Evidence of Varroa-Mediated Deformed Wing Virus Spillover in Hawaii Authors

Total Page:16

File Type:pdf, Size:1020Kb

Evidence of Varroa-Mediated Deformed Wing Virus Spillover in Hawaii Authors Title: Evidence of Varroa-mediated Deformed Wing virus spillover in Hawaii Authors: Jessika Santamaria Corresponding Author: [email protected] University of Hawaii at Mānoa, United States 3050 Maile Way, Honolulu, HI 96822 Ethel M. Villalobos University of Hawaii at Mānoa, United States 3050 Maile Way, Honolulu, HI 96822 Laura E. Brettell Hawkesbury Institute for the Environment at the West Sydney University, Science Rd, Richmond, NSW 2753, Australia ScottUniversity Nikaido of Hawaii at Mānoa, United States 3050 Maile Way, Honolulu, HI 96822 Jason R. Graham University of Hawaii at Mānoa, United States 3050 Maile Way, Honolulu, HI 96822 Stephen Martin The University of Salford Manchester, UK M5 4WT Abstract: Varroa destructor, a parasitic mite of honey bees is also a vector for viral diseases. The mite displays high host specificity and requires access to colonies of Apis spp. to , viruses transmitted by V. destructor Previouscomplete studiesits lifecycle. have Indetected contrast, DWV the inDeformed a variety Wing of insect Virus groups (DWV), that one are of not the many , appears to have a much broader ehost discrete range. distribution of the Varroa mite in the Hawaiian archipelago to compare DWV prevalencedirectly parasitized on non-Apis by the flo mite. In this study, we take advantageVarroa presenceof th is linked where V. destructor wer visitors, and test whether absent.to a “viral We spillover”. sampled individualsWe selected of two Apis islands mellifera withCeratina different smaragdula viral landscapes:Polistes Oahu, aurifer Polistes hasexclamens been present since 2007, and Maui, where the mite is Hymenoptera community of the two isla , , honey bee, and colonies on Oahu have, to muchassess higher and compare incidence the of DWV DWV prevalence compared in to the Maui. nds. The- Apisresults Hymenoptera indicated that, collected as expected, from The study sites selected Correspondingly, DWV was detected on the Non ence of theOahu, Varroa but was absent in the species examined on Maui. inshared the Hymenoptera a similar geography, community climate, on mite and- insectinfected fauna, islands. but differed in the pres mite, suggesting an indirect, but significant, increase on DWV prevalence Keywords: Varroa Apis mellifera mite, deformed wing virus, pollinator health, viral transmission, viral Abbreviations:spillover, 1.Deformed Introduction Wing Virus (DWV) crops In the last two decades, emerging diseases have caused extensive damage to and livestock (Morens and Fauci, 2013; Voyles et al., 2014,). Pathogens have been repeatedly shown to jump between species (Levitt et al., 2013; Li et al., 2011; affectingMalmstrom honey and Alexander, 2016) and the Deformed Wing Virus (Iflaviridae; DWV) have shown thatbees the DWVis no exceptionmay have co(Villalobos,-evolved with2016). the Recent European molecular honey studiesbee Apis mellifera the original virus may have been a low prevalence pathogen with( many variants), and and low virulence . (Martin et al , 2012; Wilfert et al., 2016). Upon contact with the Asian honey Apis cerana Varroa destructor beeA. ( cerana to A.), mellifera a new mite and vector, with this new transmission, jumped route speciesthe prevalence from and virulence of DWV in A. mellifera was . amplified (Martin et al.,colonies 2012; ofWilfert the Asian et al., honey 2016 ). RecentApis studiescerana byand Yanez A. mellifera et al indicated(2015) on that sympatric there are a large number of sharedbee, strains of DWV ,circulating in the Asian and the European honey bee populations in the European honey , however the virus is more prevalent via the mite and/or greaterbee colonies,susceptibility suggesting of A. mellifera a more efficient to infection transmission to the virus route or the vector. A similar situation has been reported for the native Japanese honey bee Apis cerana japonica A. mellifera but at a much , which shares DWV infections with sympatric lower prevalence (Kojima et al., 2011). While DWV evolved in close association with Apis capable of infecting a broad range of non-Apis bees, it also appears hosts (Genersch et al., 2006; insect Li etgenera al., 2011; Melathopoulos et al., 2017). So