The 2011 IDN Homograph Attack Mitigation Survey
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Unicode Cookbook for Linguists: Managing Writing Systems Using Orthography Profiles
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 The Unicode Cookbook for Linguists: Managing writing systems using orthography profiles Moran, Steven ; Cysouw, Michael DOI: https://doi.org/10.5281/zenodo.290662 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-135400 Monograph The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License. Originally published at: Moran, Steven; Cysouw, Michael (2017). The Unicode Cookbook for Linguists: Managing writing systems using orthography profiles. CERN Data Centre: Zenodo. DOI: https://doi.org/10.5281/zenodo.290662 The Unicode Cookbook for Linguists Managing writing systems using orthography profiles Steven Moran & Michael Cysouw Change dedication in localmetadata.tex Preface This text is meant as a practical guide for linguists, and programmers, whowork with data in multilingual computational environments. We introduce the basic concepts needed to understand how writing systems and character encodings function, and how they work together. The intersection of the Unicode Standard and the International Phonetic Al- phabet is often not met without frustration by users. Nevertheless, thetwo standards have provided language researchers with a consistent computational architecture needed to process, publish and analyze data from many different languages. We bring to light common, but not always transparent, pitfalls that researchers face when working with Unicode and IPA. Our research uses quantitative methods to compare languages and uncover and clarify their phylogenetic relations. However, the majority of lexical data available from the world’s languages is in author- or document-specific orthogra- phies. -
Detection of Suspicious IDN Homograph Domains Using Active DNS Measurements
A Case of Identity: Detection of Suspicious IDN Homograph Domains Using Active DNS Measurements Ramin Yazdani Olivier van der Toorn Anna Sperotto University of Twente University of Twente University of Twente Enschede, The Netherlands Enschede, The Netherlands Enschede, The Netherlands [email protected] [email protected] [email protected] Abstract—The possibility to include Unicode characters in problem in the case of Unicode – ASCII homograph domain names allows users to deal with domains in their domains. We propose a low-cost method for proactively regional languages. This is done by introducing Internation- detecting suspicious IDNs. Since our proactive approach alized Domain Names (IDN). However, the visual similarity is based not on use, but on characteristics of the domain between different Unicode characters - called homoglyphs name itself and its associated DNS records, we are able to - is a potential security threat, as visually similar domain provide an early alert for both domain owners as well as names are often used in phishing attacks. Timely detection security researchers to further investigate these domains of suspicious homograph domain names is an important before they are involved in malicious activities. The main step towards preventing sophisticated attacks, since this can contributions of this paper are that we: prevent unaware users to access those homograph domains • propose an improved Unicode Confusion table able that actually carry malicious content. We therefore propose to detect 2.97 times homograph domains compared a structured approach to identify suspicious homograph to the state-of-the-art confusion tables; domain names based not on use, but on characteristics • combine active DNS measurements and Unicode of the domain name itself and its associated DNS records. -
Idns: Internationalized Domain Names Did You Know?
I N T E R N E T C O R P O R AT I O N F O R A SS I G N E D N A M E S A N D N U M B E R S IDNs: Internationalized Domain Names Did you know? · Internationalized Domain Names (IDNs) are domain names with characters other than a, b…, z; 0, 1,…, 9; and “-“. · IDNs on the second and third levels exist in some generic top-level domains (gTLDs) and in some country code top-level domains (ccTLDs). TLD registries determine the choice of characters available under these TLDs. · Some languages, like Arabic, are written from right to left. IDNs at the second level are not very useful for the communities that use these languages because users would need to change both the type direction and script in the middle of entering a domain name. · IDN TLDs will be made available through two separate processes, initially through the New gTLD Program and the IDN ccTLD Fast Track Process. · 60 percent of Internet users are non-English speakers, while the dominant language used on the Internet is English (see Global Reach at www.glreach.com). One of the most significant innovations in the Internet since its incep- tion is the introduction of Internationalized Domain Names (IDNs) in the Internet’s address space. You may be familiar with some of the larger top- level domains: dot-com, dot-cn, and dot-org are just three examples. IDN top-level domain names will offer many new opportunities and benefits for Internet users around the world by allowing them to establish and use domains in their native languages and scripts. -
