Methods to Analyze Likert-Type Data in Educational Technology Research

Total Page:16

File Type:pdf, Size:1020Kb

Methods to Analyze Likert-Type Data in Educational Technology Research Journal of Educational Technology Development and Exchange (JETDE) Volume 13 Issue 2 3-25-2021 Methods to Analyze Likert-Type Data in Educational Technology Research Li-Ting Chen University of Nevada, Reno, [email protected] Leping Liu University of Nevada, Reno, [email protected] Follow this and additional works at: https://aquila.usm.edu/jetde Part of the Educational Technology Commons Recommended Citation Chen, Li-Ting and Liu, Leping (2021) "Methods to Analyze Likert-Type Data in Educational Technology Research," Journal of Educational Technology Development and Exchange (JETDE): Vol. 13 : Iss. 2 , Article 3. DOI: 10.18785/jetde.1302.04 Available at: https://aquila.usm.edu/jetde/vol13/iss2/3 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Journal of Educational Technology Development and Exchange (JETDE) by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Chen, L.T., & Liu, L.(2020). Methods to Analyze Likert-Type Data in Educational Technology Research. Journal of Educational Technology Development and Exchange, 13(2), 39-60 Methods to Analyze Likert-Type Data in Educational Technology Research Li-Ting Chen University of Nevada, Reno Leping Liu University of Nevada, Reno Abstract: Likert-type items are commonly used in education and related fields to measure attitudes and opinions. Yet there is no consensus on how to analyze data collected from these items. In this paper, we first provided a synthesis of the existing literature on methods to analyze Likert-type data and computing tools for these methods. Secondly, to examine the use and analysis of Likert-type data in the field of educational technology, we reviewed 424 articles that were published in the journal Educational Technology Research and Development between 2016 and 2020. Our review showed that about 50% of the articles reported Likert-type data. A total of 139 articles used Likert-type data as a dependent variable, among which 86% employed parametric methods to analyze the data. In addition, less than 3% of the 139 articles used an ordered probit/logit model, transformation, or strategy for rescaling Likert-type data to interval data to perform statistical analysis. Finally, to empower educational technology researchers to handle Likert-type data effectively, we concluded the paper with our suggestions and insight regarding alternative strategies and methods. Keywords: Likert, ordinal data, research method, self-report measures, rescaling, nonparametric, ordered probit, ordered logit, robust Volume 13, No. 2, December, 2020 39 Journal of Educational Technology Development and Exchange 1. Introduction permissible and impermissible transformations for numbers yielded from the four types of Questionnaires that ask individuals (e.g., measurements. Permissible transformations students, parents, or teachers) to rate their are transformations that maintain the same attitudes and opinions about statements using meanings of the numerals assigned to Likert-type items (Likert, 1932) are common observations. Permissible transformations in education and related fields (Antonialli et for ordinal data, such as Likert-type data, al., 2017; Carifio & Perla, 2007; Edmondson, are monotonic transformations, or positive 2005; Harwell & Gatti, 2001; Liddell & linear transformations, but not one-to-one Kruschke, 2018; Potvin & Hasni, 2014; substitutions. Permissible transformations for Tsui, 1997). For example, a teacher may be interval data are positive linear transformations asked to respond to the statement “I can learn but not monotonic transformations or one-to- technology easily” using the five response one substitutions. Following the prescription, options: 0 = strongly disagree, 1 = disagree, Stevens (1946, 1955, 1968) urged researchers 2 = neither agree nor disagree, 3 = agree, 4 to attend to the type of measurement. Stevens = strongly agree. Although the options are stated labelled using numbers, the numerals only The ordinal scale arises from the operation indicate orders. They do not necessarily imply of rank-ordering. … most of the scales used that distances between two adjacent options widely and effectively by psychologists are