far, DWVGuzman has- been detected in 23 across Europe, North and South America ( Novoa et al., 2015; Levitt- et al., 2013; Reynaldi et al., 2013; Singh et al., 2010), including social and non socialut the bees, wasps, ants, and a myriad of other insect groups. Not much is known abo impact of the virus in these host species (Tehel et al., 2016). Negative strands of nonDWV,-Apis suggestive of viral replication in the host, have been However found only in 5 generaery of of DWV amonginsects a wide (Levitt range et ofal., species 2013; Tehel has created et al., 2016 concerns). about ,a the possible discov “viral spillover” from honey specially economically bee colonies to other insect species, e important pollinators such as bumble bees (Graystock et al., 2016regionsa, Graystock where V. et al., destructor2016b). Work is present on viral and spillover DWV is has prevalent been conducted, in the honey so far, in Budge et bee population (V. destructoral., 2015; Tehel in honey et al., 2016; Traynor et al., 2016). In fact, the presence of and prevalence of DWVbee incolonies honey has been linked to increased viral loads, virulence, Varroa has also been associated withbee populationsother viral diseases (Martin inet honeybeesal., 2012). Additionally, including AKI, KBV, BQCV, and SBV (Francis et al., 2013; Martin, 2001; Shen et al., 2005). The fragmented distribution of the Varroa mite on the Hawaiian archipelago withoutmakes for Varroa ideal studymites sitesin the in ecosystem. which to examine Honey bees pollinator first arrived communities to the Hawaiian with or archipelago in 1857 and became establishedwe sampled across local the honey eight islandsbees and by non 1909-Apis Hymenoptera(Szalanski et al., species 2016). on In the this Varro study,a- positive island of Oahu and the Varroa-negative island of Maui. The selected study sites shared similar bees havegeography, been in floral contact resources, with V. destructorand insect communities; however, Oahu’s honey since 2007, and have high DWV prevalence and increased bee populations viral loads. on that In contrast, Maui remains mite free to this date, and the honey -Apis Hymenopteraisland have a much species lower selected incidence as representatives of DWV (Martin of tethe al., community 2012). The were: non Ceratina smaragdula, Polistes aurifer Polistes exclamens. C. smaragdula , and , commonly known as the small carpenter bee, is a mostly solitary bee abundant in garden bees . environments in Hawaii, sharing nectar and pollen resources with honey Polistes spp. are common social wasps that visits flowers occasionally to feed on nectar. hunt caterpillar prey, and Re-emerging viral diseases such as DWV represent one of the major threats to honey ld bees and other insects bee health, and the “spillover” of pathogens to wi may also contribute to the current global pollinator decline (Fürst et al., 2014; Genersch et al., 2006; Graystock et al., 2013a; Graystock et al., 2013b; Manley et al., incidence2015; Tehel of etDWV al., 2016).on non -HereApis weinsects carry in out areas a preliminary with and without comparison V. destructor of the . 2. Methods 2.1 Specimen collection We selected three species within two different Hymenoptera genera as representatives of the local community of flower visitors: the introduced small carpenter bee Ceratina smaragdula (Apidae) which was first recordedPolistes in aurifer Hawaii and in Polistes1999 (Magnacca exclaman ands King, 2013), and introduced paper wasps th century and in (Vespidae) first recorded in Hawaii were in collected the 19 from five sites on 1952 respectivelyVarroa-positive (Beggs et al., 2011). All samples Varroa-negative Oahu ( island), and four sites on Maui, ( island). Collection sites on both islands consisted onThe a mix selected of agricultural insect species fields, are parks, all gardens, and beach edge vegetation strips. whererelatively they abundant overlap inand resource can be founduse with in urban A. mellifera. and agricultural Our selection environments, of diverse habitats provided us with a preliminary bird’s eye view of the viral distribution on each island the micro-climate diversity that characterizes the Hawaiian archipelag, and representso. Polistes wasps collected on Oahu are P. aurifer and the specimens from Maui are P. exclamans. Consequently the comparisons between the paper wasps were at the genus level. Samples were collected from August 2014 to November 2015. handInsects-held were net. collected Paper wasp whiles samples they were were foraging also collected in fields fromor flower around patches, their nestsvia a . Each insect was stored individually and kept on ice in the field until transferred to a - °C freezer for long term storage. 