Fitness Decline in Spontaneous Mutation Accumulation Lines of Caenorhabditis Elegans with Varying Effective Population Sizes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fitness Maximization Jonathan Birch
Fitness maximization Jonathan Birch To appear in The Routledge Handbook of Evolution & Philosophy, ed. R. Joyce. Adaptationist approaches in evolutionary ecology often take it for granted that natural selection maximizes fitness. Consider, for example, the following quotations from standard textbooks: The majority of analyses of life history evolution considered in this book are predicated on two assumptions: (1) natural selection maximizes some measure of fitness, and (2) there exist trade- offs that limit the set of possible [character] combinations. (Roff 1992: 393) The second assumption critical to behavioral ecology is that the behavior studied is adaptive, that is, that natural selection maximizes fitness within the constraints that may be acting on the animal. (Dodson et al. 1998: 204) Individuals should be designed by natural selection to maximize their fitness. This idea can be used as a basis to formulate optimality models [...]. (Davies et al. 2012: 81) Yet there is a long history of scepticism about this idea in population genetics. As A. W. F. Edwards puts it: [A] naive description of evolution [by natural selection] as a process that tends to increase fitness is misleading in general, and hill-climbing metaphors are too crude to encompass the complexities of Mendelian segregation and other biological phenomena. (Edwards 2007: 353) Is there any way to reconcile the adaptationist’s image of natural selection as an engine of optimality with the more complex image of its dynamics we get from population genetics? This has long been an important strand in the controversy surrounding adaptationism.1 Yet debate here has been hampered by a tendency to conflate various different ways of thinking about maximization and what it entails. -
1 "Principles of Phylogenetics: Ecology
"PRINCIPLES OF PHYLOGENETICS: ECOLOGY AND EVOLUTION" Integrative Biology 200 Spring 2016 University of California, Berkeley D.D. Ackerly March 7, 2016. Phylogenetics and Adaptation What is to be explained? • What is the evolutionary history of trait x that we see in a lineage (homology) or multiple lineages (homoplasy) - adaptations as states • Is natural selection the primary evolutionary process leading to the ‘fit’ of organisms to their environment? • Why are some traits more prevalent (occur in more species): number of origins vs. trait- dependent diversification rates (speciation – extinction) Some high points in the history of the adaptation debate: 1950s • Modern Synthesis of Genetics (Dobzhansky), Paleontology (Simpson) and Systematics (Mayr, Grant) 1960s • Rise of evolutionary ecology – synthesis of ecology with strong adaptationism via optimality theory, with little to no history; leads to Sociobiology in the 70s • Appearance of cladistics (Hennig) 1972 • Eldredge and Gould – punctuated equilibrium – argue that Modern Synthesis can’t explain pervasive observation of stasis in fossil record; Gould focuses on development and constraint as explanations, Eldredge more on ecology and importance of migration to minimize selective pressure 1979 • Gould and Lewontin – Spandrels – general critique of adaptationist program and call for rigorous hypothesis testing of alternatives for the ‘fit’ between organism and environment 1980’s • Debate on whether macroevolution can be explained by microevolutionary processes • Comparative methods -
Impact of Multimodality of Distributions on Var and ES Calculations Dominique Guegan, Bertrand Hassani, Kehan Li
Impact of multimodality of distributions on VaR and ES calculations Dominique Guegan, Bertrand Hassani, Kehan Li To cite this version: Dominique Guegan, Bertrand Hassani, Kehan Li. Impact of multimodality of distributions on VaR and ES calculations. 2017. halshs-01491990 HAL Id: halshs-01491990 https://halshs.archives-ouvertes.fr/halshs-01491990 Submitted on 17 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Documents de Travail du Centre d’Economie de la Sorbonne Impact of multimodality of distributions on VaR and ES calculations Dominique GUEGAN, Bertrand HASSANI, Kehan LI 2017.19 Maison des Sciences Économiques, 106-112 boulevard de L'Hôpital, 75647 Paris Cedex 13 http://centredeconomiesorbonne.univ-paris1.fr/ ISSN : 1955-611X Impact of multimodality of distributions on VaR and ES calculations Dominique Gu´egana, Bertrand Hassanib, Kehan Lic aUniversit´eParis 1 Panth´eon-Sorbonne, CES UMR 8174. 106 bd l'Hopital 75013, Paris, France. Labex ReFi, Paris France. IPAG, Paris, France. bGrupo Santander and Universit´eParis 1 Panth´eon-Sorbonne, CES UMR 8174. Labex ReFi. cUniversit´eParis 1 Panth´eon-Sorbonne, CES UMR 8174. 106 bd l'Hopital 75013, Paris, France. Labex ReFi. -