equal. That is, the distances between 0 are ordinal scales. In the strictest propriety and 1, 1 and 2, 2 and 3, and 3 and 4 may be the ordinary statistics involving means and different. standard deviations ought not to be used with these scales, for these statistics imply According to Stevens (1946), there a knowledge of something more than the are four types of measurements (nominal, relative rank-order of data (Stevens, 1946, ordinal, interval, and ratio) and the types p. 679). of measurements are determined by their basic empirical operations. Nominal In fact, contrary to Stevens’s suggestion, measurement consists of category labels analyzing Likert-type data using statistical (e.g., numbers or symbols) that can be methods that require interval or ratio data is assigned to observations (or individuals) a common practice. These statistical methods so that those with different labels are not include but are not limited to the t test, F equivalent. With an ordinal measurement, test, Pearson’s correlation, and ordinary least category labels are assigned to observations squares regression. These methods are also to rank and order them with respect to one called parametric methods. In a commentary another. Using an interval measurement, article that published in Medical Education, numbers are assigned to observations. The Carifio and Perla (2008) pointed out “How numbers have the property of order, and Likert type measurement scales should be equal differences between any two adjacent appropriately used and analysed has been numbers reflect equal magnitude. All the debated for over 50 years” (p. 1150). Just properties of an interval measurement apply what are the discussions related to the use and to a ratio measurement, and in addition, there analysis of Likert-type data? What analysis is a true zero point for a ratio measurement strategies have been proposed in the literature to reflect the absence of the measured for dealing with Likert-type data? How characteristic. Stevens emphasized the prevalent is Likert-type data used in studies 40 Volume 13, No. 2, December, 2020 Methods to Analyze Likert-Type Data in Educational Technology Research in the field of education technology? What the 47-item Pre-service Teacher Technological are the analysis strategies used by educational Pedagogical Content Knowledge Instrument technology researchers to handle Likert-type with five response options (Schmidt et al., data? In this paper, we address these questions. 2009). Specifically, there are three aims of this paper: One potential problem with using 1. to summarize the strategies and methods to parametric methods for Likert-type data use and analyze Likert-type data from the is about the normality assumption, which literature; requires continuous/interval data. Scores 2. to investigate the use and analysis of yielded from Likert-type items are discrete Likert-type data in educational technology and ordinal in nature. For example, when research; and five items are used to measure students’ 3. to provide suggestions for educational perceived competence in information and technology researchers to handle Likert- communication technology and all five type data. items are rated using four response options (Areepattamannil & Santos, 2019), ranging 2. Literature Review: Strategies and from 1 (strongly disagree) to 4 (strongly Methods to Analyze Likert-Type Data agree), there are 16 possible total scores with the minimum score of 5 and maximum score Likert summative attitude scales were of 20. Furthermore, when computing the total first introduced by Rensis Likert in the 1930s. scores with weighting each item equally, it Likert (1932) suggested that response options ignores the unique characteristics of each item to several statements on Likert summative (Harwell & Gatti, 2001). attitude scales can be written as 1 = strongly disapprove to 5 = strongly approve. Such While some researchers think it is crucial response options are widely used to measure to consider the type of measurement when attitudes and opinions. In this paper, we used using a statistical method (Jamieson, 2004; the term Likert-type data to refer to data Kuzon et al., 1996; Siegel, 1956; Sprinthall, collected from such response format, and the 2012), others care less about the type of term Likert-type item to refer to a statement