80 2.2 RNA Extraction & Reverse Transcription PCR centrifuge which wasEach submerged individual inwas liquid transferred nitrogen to before a nuclease the sample free 1.5ml was crushed usingtube, a sterile mini pestle. Total RNA was then extracted froms theconditions resulting and powder resuspended using the RNeasy Mini -Kit (Qiagen) following manufacturer’ in 30 µl of RNase free water. RNA concentration was determined using a Nanodrop Transcription2000c (Thermo- Scientific)- and samples were diluted to 25ng/µl. Reverse carried out to determinPCR (RT ePCR) whether protocols samples adapted contained from DWV.Martin E etndogenous al (2012)
Recommended publications
  • Implications of Habitat Restoration for Bumble Bee Population Dynamics, Foraging Ecology, and Epidemiology
    IMPLICATIONS OF HABITAT RESTORATION FOR BUMBLE BEE POPULATION DYNAMICS, FORAGING ECOLOGY, AND EPIDEMIOLOGY By Knute Baldwin Gundersen A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Entomology—Doctor of Philosophy Ecology, Evolutionary Biology and Behavior—Dual Major 2018 ABSTRACT IMPLICATIONS OF HABITAT RESTORATION FOR BUMBLE BEE POPULATION DYNAMICS, FORAGING ECOLOGY, AND EPIDEMIOLOGY By Knute Baldwin Gundersen Many insects provide valuable ecosystem services, including those that support our food supply. Beneficial insects such as pollinators fulfill part of this role by contributing to approximately one third of the global food crop production. Over the past few decades, pollinators have faced declining populations due to a variety of factors such as agricultural intensification, lack of floral and nesting resources, and disease. One method used in agricultural settings to help sustain pollinator populations is designating unfarmed habitat such as ditches and field margins for habitat enhancement in the form of hedgerows and wildflower strips. These floristically rich areas can be tailored to bloom both before and after crop bloom to help sustain pollinators during the time when crops are not in bloom. In turn, bee populations can benefit from the consistent availability of resources in these areas of habitat enhancement. This dissertation explores how habitat enhancement affects nesting density of a common wild pollinator, Bombus impatiens . Further, this research also aims to determine how foraging preferences change and how bumble bee disease transmission and prevalence respond to habitat enhancement. Research was conducted at 15 commercial highbush blueberry ( Vaccinium corymbosum ) fields in southwest Michigan containing either no restoration, a newly planted restoration, or a mature (5-8 year old) restoration in the field margin from 2015 to 2017.
    [Show full text]
  • Coversheet for Thesis in Sussex Research Online
    A University of Sussex DPhil thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details Information gathering and conflict resolution in Polistes wasps Jonathan Philip Green Submitted for the degree of Doctor of Philosophy University of Sussex September 2011 ii Declaration The design and data collection for the study presented in Chapter 4 were undertaken in collaboration with Dr. Elli Leadbeater at the Institute of Zoology and Professor Jeremy Field at the University of Sussex. However, the particular analyses undertaken in that chapter, as well as the interpretations drawn from the data, are my own. I certify that, with the above qualification, the work carried out in this thesis is entirely my own, and that any help provided by other individuals with data collection and analysis is fully acknowledged. In addition, I certify that this thesis has not been, and will not be, submitted in whole or in part to another university for the award of any other degree. Signature: Jonathan Philip Green iii UNIVERISTY OF SUSSEX JONATHAN PHILIP GREEN, DOCTOR OF PHILOSOPHY INFORMATION GATHERING AND CONFLICT RESOLUTION IN POLISTES WASPS SUMMARY Signals are used to communicate resource-holding potential (RHP) to rivals during contests across a wide range of taxa.