Methods to Analyze Likert-Type Data in Educational Technology Research
Journal of Educational Technology Development and Exchange (JETDE) Volume 13 Issue 2 3-25-2021 Methods to Analyze Likert-Type Data in Educational Technology Research Li-Ting Chen University of Nevada, Reno, [email protected] Leping Liu University of Nevada, Reno, [email protected] Follow this and additional works at: https://aquila.usm.edu/jetde Part of the Educational Technology Commons Recommended Citation Chen, Li-Ting and Liu, Leping (2021) "Methods to Analyze Likert-Type Data in Educational Technology Research," Journal of Educational Technology Development and Exchange (JETDE): Vol. 13 : Iss. 2 , Article 3. DOI: 10.18785/jetde.1302.04 Available at: https://aquila.usm.edu/jetde/vol13/iss2/3 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Journal of Educational Technology Development and Exchange (JETDE) by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Chen, L.T., & Liu, L.(2020). Methods to Analyze Likert-Type Data in Educational Technology Research. Journal of Educational Technology Development and Exchange, 13(2), 39-60 Methods to Analyze Likert-Type Data in Educational Technology Research Li-Ting Chen University of Nevada, Reno Leping Liu University of Nevada, Reno Abstract: Likert-type items are commonly used in education and related fields to measure attitudes and opinions. Yet there is no consensus on how to analyze data collected from these items. In this paper, we first provided a synthesis of the existing literature on methods to analyze Likert-type data and computing tools for these methods. -
Phylogenetics: Recovering Evolutionary History COMP 571 Luay Nakhleh, Rice University
1 Phylogenetics: Recovering Evolutionary History COMP 571 Luay Nakhleh, Rice University 2 The Structure and Interpretation of Phylogenetic Trees unrooted, binary species tree rooted, binary species tree speciation (direction of descent) Flow of time ๏ six extant taxa or operational taxonomic units (OTUs) 3 The Structure and Interpretation of Phylogenetic Trees Phylogenetics-RecoveringEvolutionaryHistory - March 3, 2017 4 The Structure and Interpretation of Phylogenetic Trees In a binary tree on n taxa, how may nodes, branches, internal nodes and internal branches are there? How many unrooted binary trees on n taxa are there? How many rooted binary trees on n taxa are there? ๏ six extant taxa or operational taxonomic units (OTUs) 5 The Structure and Interpretation of Phylogenetic Trees polytomy Non-binary Multifuracting Partially resolved Polytomous ๏ six extant taxa or operational taxonomic units (OTUs) 6 The Structure and Interpretation of Phylogenetic Trees A polytomy in a tree can be resolved (not necessarily fully) in many ways, thus producing trees with higher resolution (including binary trees) A binary tree can be turned into a partially resolved tree by contracting edges In how many ways can a polytomy of degree d be resolved? Compatibility between two trees guarantees that one can back and forth between the two trees by means of node refinement and edge contraction Phylogenetics-RecoveringEvolutionaryHistory - March 3, 2017 7 The Structure and Interpretation of Phylogenetic Trees branch lengths have Additive no meaning tree Additive tree ultrametric rooted at an tree outgroup (molecular clock) 8 The Structure and Interpretation of Phylogenetic Trees bipartition (split) AB|CDEF clade cluster 11 clades (4 nontrivial) 9 bipartitions (3 nontrivial) How many nontrivial clades are there in a binary tree on n taxa? How many nontrivial bipartitions are there in a binary tree on n taxa? How many possible nontrivial clusters of n taxa are there? 9 The Structure and Interpretation of Phylogenetic Trees Species vs. -
Resonance-Induced Multimodal Body-Size Distributions in Ecosystems