measurement (Carifio & Perla, 2007; Howell, with such response format to measure 2013; Lord, 1953; Norman, 2010; Velleman individuals’ attitudes and opinions. In the & Wilkinson, 1993; Zimmerman, 2011). field of educational technology, researchers Kuzon et al. (1996) referred using parametric may ask online students to respond to methods for ordinal data as the first sin of statements on the 34-item Community of the seven deadly sins of statistical analysis Inquiry framework survey with five response and suggested “to avoid committing Sin options to understand students’ perception 1, for nominal or ordinal scaled data, use of cognitive presence, social presence, and nonparametric statistical analysis” (p. 266). teaching presence (Arbaugh et al., 2008). In contrast, Carifio and Perla (2007) presented To understand pre-service teachers’ self- the top ten myths about “Likert scales” and assessment of Technological Pedagogical wrote
Recommended publications
  • Impact of Multimodality of Distributions on Var and ES Calculations Dominique Guegan, Bertrand Hassani, Kehan Li
    Impact of multimodality of distributions on VaR and ES calculations Dominique Guegan, Bertrand Hassani, Kehan Li To cite this version: Dominique Guegan, Bertrand Hassani, Kehan Li. Impact of multimodality of distributions on VaR and ES calculations. 2017. halshs-01491990 HAL Id: halshs-01491990 https://halshs.archives-ouvertes.fr/halshs-01491990 Submitted on 17 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Documents de Travail du Centre d’Economie de la Sorbonne Impact of multimodality of distributions on VaR and ES calculations Dominique GUEGAN, Bertrand HASSANI, Kehan LI 2017.19 Maison des Sciences Économiques, 106-112 boulevard de L'Hôpital, 75647 Paris Cedex 13 http://centredeconomiesorbonne.univ-paris1.fr/ ISSN : 1955-611X Impact of multimodality of distributions on VaR and ES calculations Dominique Gu´egana, Bertrand Hassanib, Kehan Lic aUniversit´eParis 1 Panth´eon-Sorbonne, CES UMR 8174. 106 bd l'Hopital 75013, Paris, France. Labex ReFi, Paris France. IPAG, Paris, France. bGrupo Santander and Universit´eParis 1 Panth´eon-Sorbonne, CES UMR 8174. Labex ReFi. cUniversit´eParis 1 Panth´eon-Sorbonne, CES UMR 8174. 106 bd l'Hopital 75013, Paris, France. Labex ReFi.
    [Show full text]
  • Resonance-Induced Multimodal Body-Size Distributions in Ecosystems
    Resonance-induced multimodal body-size distributions in ecosystems Adam Lamperta,1,2 and Tsvi Tlustya,b aDepartment of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel; and bSimons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ 08540 Edited by Andrea Rinaldo, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, and approved November 12, 2012 (received for review July 31, 2012) The size of an organism reflects its metabolic rate, growth rate, classic metapopulation framework, we assume each patch is mortality, and other important characteristics; therefore, the distri- either empty or occupied by a single species (15–17). In our bution of body size is a major determinant of ecosystem structure model, each species is specified by its maximal growth rate q, and function. Body-size distributions often are multimodal, with which is negatively correlated with its body size. The higher several peaks of abundant sizes, and previous studies suggest that growth rate of smaller individuals results in more migrants sent this is the outcome of niche separation: species from distinct peaks to other patches. Larger individuals, on the other hand, are ad- avoid competition by consuming different resources, which results vantageous in interference and exclude the smaller individuals in selection of different sizes in each niche. However, this cannot during within-patch competitions. explain many ecosystems with several peaks competing over the Specifically, we considered the following processes (Fig. 1): same niche. Here, we suggest an alternative, generic mechanism First, occupied patches are emptied at a rate m. This may occur underlying multimodal size distributions, by showing that the size- because of mortality or because of path destruction and creation dependent tradeoff between reproduction and resource utilization in which occupied patches vanish and new patches enter the entails an inherent resonance that may induce multiple peaks, all system.