    [Show full text]
  • Evidence for and Against Deformed Wing Virus Spillover from Honey Bees to Bumble Bees: a Reverse Genetic Analysis Olesya N
    www.nature.com/scientificreports OPEN Evidence for and against deformed wing virus spillover from honey bees to bumble bees: a reverse genetic analysis Olesya N. Gusachenko1*, Luke Woodford1, Katharin Balbirnie‑Cumming1, Eugene V. Ryabov2 & David J. Evans1* Deformed wing virus (DWV) is a persistent pathogen of European honey bees and the major contributor to overwintering colony losses. The prevalence of DWV in honey bees has led to signifcant concerns about spillover of the virus to other pollinating species. Bumble bees are both a major group of wild and commercially‑reared pollinators. Several studies have reported pathogen spillover of DWV from honey bees to bumble bees, but evidence of a sustained viral infection characterized by virus replication and accumulation has yet to be demonstrated. Here we investigate the infectivity and transmission of DWV in bumble bees using the buf-tailed bumble bee Bombus terrestris as a model. We apply a reverse genetics approach combined with controlled laboratory conditions to detect and monitor DWV infection. A novel reverse genetics system for three representative DWV variants, including the two master variants of DWV—type A and B—was used. Our results directly confrm DWV replication in bumble bees but also demonstrate striking resistance to infection by certain transmission routes. Bumble bees may support DWV replication but it is not clear how infection could occur under natural environmental conditions. Deformed wing virus (DWV) is a widely established pathogen of the European honey bee, Apis mellifera. In synergistic action with its vector—the parasitic mite Varroa destructor—it has had a devastating impact on the health of honey bee colonies globally1,2.
    [Show full text]
  • An Abstract of the Thesis Of
    AN ABSTRACT OF THE THESIS OF Sarah A. Maxfield-Taylor for the degree of Master of Science in Entomology presented on March 26, 2014. Title: Natural Enemies of Native Bumble Bees (Hymenoptera: Apidae) in Western Oregon Abstract approved: _____________________________________________ Sujaya U. Rao Bumble bees (Hymenoptera: Apidae) are important native pollinators in wild and agricultural systems, and are one of the few groups of native bees commercially bred for use in the pollination of a range of crops. In recent years, declines in bumble bees have been reported globally. One factor implicated in these declines, believed to affect bumble bee colonies in the wild and during rearing, is natural enemies. A diversity of fungi, protozoa, nematodes, and parasitoids has been reported to affect bumble bees, to varying extents, in different parts of the world. In contrast to reports of decline elsewhere, bumble bees have been thriving in Oregon on the West Coast of the U.S.A.. In particular, the agriculturally rich Willamette Valley in the western part of the state appears to be fostering several species. Little is known, however, about the natural enemies of bumble bees in this region. The objectives of this thesis were to: (1) identify pathogens and parasites in (a) bumble bees from the wild, and (b) bumble bees reared in captivity and (2) examine the effects of disease on bee hosts. Bumble bee queens and workers were collected from diverse locations in the Willamette Valley, in spring and summer. Bombus mixtus, Bombus nevadensis, and Bombus vosnesenskii collected from the wild were dissected and examined for pathogens and parasites, and these organisms were identified using morphological and molecular characteristics.