Resonance-induced multimodal body-size distributions in ecosystems Adam Lamperta,1,2 and Tsvi Tlustya,b aDepartment of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel; and bSimons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ 08540 Edited by Andrea Rinaldo, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, and approved November 12, 2012 (received for review July 31, 2012) The size of an organism reflects its metabolic rate, growth rate, classic metapopulation framework, we assume each patch is mortality, and other important characteristics; therefore, the distri- either empty or occupied by a single species (15–17). In our bution of body size is a major determinant of ecosystem structure model, each species is specified by its maximal growth rate q, and function. Body-size distributions often are multimodal, with which is negatively correlated with its body size. The higher several peaks of abundant sizes, and previous studies suggest that growth rate of smaller individuals results in more migrants sent this is the outcome of niche separation: species from distinct peaks to other patches. Larger individuals, on the other hand, are ad- avoid competition by consuming different resources, which results vantageous in interference and exclude the smaller individuals in selection of different sizes in each niche. However, this cannot during within-patch competitions. explain many ecosystems with several peaks competing over the Specifically, we considered the following processes (Fig. 1): same niche. Here, we suggest an alternative, generic mechanism First, occupied patches are emptied at a rate m. This may occur underlying multimodal size distributions, by showing that the size- because of mortality or because of path destruction and creation dependent tradeoff between reproduction and resource utilization in which occupied patches vanish and new patches enter the entails an inherent resonance that may induce multiple peaks, all system. -
THE MUTATION LOAD in SMALL POPULATIONS HE Mutation Load
THE MUTATION LOAD IN SMALL POPULATIONS MOT00 KIMURAZ, TAKE0 MARUYAMA, and JAMES F. CROW University of Wisconsin, Madison, Wisconsin Received April 29, 1963 HE mutation load has been defined as the proportion by which the population fitness, or any other attribute of interest, is altered by recurrent mutation (MORTON,CROW, and MULLER1956; CROW1958). HALDANE(1937) and MULLER(1950) had earlier shown that this load is largely independent of the harmfulness of the mutant. As long as the selective disadvantage of the mutant is of a larger order of magnitude than the mutation rate and the heterozygote fitness is not out of the range of that of the homozygotes, the load (measured in terms of fitness) is equal to the mutation rate for a recessive mutant and approxi- mately twice the mutation rate for a dominant mutant. A detailed calculation of the value for various degrees of dominance has been given by KIMURA(1 961 ) . In all these studies it has been assumed that the population is so large and the conditions so stable that the frequency of a mutant gene is exactly determined by the mutation rates, dominance, and selection coefficients, with no random fluctuation. However, actual populations are finite and also there are departures from equilibrium conditions because of variations in the various determining factors. Our purpose is to investigate the effect of random drift caused by a finite population number. It would be expected that the load would increase in a small population because the gene frequencies would drift away from the equilibrium values. This was confirmed by our mathematical investigations, but two somewhat unexpected results emerged. -
A Unified View on Skewed Distributions Arising from Selections
The Canadian Journal of Statistics 581 Vol. 34, No. 4, 2006, Pages 581–601 La revue canadienne de statistique A unified view on skewed distributions arising from selections Reinaldo B. ARELLANO-VALLE, Marcia´ D. BRANCO and Marc G. GENTON Key words and phrases: Kurtosis; multimodal distribution; multivariate distribution; nonnormal distribu- tion; selection mechanism; skew-symmetric distribution; skewness; transformation. MSC 2000: Primary 60E05; secondary 62E10. Abstract: Parametric families of multivariate nonnormal distributions have received considerable attention in the past few decades. The authors propose a new definition of a selection distribution