http://www.paper.edu.cn Journal of Applied Microbiology ISSN 1364-5072 ORIGINAL ARTICLE Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite H. Zhou1,2, R. Zhang1,P.Hu1, W. Zeng1, Y. Xie1,C.Wu1,3 and G. Qiu1,2 1 School of Minerals Processing and Bioengineering, Central South University, Changsha, P.R. China 2 Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha, P.R. China 3 China Ocean Mineral Resources R&D Association, Beijing, P.R. China Keywords Abstract 16S rRNA gene, archaeon, chalcopyrite, T Ferroplasma sp., ferrous iron-oxidizing. Aims: To isolate Ferroplasma thermophilum L1 from a low pH environment and to understand its role in bioleaching of chalcopyrite. Correspondence Methods and Results: Using serial dilution method, a moderately thermophilic Guanzhou Qiu, School of Minerals Processing and acidophilic ferrous iron-oxidizing archaeon, named L1T, was isolated from and Bioengineering, Central South University, a chalcopyrite-leaching bioreactor. The morphological, biochemical and physio- Changsha, 410083, P.R. China. logical characteristics of strain L1T and its role in bioleaching of chalcopyrite E-mail:
[email protected] were studied. Strain L1T was a nonmotile coccus that lacked cell wall. Strain T 2007 ⁄ 1566: received 26 September 2007, L1 had a temperature optimum of 45°C and the optimum pH for growth was T revised and accepted 24 January 2008 1Æ0. Strain L1 was capable of chemomixotrophic growth on ferrous iron and yeast extract. Results of fatty acid analysis, DNA–DNA hybridization, G+C con- doi:10.1111/j.1365-2672.2008.03807.x tent, and analysis based on 16S rRNA gene sequence indicated that strain L1T should be grouped in the genus Ferroplasma, and represented a new species, Ferroplasma thermophilum.