    [Show full text]
  • Entomological Society of America
    ENTOMOLOGICAL SOCIETY OF AMERICA 10001 Derekwood Lane, Suite 100, Lanham, MD 20706-4876 Phone: (301) 731-4535 • Fax: (301) 731-4538 E-mail: [email protected] • http://www.entsoc.org Proposal Form for new Common Name or Change of ESA-Approved Common Name Complete this form and send or e-mail to the above address. Submissions will not be considered unless this form is filled out completely. The proposer is expected to be familiar with the rules, recommendations, and procedures outlined in the “Use and Submission of Common Names” on the ESA website and with the discussion by A.B. Gurney, 1953, Journal of Economic Entomology 46:207-211. 1. Proposed new common name: European paper wasp 2. Previously approved common name (if any): None 3. Scientific name (genus, species, author): Polistes dominula (Christ) Order: Hymenoptera Family: Vespidae Supporting Information 4. Reasons supporting the need for the proposed common name: Since its introduction into North America (ca. 1968 New Jersey, ca. 1976 Boston area), this vespid has become widespread throughout the northern half of the United States and southern Canada. It some locations it has become the dominant Polistes species and a very visible insect in yards and gardens. 5. Stage or characteristic to which the proposed common name refers: “Paper wasp” refers to its habit of constructing a multi-celled umbrella-form nest. This is typical of Polistes spp., including those currently recognized as “paper wasps” in the ESA Common Names listing (e.g., Polistes aurifer/golden paper wasp, Polistes olivaceous/Macao paper wasp). This insect is native to Europe and a recent colonizer of North America.
    [Show full text]
  • Bumblebee Conservator
    Volume 2, Issue 1: First Half 2014 Bumblebee Conservator Newsletter of the BumbleBee Specialist Group In this issue From the Chair From the Chair 1 A very happy and productive 2014 to everyone! We start this year having seen From the Editor 1 enormously encouraging progress in 2013. Our different regions have started from BBSG Executive Committee 2 very different positions, in terms of established knowledge of their bee faunas Regional Coordinators 2 as well as in terms of resources available, but members in all regions are actively moving forward. In Europe and North America, which have been fortunate to Bumblebee Specialist have the most specialists over the last century, we are achieving the first species Group Report 2013 3 assessments. Mesoamerica and South America are also very close, despite the huge Bumblebees in the News 9 areas to survey and the much less well known species. In Asia, with far more species, many of them poorly known, remarkably rapid progress is being made in sorting Research 13 out what is present and in building the crucial keys and distribution maps. In some Conservation News 20 regions there are very few people to tackle the task, sometimes in situations that Bibliography 21 make progress challenging and slow – their enthusiasm is especially appreciated! At this stage, broad discussion of problems and of the solutions developed from your experience will be especially important. This will direct the best assessments for focusing the future of bumblebee conservation. From the Editor Welcome to the second issue of the Bumblebee Conservator, the official newsletter of the Bumblebee Specialist Group.
    [Show full text]
  • Regional and Temporal Parasite Loads in Bumble Bees Associated With
    University of Massachusetts Amherst ScholarWorks@UMass Amherst North American Cranberry Researcher and NACREW 2017 Extension Workers Conference Aug 29th, 12:00 PM - 1:15 PM Regional and temporal parasite loads in bumble bees associated with cranberry landscapes Noel Hahn University of Massachusetts Amherst Cranberry Station, [email protected] Andrea Couto UMass Amherst Cranberry Station, [email protected] Anne Averill University of Massachusetts - Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/nacrew Part of the Agriculture Commons Recommended Citation Hahn, Noel; Couto, Andrea; and Averill, Anne, "Regional and temporal parasite loads in bumble bees associated with cranberry landscapes" (2017). North American Cranberry Researcher and Extension Workers Conference. 11. https://scholarworks.umass.edu/nacrew/2017/posters/11 This Event is brought to you for free and open access by the Cranberry Station at ScholarWorks@UMass Amherst. It has been accepted for inclusion in North American Cranberry Researcher and Extension Workers Conference by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Regional and temporal parasite loads in bumble bees associated with cranberry landscapes Noel Hahn, Andrea C. Couto, Anne Averill Department of Environmental Conservation, University of Massachusetts, Amherst, MA; University of Massachusetts Cranberry Station, Wareham, Massachusetts Abstract Objectives There are concerns that the fitness of bumble bees that provide pollination • Quantify the number of bumble bees that are services to cranberry could suffer within intensively managed agricultural Crithidia bombi Nosema bombi lands. In the cranberry region of Massachusetts, the crop occurs within parasitized by , , urbanized coastal and sand plains that generally lack floral resources.