Homograph Attack Warning System
International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-10 Issue-2, December 2020 Homograph Attack Warning System Muhammad Uwais, Arpit Sharma, Akhil Kumar, Lakshya Singh Abstract— As we are living in the era of social media apps, assault which may even go through the program insurance. from Facebook to WhatsApp which are using everywhere. All The venture will be a portable application for any individual these apps are being used by everyone. Although this may seem to who is utilizing any internet based life applications like be a very good sign that we are moving to the new era of “THE WhatsApp, Facebook and so forth., This will assist the DIGITAL WORLD” but it may have some consequences like client with using the sheltered connections on their versatile spreading of artificial news, crack of personal information like credit card, debit card, passwords or digital wallets etc. The users which is imparted to them. The framework will an believe that every message shared on social media might be true. admonition every time the client visits a horrendous So, to protect our internet users we have come up with an idea connection. It is a simple thing when the user visits a vicious that provides the ability to discover homonym attack and link which is known. If the user already known's that the malicious links which warns the user before they can access the particular link is a vicious link the user will not visit the site. The Social engineering attacks have stirred terribly removed link. -
Fun with Unicode - an Overview About Unicode Dangers
Fun with Unicode - an overview about Unicode dangers by Thomas Skora Overview ● Short Introduction to Unicode/UTF-8 ● Fooling charset detection ● Ambigiuous Encoding ● Ambigiuous Characters ● Normalization overflows your buffer ● Casing breaks your XSS filter ● Unicode in domain names – how to short payloads ● Text Direction Unicode/UTF-8 ● Unicode = Character set ● Encodings: – UTF-8: Common standard in web, … – UTF-16: Often used as internal representation – UTF-7: if the 8th bit is not safe – UTF-32: yes, it exists... UTF-8 ● Often used in Internet communication, e.g. the web. ● Efficient: minimum length 1 byte ● Variable length, up to 7 bytes (theoretical). ● Downwards-compatible: First 127 chars use ASCII encoding ● 1 Byte: 0xxxxxxx ● 2 Bytes: 110xxxxx 10xxxxxx ● 3 Bytes: 1110xxxx 10xxxxxx 10xxxxxx ● ...got it? ;-) UTF-16 ● Often used for internal representation: Java, .NET, Windows, … ● Inefficient: minimum length per char is 2 bytes. ● Byte Order? Byte Order Mark! → U+FEFF – BOM at HTML beginning overrides character set definition in IE. ● Y\x00o\x00u\x00 \x00k\x00n\x00o\x00w\x00 \x00t\x00h\x00i\x00s\x00?\x00 UTF-7 ● Unicode chars in not 8 bit-safe environments. Used in SMTP, NNTP, … ● Personal opinion: browser support was an inside job of the security industry. ● Why? Because: <script>alert(1)</script> == +Adw-script+AD4-alert(1)+ADw-/script+AD4- ● Fortunately (for the defender) support is dropped by browser vendors. Byte Order Mark ● U+FEFF ● Appears as:  ● W3C says: BOM has priority over declaration – IE 10+11 just dropped this insecure behavior, we should expect that it comes back. – http://www.w3.org/International/tests/html-css/character- encoding/results-basics#precedence – http://www.w3.org/International/questions/qa-byte-order -mark.en#bomhow ● If you control the first character of a HTML document, then you also control its character set. -
Standard Unicode 4.0. Wybrane Pojęcia I Terminy
Janusz S. Bień Standard Unicode 4.0. Wybrane pojęcia i terminy 24 listopada 2005 r. Streszczenie Ukazanie się w sierpniu 2003 r. czwartej wersji standardu UNICODE (1504 strony plus CD-ROM), dostępnego także pod adresem http://www.unicode. org, stanowi okazję do zaprezentowania wybranych aspektów tego standardu. Unicode jest ukazany na tle wcześniej stosowanych metod kodowania tekstów. Artykuł zawiera również w sposób mniej lub bardziej jawny propozycje tłuma- czenie używanych w standardzie angielskich terminów na język polski. 