    [Show full text]
  • A Unified View on Skewed Distributions Arising from Selections
    The Canadian Journal of Statistics 581 Vol. 34, No. 4, 2006, Pages 581–601 La revue canadienne de statistique A unified view on skewed distributions arising from selections Reinaldo B. ARELLANO-VALLE, Marcia´ D. BRANCO and Marc G. GENTON Key words and phrases: Kurtosis; multimodal distribution; multivariate distribution; nonnormal distribu- tion; selection mechanism; skew-symmetric distribution; skewness; transformation. MSC 2000: Primary 60E05; secondary 62E10. Abstract: Parametric families of multivariate nonnormal distributions have received considerable attention in the past few decades. The authors propose a new definition of a selection distribution that encompasses many existing families of multivariate skewed distributions. Their work is motivated by examples that involve various forms of selection mechanisms and lead to skewed distributions. They give the main prop- erties of selection distributions and show how various families of multivariate skewed distributions, such as the skew-normal and skew-elliptical distributions, arise as special cases. The authors further introduce several methods of constructing selection distributions based on linear and nonlinear selection mechanisms. Une perspective integr´ ee´ des lois asymetriques´ issues de processus de selection´ Resum´ e´ : Les familles parametriques´ de lois multivariees´ non gaussiennes ont suscite´ beaucoup d’inter´ etˆ depuis quelques decennies.´ Les auteurs proposent une nouvelle definition´ du concept de loi de selection´ qui englobe plusieurs familles connues de lois asymetriques´ multivariees.´ Leurs travaux sont motives´ par diverses situations faisant intervenir des mecanismes´ de selection´ et conduisant a` des lois asymetriques.´ Ils mentionnent les principales propriet´ es´ des lois de selection´ et montrent comment diverses familles de lois asymetriques´ multivariees´ telles que les lois asymetriques´ normales ou elliptiques emergent´ comme cas particuliers.
    [Show full text]
  • General Solution of the Chemical Master Equation and Modality of Marginal Distributions for Hierarchic first-Order Reaction Networks
    J. Math. Biol. (2018) 77:377–419 https://doi.org/10.1007/s00285-018-1205-2 Mathematical Biology General solution of the chemical master equation and modality of marginal distributions for hierarchic first-order reaction networks Matthias Reis1 · Justus A. Kromer2 · Edda Klipp1 Received: 7 April 2017 / Revised: 10 October 2017 / Published online: 20 January 2018 © The Author(s) 2018. This article is an open access publication Abstract Multimodality is a phenomenon which complicates the analysis of sta- tistical data based exclusively on mean and variance. Here, we present criteria for multimodality in hierarchic first-order reaction networks, consisting of catalytic and splitting reactions. Those networks are characterized by independent and dependent subnetworks. First, we prove the general solvability of the Chemical Master Equa- tion (CME) for this type of reaction network and thereby extend the class of solvable CME’s. Our general solution is analytical in the sense that it allows for a detailed analysis of its statistical properties. Given Poisson/deterministic initial conditions, we then prove the independent species to be Poisson/binomially distributed, while the dependent species exhibit generalized Poisson/Khatri Type B distributions. General- ized Poisson/Khatri Type B distributions are multimodal for an appropriate choice of parameters. We illustrate our criteria for multimodality by several basic models, as well as the well-known two-stage transcription–translation network and Bateman’s model from nuclear physics. For both examples, multimodality was previously not reported. Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00285- 018-1205-2) contains supplementary material, which is available to authorized users.
    [Show full text]
  • Multimodal Nested Sampling: an Efficient and Robust Alternative to Markov Chain Monte Carlo Methods for Astronomical Data Analyses
    Mon. Not. R. Astron. Soc. 384, 449–463 (2008) doi:10.1111/j.1365-2966.2007.12353.x Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses F. Feroz⋆ and M. P. Hobson Astrophysics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE Accepted 2007 August 13. Received 2007 July 23; in original form 2007 April 27 ABSTRACT In performing a Bayesian analysis of astronomical data, two difficult problems often emerge. First, in estimating the parameters of some model for the data, the resulting posterior distribution may be multimodal or exhibit pronounced (curving) degeneracies, which can cause problems for traditional Markov Chain Monte Carlo (MCMC) sampling methods. Secondly, in selecting between a set of competing models, calculation of the Bayesian evidence for each model is computationally expensive using existing methods such as thermodynamic integration. The nested sampling method introduced by Skilling, has greatly reduced the computational expense of calculating evidence and also produces posterior inferences as a by-product. This method has been applied successfully in cosmological applications by Mukherjee, Parkinson & Liddle, but their implementation was efficient only for unimodal distributions without pronounced de- generacies. Shaw, Bridges & Hobson recently introduced a clustered nested sampling method which is significantly more efficient in sampling from multimodal posteriors and also deter- mines the expectation and variance of the final evidence from a single run of the algorithm, hence providing a further increase in efficiency. In this paper, we build on the work of Shaw et al. and present three new methods for sampling and evidence evaluation from distributions that may contain multiple modes and significant degeneracies in very high dimensions; we also present an even more efficient technique for estimating the uncertainty on the evaluated evidence.