    [Show full text]
  • Triploid Females and Diploid Males: Underreported Phenomena in Polistes Wasps?
    Insect. Soc. 51 (2004) 205–211 0020-1812/04/030205-07 Insectes Sociaux DOI 10.1007/s00040-004-0754-0 © Birkhäuser Verlag, Basel, 2004 Review article Triploid females and diploid males: underreported phenomena in Polistes wasps? A.E. Liebert 1, R.N. Johnson 1, 2, G.T. Switz 1 and P.T. Starks 1 1 Department of Biology, Tufts University, Medford, MA 02155, USA, e-mail: [email protected] 2 Current address: Evolutionary Biology Unit, Australian Museum, 6 College Street, Sydney, NSW 2000, Australia Received 5 December 2003; revised 20 March 2004; accepted 19 April 2004. Summary. In hymenopteran species, males are usually hap- (1933; 1943) and thought to be ancestral in Hymenoptera loid and females diploid. However, in species that have com- (Crozier, 1977; Crozier and Pamilo, 1996; Periquet et al., plementary sex determination (CSD), diploid males arise 1993). In this system, a heterozygote at the sex-determining when a female produces offspring that are homozygous at the locus is female, whereas a homozygote or hemizygote is sex-determining locus. Although diploid males are often male (Crozier, 1977). Evidence for single locus CSD has sterile, in some species they have been shown to produce been found throughout the Hymenoptera (reviewed by Cook, diploid sperm, thus producing triploid daughters if they mate 1993), including species ranging from the primitive sawflies successfully. Diploid males have been observed in very few (Athalia rosae ruficornis: Naito and Suzuki, 1991), to hor- species of social wasps, and we know of no published reports nets (Vespa crabro: Foster et al., 2000), fire ants (Solenop- of triploid females.
    [Show full text]
  • Report for the Yellow Banded Bumble Bee (Bombus Terricola) Version 1.1
    Species Status Assessment (SSA) Report for the Yellow Banded Bumble Bee (Bombus terricola) Version 1.1 Kent McFarland October 2018 U.S. Fish and Wildlife Service Northeast Region Hadley, Massachusetts 1 Acknowledgements Gratitude and many thanks to the individuals who responded to our request for data and information on the yellow banded bumble bee, including: Nancy Adamson, U.S. Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS); Lynda Andrews, U.S. Forest Service (USFS); Sarah Backsen, U.S. Fish and Wildlife Service (USFWS); Charles Bartlett, University of Delaware; Janet Beardall, Environment Canada; Bruce Bennett, Environment Yukon, Yukon Conservation Data Centre; Andrea Benville, Saskatchewan Conservation Data Centre; Charlene Bessken USFWS; Lincoln Best, York University; Silas Bossert, Cornell University; Owen Boyle, Wisconsin DNR; Jodi Bush, USFWS; Ron Butler, University of Maine; Syd Cannings, Yukon Canadian Wildlife Service, Environment and Climate Change Canada; Susan Carpenter, University of Wisconsin; Paul Castelli, USFWS; Sheila Colla, York University; Bruce Connery, National Park Service (NPS); Claudia Copley, Royal Museum British Columbia; Dave Cuthrell, Michigan Natural Features Inventory; Theresa Davidson, Mark Twain National Forest; Jason Davis, Delaware Division of Fish and Wildlife; Sam Droege, U.S. Geological Survey (USGS); Daniel Eklund, USFS; Elaine Evans, University of Minnesota; Mark Ferguson, Vermont Fish and Wildlife; Chris Friesen, Manitoba Conservation Data Centre; Lawrence Gall,
    [Show full text]
  • Polistes Dominula and Ammophila Pubescens
    A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details 1 Alternative Reproductive Tactics in Social Wasps Submitted by: Christopher Francis Accleton to the University of Sussex as a thesis for the degree of Doctor of Philosophy in Biological Sciences 2018 2 Declaration I certify that all materials in this thesis that are not my own work have been identified, and that this thesis has not been and will not be submitted in whole or in part to another University for the award of any other degree. Signature: ………………………………………………………………………………………………. Christopher Francis Accleton 3 University of Sussex Christopher Francis Accleton, Doctor of Philosophy in Biological Sciences Alternative Reproductive Tactics in Social Wasps Abstract There is an abundance of different behavioural approaches, or tactics, employed by animals to maximise reproductive success in different situations. The best documented alternative reproductive tactics (ART) have mainly been those carried out by males. In this thesis I use field data and molecular genotyping to investigate ARTs carried out by females in two very different species of social wasps.