1. Wprowadzenie Na wstępie warto przypomnieć różnicę między standardem a normą. Stan- dardy — dawniej pisane i czytane standarty1, ang. standards — to specyfikacje sformułowane przez pewne organizacje lub instytucje. Normy — ang. legal standards — to specyfikacje sformułowane przez krajowe lub międzynarodowe organizacje normalizacyjne, czyli przez instytucje upoważnione do tego przez państwo odpowiednimi ustawami; niektóre aspekty normalizacji krajowej i eu- ropejskiej omówiłem w artykule [2]. W skali światowej działalność normaliza- cyjna jest podstawowym źródłem utrzymania znaczącej liczby osób, stąd często można spotkać normy, których jedyną racją bytu jest dostarczanie zajęcia nor- malizatorom; standardy znacznie częściej zaspokajają rzeczywiste potrzeby ich użytkowników. W artykule [1] przedstawiłem krajowe, europejskie i międzynarodowe normy określające kodowanie tekstów polskich w systemach komputerowych. Tutaj podam tylko kilka przykładów kodowania polskich liter zgodnie z najnowszymi polskimi normami. Według -
Names for Encodings – Mechanisms for Labeling Text with Encoding
Web Internationalization Standards and Practice Tex Texin, XenCraft Copyright © 2002-2016 Tex Texin Internationalization and Unicode Conference IUC40 Abstract This is an introduction to internationalization on the World Wide Web. The audience will learn about the standards that provide for global interoperability and come away with an understanding of how to work with multilingual data on the Web. Character representation and the Unicode-based Reference Processing Model are described in detail. HTML, including HTML5, XHTML, XML (eXtensible Markup Language; for general markup), and CSS (Cascading Style Sheets; for styling information) are given particular emphasis. Web Internationalization Slide 2 Objectives • Describe the standards that define the architecture & principles for I18N on the web • Scope limited to markup languages • Provide practical advice for working with international data on the web, including the design and implementation of multilingual web sites and localization considerations • Be introductory level – Condense 3 hours to 75-90 minutes. This presentation and example code are available at: www.xencraft.com/training/webstandards.html Web Internationalization – Standards and Practice Slide 3 Legend For This Presentation Icons used to indicate current product support: Google Internet Firefox Chrome Explorer Supported: Partially supported: Not supported: Caution Highlights a note for users or developers to be careful. Web Internationalization Slide 4 How does the multilingual Web work? • How does the server know – my language? -
Network Working Group A. Costello Request for Comments: 3492 Univ
Network Working Group A. Costello Request for Comments: 3492 Univ. of California, Berkeley Category: Standards Track March 2003 Punycode: A Bootstring encoding of Unicode for Internationalized Domain Names in Applications (IDNA) Status of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The Internet Society (2003). All Rights Reserved. Abstract Punycode is a simple and efficient transfer encoding syntax designed for use with Internationalized Domain Names in Applications (IDNA). It uniquely and reversibly transforms a Unicode string into an ASCII string. ASCII characters in the Unicode string are represented literally, and non-ASCII characters are represented by ASCII characters that are allowed in host name labels (letters, digits, and hyphens). This document defines a general algorithm called Bootstring that allows a string of basic code points to uniquely represent any string of code points drawn from a larger set. Punycode is an instance of Bootstring that uses particular parameter values specified by this document, appropriate for IDNA. Table of Contents 1. Introduction...............................................2 1.1 Features..............................................2 1.2 Interaction of protocol parts.........................3 2. Terminology................................................3 3. Bootstring description.....................................4 3.1 Basic code point segregation..........................4 3.2 Insertion unsort coding...............................4 3.3 Generalized variable-length integers..................5 3.4 Bias adaptation.......................................7 4. Bootstring parameters......................................8 5. Parameter values for Punycode..............................8 6. -
Imperceptible NLP Attacks
Bad Characters: Imperceptible NLP Attacks Nicholas Boucher Ilia Shumailov University of Cambridge University of Cambridge Cambridge, United Kingdom Vector Institute, University of Toronto [email protected] [email protected] Ross Anderson Nicolas Papernot University of Cambridge Vector Institute, University of Toronto University of Edinburgh Toronto, Canada [email protected] [email protected] Abstract—Several years of research have shown that machine- Indeed, the title of this paper contains 1000 invisible characters -