    [Show full text]
  • Spatially Heterogeneous Estimates of Fire Frequency in Ponderosa Pine Forests of Washington, Usa
    Fire Ecology Volume 6, Issue 3, 2010 Kernan and Hessl: Spatially Heterogeneous Fire Frequency doi: 10.4996/fireecology.0603117 Page 117 PRACTICES AND APPLICATIONS IN FIRE ECOLOGY SPATIALLY HETEROGENEOUS ESTIMATES OF FIRE FREQUENCY IN PONDEROSA PINE FORESTS OF WASHINGTON, USA James T. Kernan1* and Amy E. Hessl2 1Department of Geography, State University of New York at Geneseo, 1 College Circle, Geneseo, New York 14454, USA 2Department of Geology and Geography, West Virginia University, G49 Brooks Hall, Morgantown, West Virginia 26506, USA *Corresponding author: Tel.: 001-585-245-5463; e-mail: [email protected] ABSTRACT Many fire history studies have evaluated the temporal nature of fire regimes using fire in- terval statistics calculated from fire scars. More recently, researchers have begun to eval- uate the spatial properties of past fires as well. In this paper, we describe a technique for investigating spatio-temporal variability using a geographic information system (GIS). We used a dataset of fire-scarred trees collected from four sites in eastern Washington, USA, ponderosa pine (Pinus ponderosa C. Lawson) forests. The patterns of past fires re- corded by individual trees (points) were converted to two-dimensional representations of fire with inverse distance weighting (IDW) in a GIS. A map overlay approach was then used to extract a fine-grained, spatially explicit reconstruction of fire frequency at the four sites. The resulting classified maps can supplement traditional fire interval statistics and fire atlas data to provide detailed, spatially heterogeneous estimates of fire frequency. Such information can reveal ecological relationships between fire and the landscape, and provide managers with an improved spatial perspective on fire frequency that can inform risk evaluations, fuels reduction efforts, and the allocation of fire-fighting resources.
    [Show full text]
  • Empirical Measures of Mutational Effects Define Neutral Models of Regulatory Evolution in Saccharomyces Cerevisiae
    bioRxiv preprint doi: https://doi.org/10.1101/551804; this version posted February 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Empirical measures of mutational effects define neutral models of regulatory evolution in Saccharomyces cerevisiae Andrea Hodgins-Davisa, Fabien Duveaua, Elizabeth Walkera, Patricia J Wittkoppa,b* aUniversity of Michigan, Department of Ecology and Evolutionary Biology, Ann Arbor, MI 48109, USA bDepartment of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI 48109, USA Classification: BIOLOGICAL SCIENCES: Evolution Corresponding author: Dr. Patricia J Wittkopp 1105 N University Ave Ann Arbor, MI, 48109 USA [email protected] Running title: Empirical measures of mutational effects for gene expression in yeast bioRxiv preprint doi: https://doi.org/10.1101/551804; this version posted February 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Understanding how phenotypes evolve requires disentangling the effects of mutation generating new variation from the effects of selection filtering it. Evolutionary models frequently assume that mutation introduces phenotypic variation symmetrically around the population mean, yet few studies have tested this assumption by deeply sampling the distributions of mutational effects for particular traits. Here, we examine distributions of mutational effects for gene expression in the budding yeast Saccharomyces cerevisiae by measuring the effects of thousands of point mutations introduced randomly throughout the genome.