that encompasses many existing families of multivariate skewed distributions. Their work is motivated by examples that involve various forms of selection mechanisms and lead to skewed distributions. They give the main prop- erties of selection distributions and show how various families of multivariate skewed distributions, such as the skew-normal and skew-elliptical distributions, arise as special cases. The authors further introduce several methods of constructing selection distributions based on linear and nonlinear selection mechanisms. Une perspective integr´ ee´ des lois asymetriques´ issues de processus de selection´ Resum´ e´ : Les familles parametriques´ de lois multivariees´ non gaussiennes ont suscite´ beaucoup d’inter´ etˆ depuis quelques decennies.´ Les auteurs proposent une nouvelle definition´ du concept de loi de selection´ qui englobe plusieurs familles connues de lois asymetriques´ multivariees.´ Leurs travaux sont motives´ par diverses situations faisant intervenir des mecanismes´ de selection´ et conduisant a` des lois asymetriques.´ Ils mentionnent les principales propriet´ es´ des lois de selection´ et montrent comment diverses familles de lois asymetriques´ multivariees´ telles que les lois asymetriques´ normales ou elliptiques emergent´ comme cas particuliers. -
General Solution of the Chemical Master Equation and Modality of Marginal Distributions for Hierarchic first-Order Reaction Networks
J. Math. Biol. (2018) 77:377–419 https://doi.org/10.1007/s00285-018-1205-2 Mathematical Biology General solution of the chemical master equation and modality of marginal distributions for hierarchic first-order reaction networks Matthias Reis1 · Justus A. Kromer2 · Edda Klipp1 Received: 7 April 2017 / Revised: 10 October 2017 / Published online: 20 January 2018 © The Author(s) 2018. This article is an open access publication Abstract Multimodality is a phenomenon which complicates the analysis of sta- tistical data based exclusively on mean and variance. Here, we present criteria for multimodality in hierarchic first-order reaction networks, consisting of catalytic and splitting reactions. Those networks are characterized by independent and dependent subnetworks. First, we prove the general solvability of the Chemical Master Equa- tion (CME) for this type of reaction network and thereby extend the class of solvable CME’s. Our general solution is analytical in the sense that it allows for a detailed analysis of its statistical properties. Given Poisson/deterministic initial conditions, we then prove the independent species to be Poisson/binomially distributed, while the dependent species exhibit generalized Poisson/Khatri Type B distributions. General- ized Poisson/Khatri Type B distributions are multimodal for an appropriate choice of parameters. We illustrate our criteria for multimodality by several basic models, as well as the well-known two-stage transcription–translation network and Bateman’s model from nuclear physics. For both examples, multimodality was previously not reported. Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00285- 018-1205-2) contains supplementary material, which is available to authorized users. -
Multimodal Nested Sampling: an Efficient and Robust Alternative to Markov Chain Monte Carlo Methods for Astronomical Data Analyses
Mon. Not. R. Astron. Soc. 384, 449–463 (2008) doi:10.1111/j.1365-2966.2007.12353.x Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses F. Feroz⋆ and M. P. Hobson Astrophysics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE Accepted 2007 August 13. Received 2007 July 23; in original form 2007 April 27 ABSTRACT In performing a Bayesian analysis of astronomical data, two difficult problems often emerge. First, in estimating the parameters of some model for the data, the resulting posterior distribution may be multimodal or exhibit pronounced (curving) degeneracies, which can cause problems for traditional Markov Chain Monte Carlo (MCMC) sampling methods. Secondly, in selecting between a set of competing models, calculation of the Bayesian evidence for each model is computationally expensive using existing methods such as thermodynamic integration. The nested sampling method introduced by Skilling, has greatly reduced the computational expense of calculating evidence and also produces posterior inferences as a by-product. This method