virus was determined by post-season sero- Resistance to titre build-up has been characterized in cultivated logical indexing of foliage grown from sprouted tubers after 2 years of STT materials and attributed to a mode of inheritance involving exposure. Narrow-sense heritability was estimated from regression of mid-parent on progeny as h^ = 0.72.
    [Show full text]
  • A Comprehensive Analysis of RALF Proteins in Green Plants Suggests There Are Two Distinct Functional Groups
    ORIGINAL RESEARCH published: 24 January 2017 doi: 10.3389/fpls.2017.00037 A Comprehensive Analysis of RALF Proteins in Green Plants Suggests There Are Two Distinct Functional Groups Liam Campbell and Simon R. Turner * Faculty of Biology, Medicine and Health, School of Biological Science, University of Manchester, Manchester, UK Rapid Alkalinization Factors (RALFs) are small, cysteine-rich peptides known to be involved in various aspects of plant development and growth. Although RALF peptides have been identified within many species, a single wide-ranging phylogenetic analysis of the family across the plant kingdom has not yet been undertaken. Here, we identified RALF proteins from 51 plant species that represent a variety of land plant lineages. The inferred evolutionary history of the 795 identified RALFs suggests that the family has diverged into four major clades. We found that much of the variation across the family exists within the mature peptide region, suggesting clade-specific functional Edited by: diversification. Clades I, II, and III contain the features that have been identified as Madelaine Elisabeth Bartlett, University of Massachusetts Amherst, important for RALF activity, including the RRXL cleavage site and the YISY motif required USA for receptor binding. In contrast, members of clades IV that represent a third of the total Reviewed by: dataset, is highly diverged and lacks these features that are typical of RALFs. Members of Tatiana Arias, The Corporation for Biological clade IV also exhibit distinct expression patterns and physico-chemical properties. These Research, Colombia differences suggest a functional divergence of clades and consequently, we propose Ive De Smet, that the peptides within clade IV are not true RALFs, but are more accurately described Flanders Institute for Biotechnology, Belgium as RALF-related peptides.
    [Show full text]