    [Show full text]
  • Evidence That Computer Science Grades Are Not Bimodal
    Evidence That Computer Science Grades Are Not Bimodal Elizabeth Patitsas, Jesse Berlin, Michelle Craig, and Steve Easterbrook Department of Computer Science University of Toronto Toronto, Ontario, Canada patitsas,mcraig,[email protected] and [email protected] ABSTRACT inform their practice [13], and these beliefs may or may not Although it has never been rigourously demonstrated, there be based on empirical evidence. is a common belief that CS grades are bimodal. We statisti- cally analyzed 778 distributions of final course grades from 1.1 Explanations of Bimodality a large research university, and found only 5.8% of the dis- A number of explanations have been presented for why CS tributions passed tests of multimodality. We then devised grades are bimodal, all of which begin with the assumption a psychology experiment to understand why CS educators that this is the case. believe their grades to be bimodal. We showed 53 CS pro- fessors a series of histograms displaying ambiguous distri- 1.1.1 Prior Experience butions and asked them to categorize the distributions. A A bimodal distribution generally indicates that two dis- random half of participants were primed to think about the tinct populations have been sampled together [5]. One ex- fact that CS grades are commonly thought to be bimodal; planation for bimodal grades is that CS1 classes have two these participants were more likely to label ambiguous dis- populations of students: those with experience, and those tributions as \bimodal". Participants were also more likely without it [1]. to label distributions as bimodal if they believed that some High school CS is not common in many countries, and students are innately predisposed to do better at CS.
    [Show full text]
  • Multi-Modal Albedo Distributions in the Ablation Area of the Southwestern Greenland Ice Sheet
    The Cryosphere, 9, 905–923, 2015 www.the-cryosphere.net/9/905/2015/ doi:10.5194/tc-9-905-2015 © Author(s) 2015. CC Attribution 3.0 License. Multi-modal albedo distributions in the ablation area of the southwestern Greenland Ice Sheet S. E. Moustafa1, A. K. Rennermalm1, L. C. Smith2, M. A. Miller3, J. R. Mioduszewski1, L. S. Koenig4,*, M. G. Hom5,6, and C. A. Shuman4,7 1Department of Geography, Rutgers, The State University of New Jersey, 54 Joyce Kilmer Avenue, Piscataway, NJ 08854-8045, USA 2Department of Geography, University of California, Los Angeles, 1255 Bunche Hall, P. O. Box 951524, Los Angeles, CA 90095-1524, USA 3Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Rd, New Brunswick, NJ 08901-8551, USA 4Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD, 20771, USA 5Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD, 20771, USA 6Science Systems and Applications, Inc., 10210 Greenbelt Rd, Lanham, MD, 20706, USA 7Joint Center for Earth Systems Technology (JCET), University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA *now at: National Snow and Ice Data Center, University of Colorado, 1540 30th Ave., Boulder CO 80303, USA Correspondence to: S. E. Moustafa ([email protected]) Received: 4 August 2014 – Published in The Cryosphere Discuss.: 5 September 2014 Revised: 1 March 2015 – Accepted: 26 March 2015 – Published: 7 May 2015 Abstract. Surface albedo is a key variable controlling solar and ice facies characterizing the two peaks. Our results show radiation absorbed at the Greenland Ice Sheet (GrIS) surface that a shift from a distribution dominated by high to low albe- and, thus, meltwater production.