Introduction to Universal Acceptance (UA)
Introduction to Universal Acceptance (UA) Universal Acceptance Steering Group (UASG) 23 September 2019 Universal Acceptance – Report UASG007 TABLE OF CONTENTS About This Document 4 Target Audience 4 Background Concepts 5 Domain Names 5 Country Code Top-level Domains (ccTLDs) 5 Generic Top-level Domains (gTLDs) 5 Domain Name Internationalization 6 The Need for Universal Acceptance (UA) 6 U-labels and A-labels 6 Email Address Internationalization (EAI) 7 Dynamic Link Generation (Linkification) 8 The Dynamic Nature of the Root Zone Registry 8 Universal Acceptance in Action 9 Five Criteria of Universal Acceptance 9 User Scenarios 11 Nonconformance to Universal Practices 12 Technical Requirements for UA Readiness 13 High-Level Requirements 13 Developer Considerations 14 Designing Software for Compatibility and Flexibility 14 Good Practices for Developing and Updating Software to Achieve UA-Readiness 14 Authoritative Sources for Domain Names: DNS Root Zone and IANA Lists 21 Email with IDNs and Why It Is Not the Same as EAI 21 Linkification and Its Challenges 22 Good Practice Recommendations 22 Unicode - Background and Code Point Attributes 23 UTF8, UTF16, and Other Encoding Methods 23 IDNA - A Brief History and Current State 24 Use Cases for Testing 24 Upgrading Software for EAI 25 Advanced Topics 25 Complex Scripts 25 Right-to-Left Languages and Unicode Conformance 25 The Bidi Algorithm 25 The Bidi Rule for Domain Names 27 Joiners 27 Homoglyphs and Similar Characters 28 Introduction to Universal Acceptance - Report UASG007 // 2 Normalization, Case Folding, and String Preparation 28 Case Folding and Mapping 30 Glossary and Other Resources 31 Glossary 31 RFCs and Key Standards 34 Key Standards 37 Online Resources 38 Introduction to Universal Acceptance - Report UASG007 // 3 About This Document The Internet’s technologies, including its naming components, continually evolve and change. -
Integrated Issues Report)
The IDN Variant Issues Project A Study of Issues Related to the Management of IDN Variant TLDs (Integrated Issues Report) 20 February 2012 The IDN Variant Issues Project: A Study of Issues Related to the Management of IDN Variant TLDs 20 February 2012 Contents Executive Summary…………………………………………………………………………………………………………….. 6 1 Overview of this Report………………………………………………………………………………………………. 9 1.1 Fundamental Assumptions…………………………………………………………………………………. 10 1.2 Variants and the Current Environment………………………………………………………………. 12 2 Project Overview……………………………………………………………………………………………………….. 16 2.1 The Variant Issues Project…………………………………………………………………………………… 16 2.2 Objectives of the Integrated Issues Report………………………………………………………… 17 2.3 Scope of the Integrated Issues Report………………………………………………………………… 18 3 Range of Possible Variant Cases Identified………………………………………………………………… 19 3.1 Classification of Variants as Discovered……………………………………………………………… 19 3.1.1 Code Point Variants……………………………………………………………………………………. 20 3.1.2 Whole-String Variants………………………………………………………………………………… 20 3.2 Taxonomy of Identified Variant Cases……………………………………………………………….. 21 3.3 Discussion of Variant Classes……………………………………………………………………………… 28 3.4 Visual Similarity Cases……………………………………………………………………………………….. 33 3.4.1 Treatment of Visual Similarity Cases………………………………………………………….. 33 3.4.2 Cross-Script Visual Similarity ……………………………………………………………………….34 3.4.3 Terminology concerning Visual Similarity ……………………………………………………35 3.5 Whole-String Issues …………………………………………………………………………………………….36 3.6 Synopsis of Issues ……………………………………………………………………………………………….39 -
IETF A. Freytag Internet-Draft ASMUS, Inc. Intended Status: Standards Track J
IETF A. Freytag Internet-Draft ASMUS, Inc. Intended status: Standards Track J. Klensin Expires: December 31, 2018 A. Sullivan Oracle Corp. June 29, 2018 Those Troublesome Characters: A Registry of Unicode Code Points Needing Special Consideration When Used in Network Identifiers draft-freytag-troublesome-characters-02 Abstract Unicode’s design goal is to be the universal character set for all applications. The goal entails the inclusion of very large numbers of characters. It is also focused on written language in general; special provisions have always been needed for identifiers. The sheer size of the repertoire increases the possibility of accidental or intentional use of characters that can cause confusion among users, particularly where linguistic context is ambiguous, unavailable, or impossible to determine. A registry of code points that can be sometimes especially problematic may be useful to guide system administrators in setting parameters for allowable code points or combinations in an identifier system, and to aid applications in creating security aids for users. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on December 31, 2018.