has been applied successfully in cosmological applications by Mukherjee, Parkinson & Liddle, but their implementation was efficient only for unimodal distributions without pronounced de- generacies. Shaw, Bridges & Hobson recently introduced a clustered nested sampling method which is significantly more efficient in sampling from multimodal posteriors and also deter- mines the expectation and variance of the final evidence from a single run of the algorithm, hence providing a further increase in efficiency. In this paper, we build on the work of Shaw et al. and present three new methods for sampling and evidence evaluation from distributions that may contain multiple modes and significant degeneracies in very high dimensions; we also present an even more efficient technique for estimating the uncertainty on the evaluated evidence. -
Practice Problems in Population Genetics
PRACTICE PROBLEMS IN POPULATION GENETICS 1. In a study of the Hopi, a Native American tribe of central Arizona, Woolf and Dukepoo (1959) found 26 albino individuals in a total population of 6000. This form of albinism is controlled by a single gene with two alleles: albinism is recessive to normal skin coloration. a) Why can’t you calculate the allele frequencies from this information alone? Because you can’t tell who might be a carrier just by looking. b) Calculate the expected allele frequencies and genotype frequencies if the population were in Hardy-Weinberg equilibrium. How many of the Hopi are estimated to be carriers of the recessive albino allele? If we assume that the population’s in H-W equilibrium, then the frequency of individuals with the albino genotype is the square of the frequency of the albino allele. In other words, freq (aa) = q2. Freq (aa) = 26/6000 = 0.0043333, and the square root of that is 0.0658, which is q, the frequency of the albino allele. The frequency of the normal allele is p, equal to 1 - q, so p = 0.934. We’d then predict that the frequency of Hopi who are homozygous normal (genotype AA) is p2, which is 0.873. In other words, 87.3% of the population, or an estimated 5238 people, should be homozygous normal. The frequency of carriers we’d predict to be 2pq, which is 0.123. So 12.3%, or 737 people, should be carriers of albinism, if the population is in H-W. 2. A wildflower native to California, the dwarf lupin (Lupinus nanus) normally bears blue flowers. -
Spatially Heterogeneous Estimates of Fire Frequency in Ponderosa Pine Forests of Washington, Usa
Fire Ecology Volume 6, Issue 3, 2010 Kernan and Hessl: Spatially Heterogeneous Fire Frequency doi: 10.4996/fireecology.0603117 Page 117 PRACTICES AND APPLICATIONS IN FIRE ECOLOGY SPATIALLY HETEROGENEOUS ESTIMATES OF FIRE FREQUENCY IN PONDEROSA PINE FORESTS OF WASHINGTON, USA James T. Kernan1* and Amy E. Hessl2 1Department of Geography, State University of New York at Geneseo, 1 College Circle, Geneseo, New York 14454, USA 2Department of Geology and Geography, West Virginia University, G49 Brooks Hall, Morgantown, West Virginia 26506, USA *Corresponding author: Tel.: 001-585-245-5463; e-mail: [email protected] ABSTRACT Many fire history studies have evaluated the temporal nature of fire regimes using fire in- terval statistics calculated from fire scars. More recently, researchers have begun to eval- uate the spatial properties of past fires as well. In this paper, we describe a technique for investigating spatio-temporal variability using a geographic information system (GIS). We used a dataset of fire-scarred trees collected from four sites in eastern Washington, USA, ponderosa pine (Pinus ponderosa C. Lawson) forests. The patterns of past fires re- corded by individual trees (points) were converted to two-dimensional representations of fire with inverse distance weighting (IDW) in a GIS. A map overlay approach was then used to extract a fine-grained, spatially explicit reconstruction of fire frequency at the four sites. The resulting classified maps can supplement traditional fire interval statistics and fire atlas data to provide detailed, spatially heterogeneous estimates of fire frequency. Such information can reveal ecological relationships between fire and the landscape, and provide managers with an improved spatial perspective on fire frequency that can inform risk evaluations, fuels reduction efforts, and the allocation of fire-fighting resources.