    [Show full text]
  • Multimodal Data Representations with Parameterized Local Structures
    Multimodal Data Representations with Parameterized Local Structures Ying Zhu1, Dorin Comaniciu2, Stuart Schwartz1, and Visvanathan Ramesh2 1 Department of Electrical Engineering, Princeton University Princeton, NJ 08544, USA {yingzhu, stuart}@EE.princeton.edu 2 Imaging & Visualization Department, Siemens Corporate Research 755 College Road East, Princeton, NJ 08540, USA {Dorin.Comaniciu, Visvanathan.Ramesh}@scr.siemens.com Abstract. In many vision problems, the observed data lies in a nonlin- ear manifold in a high-dimensional space. This paper presents a generic modelling scheme to characterize the nonlinear structure of the manifold and to learn its multimodal distribution. Our approach represents the data as a linear combination of parameterized local components, where the statistics of the component parameterization describe the nonlinear structure of the manifold. The components are adaptively selected from the training data through a progressive density approximation proce- dure, which leads to the maximum likelihood estimate of the underlying density. We show results on both synthetic and real training sets, and demonstrate that the proposed scheme has the ability to reveal impor- tant structures of the data. 1 Introduction In this paper we address the problem of learning the statistical representation of multivariate visual data through parametric modelling. In many pattern recog- nition and vision applications, an interesting pattern is measured or visualized through multivariate data such as time signals and images. Its random occur- rences are described as scattered data points in a high-dimensional space. To better understand and use the critical information, it is important to explore the intrinsic low dimensionality of the scattered data and to characterize the data distribution through statistical modelling.
    [Show full text]
  • Development of a Severe Fire Potential Map for the Contiguous United States
    Development of a Severe Fire Potential Map for the Contiguous United States Gregory K. Dillon, Matthew H. Panunto, Brett Davis, Penelope Morgan, Donovan S. Birch, William M. Jolly Forest Rocky Mountain General Technical Report August Service Research Station RMRS-GTR-415 2020 Dillon, Gregory K.; Panunto, Matthew H.; Davis, Brett; Morgan, Penelope; Birch, Donovan S.; Jolly, William M. 2020. Development of a Severe Fire Potential map for the contiguous United States. Gen. Tech. Rep. RMRS- GTR-415. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 107 p. Abstract Burn severity is the ecological change resulting from wildland fires. It is often mapped by using prefire and postfire satellite imagery and classified as low, moderate, or high. Areas burned with high severity are of particular concern to land managers and others because postfire vegetation, soil, and other important ecosystem components can be highly altered. In this study, we developed Random Forest statistical models describing the occurrence of high burn severity across the contiguous United States. We divided our work into 17 regions in the western United States and 8 regions in the eastern United States, and further subdivided them by forest and nonforest vegetation settings, resulting in 50 separate models. Our predictor variables represented prefire vegetation, topography, and fuel moisture, and our response variable was satellite-derived burn severity from the U.S. interagency Monitoring Trends in Burn Severity program. We created statistical models from 6,663 fires in the western United States (1984–2007) and 5,295 fires in the eastern United States (2000–2013).
    [Show full text]
  • 4 Probability and Stochastic Distributions for Ecological Modeling
    4 Probability and Stochastic Distributions for Ecological Modeling This chapter continues to review the math you need to fit models to data, mov- ing forward from functions and curves to probability distributions. The first part discusses ecological variability in general terms, then reviews basic probability the- ory and some important applications, including Bayes’ Rule and its application in statistics. The second part reviews how to analyze and understand probability dis- tributions. The third part provides a bestiary of probability distributions, finishing with a short digression on some ways to extend these basic distributions. 4.1 Introduction: Why Does Variability Matter? For many ecologists and statisticians, noise is just a nuisance—it gets in the way of drawing conclusions from the data. The traditional statistical approach to noise in data was to assume that all variation in the data was normally distributed, or transform the data until it was, and then use classical methods based on the normal distribution to draw conclusions. Some scientists turned to nonparametric statistics, which assume only that the shape of the data distribution is the same in all categories and provide tests of differences in the means or “location parameters” among cate- gories. Unfortunately, such classical nonparametric approaches make it much harder to draw quantitative conclusions from data (rather than simply rejecting or failing to reject null hypotheses about differences between groups). In the 1980s, as they acquired better computing tools, ecologists began to use more sophisticated models of variability such as generalized linear models (see Chap- ter 9). Chapter 3 illustrated a wide range of deterministic functions that correspond to deterministic models of the underlying ecological processes.
    [Show full text]