    [Show full text]
  • Evidence of Varroa-Mediated Deformed Wing Virus Spillover in Hawaii
    Evidence of Varroa -mediated deformed wing virus spillover in Hawaii Santamaria, J, Villalobos, EM, Brettell, LE, Nikaido, S, Graham, JR and Martin, SJ http://dx.doi.org/10.1016/j.jip.2017.11.008 Title Evidence of Varroa -mediated deformed wing virus spillover in Hawaii Authors Santamaria, J, Villalobos, EM, Brettell, LE, Nikaido, S, Graham, JR and Martin, SJ Type Article URL This version is available at: http://usir.salford.ac.uk/id/eprint/44607/ Published Date 2017 USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. Title: Evidence of Varroa-mediated Deformed Wing virus spillover in Hawaii Authors: Jessika Santamaria Corresponding Author: [email protected] University of Hawaii at Mānoa, United States 3050 Maile Way, Honolulu, HI 96822 Ethel M. Villalobos University of Hawaii at Mānoa, United States 3050 Maile Way, Honolulu, HI 96822 Laura E. Brettell The University of Salford Manchester, UK M5 4WT Scott Nikaido University of Hawaii at Mānoa, United States 3050 Maile Way, Honolulu, HI 96822 Jason R. Graham University of Hawaii at Mānoa, United States 3050 Maile Way, Honolulu, HI 96822 Stephen Martin The University of Salford Manchester, UK M5 4WT Abstract: The spread of disease between closely related species is often times exacerbated by a vector.
    [Show full text]
  • Long‐Term Prevalence of the Protists Crithidia Bombi And
    Long-term prevalence of the protists Crithidia bombi and Apicystis bombi and detection of the microsporidium Nosema bombi in invasive bumble bees Santiago PLISCHUK1,*, Karina ANTÚNEZ2, Marina HARAMBOURE1, Graciela M. MINARDI1, and Carlos E. LANGE1,3 1 Centro de Estudios Parasitológicos y de Vectores (CONICET – UNLP). La Plata, Argentina. 2 Instituto de Investigaciones Biológicas “Clemente Estable”. Montevideo, Uruguay. 3 Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Argentina. *Corresponding author: S. Plischuk. CEPAVE, Boulevard 120 # 1460 (B1902CHX) La Plata, Argentina. Tel./Fax: (0054) 0221 423 2140. E-mail: [email protected] Running title: Pathogens in invasive bumble bees This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi: 10.1111/1758-2229.12520 This article is protected by copyright. All rights reserved. Page 2 of 15 Summary An initial survey in 2009 carried out at a site in northwestern Patagonia region, Argentina, revealed for the first time in South America the presence of the flagellate Crithidia bombi and the neogregarine Apicystis bombi, two pathogens associated with the Palaearctic invasive bumble bee Bombus terrestris. In order to determine the long- term persistence and dynamics of this microparasite complex, four additional collections at the same site (San Carlos de Bariloche) were conducted along the following seven years. Both protists were detected in all collections: prevalence was 2% - 21.6% for C. bombi and 1.2% - 14% for A.
    [Show full text]