Coversheet for Thesis in Sussex Research Online

Total Page:16

File Type:pdf, Size:1020Kb

Coversheet for Thesis in Sussex Research Online A University of Sussex DPhil thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details Information gathering and conflict resolution in Polistes wasps Jonathan Philip Green Submitted for the degree of Doctor of Philosophy University of Sussex September 2011 ii Declaration The design and data collection for the study presented in Chapter 4 were undertaken in collaboration with Dr. Elli Leadbeater at the Institute of Zoology and Professor Jeremy Field at the University of Sussex. However, the particular analyses undertaken in that chapter, as well as the interpretations drawn from the data, are my own. I certify that, with the above qualification, the work carried out in this thesis is entirely my own, and that any help provided by other individuals with data collection and analysis is fully acknowledged. In addition, I certify that this thesis has not been, and will not be, submitted in whole or in part to another university for the award of any other degree. Signature: Jonathan Philip Green iii UNIVERISTY OF SUSSEX JONATHAN PHILIP GREEN, DOCTOR OF PHILOSOPHY INFORMATION GATHERING AND CONFLICT RESOLUTION IN POLISTES WASPS SUMMARY Signals are used to communicate resource-holding potential (RHP) to rivals during contests across a wide range of taxa. A controversial subset of RHP signals are status signals. In the last decade, research on North American populations of the paper wasp Polistes dominulus has provided evidence for a visual status signal based on variable clypeal patterns. However, observations of P. dominulus in its native European range indicate that the use of status signals across populations might be limited in this species. In Part I of this thesis (Chapters 3-5), I investigate status signalling in a Spanish population of P. dominulus. Using choice experiments, I show that clypeal patterns do not signal RHP in the Spanish population. Using large-scale field observations and microsatellite sequencing, I then show that patterns do not reflect individual quality in the wild. Together, these results strongly suggest that the clypeal pattern does not function in conflict resolution in the Spanish population. I conclude Part I by exploring the development of the clypeal patterns. I show that pattern expression is strongly temperature-dependent. This finding may provide an explanation for the variation in the signal value of clypeal patterns between populations. Contests among paper wasps are not limited to conspecific interactions, but may involve interactions with social parasites. In Parts II and III of this thesis (Chapters 6-7), I explore interactions between P. dominulus and the social parasite P. semenowi in the contexts of nest usurpation and conflict over reproduction. By experimentally staging usurpation contests, I show that neither parasites nor hosts gather information about rivals during nest usurpation. I then compare reproduction in parasitised and unparasitised colonies to test the predictions of competing models of reproductive skew. Incomplete control models receive qualified support; however, assumptions of skew models about players’ information gathering abilities are questioned. iv Publications arising from this thesis First-authored publications: Green, J. P. & Field, J. 2011. Assessment between species: information gathering in usurpation contests between a paper wasp and its social parasite. Animal Behaviour, 81, 1263-1269. Green, J. P. & Field, J. 2011. Inter-population variation in status signalling in the paper wasp Polistes dominulus. Animal Behaviour, 81, 205-209. In the course of my doctoral research, I have contributed to studies led by colleagues in the Social Evolution Research Group, which has resulted in shared authorship of the following papers: Leadbeater, E., Carruthers, J. M., Green, J. P., van Heusden, J. & Field, J. Unrelated helpers in a primitively eusocial wasp: is helping tailored towards direct fitness? Plos One, 5, e11997. Leadbeater, E., Carruthers, J. M., Green, J. P., Rosser, N. & Field, J. 2011. Nest inheritance is the missing source of direct fitness in a primitively eusocial insect. Science, 333, 874-876. Copies of all four publications are included at the end of this thesis as supporting material (see Appendix D). v Acknowledgements Many thanks are due first to my supervisor Jeremy Field for his guidance and support at all stages of my DPhil research. I am grateful to Jeremy in particular for his infectious enthusiasm and curiosity about evolution and natural history and for his rigorous approach to experimental design and analysis, which I hope is also catching. My sincere thanks also to other members of the Social Evolution Research Group at Sussex. Catherine Burton and Eric Lucas did much to help me settle in during my first year, and I thank them both for their kindness, generosity and excellent humour. Elli Leadbeater has been a wonderful friend and colleague during her time at Sussex. Elli has been unfailingly generous in offering guidance and help and has always been happy to give advice on any aspect of my work. Moreover, Elli’s resourcefulness and gift for organisation was of enormous benefit to me while on field work, while her vivacity and drive encouraged me to get the most out of my experience abroad. It has likewise been an absolute pleasure to work alongside Jon Carruthers, who is a true friend. Modest, funny and wise, Jon has kept me entertained while working tirelessly in the lab to assist with data collection. Finally, my thanks to Roger Schürch, who joined the group towards the end of my DPhil, thereby cleverly avoiding the majority of my questions, but has nonetheless graciously allowed me to pester him about statistical issues. To all in the Research Group, thank you. Elsewhere in Sussex, I have enjoyed the support, humour and good company of a number of people. Romain Blanc-Mathieu, Tomer Czaczkes, Adam Eyre-Walker, David Fisher Barham, Alan Hodgkinson, Lauren Holt, Sam Jones, Camilla Liscio, Eduardo Medina Bárcenas, Citlalli Morelos Juárez, Stephanie Murphy, Hannah Pratt, Lynne Robinson, Alan Stewart, Nina Stoletzki, Sam Valbonesi and Lucas Wilkins have all in their own way done much to make Sussex a stimulating and enjoyable place to work. I am also grateful to Tim Roper, who has been a wonderful second supervisor, generously providing help and advice when needed. My time at Sussex and my postgraduate experience has been enriched immeasurably through my friendship with Mike Clease and Sarah Zylinski. For all the lively discussion, adventures, Saturday Guardian crosswords and so much more besides I thank them. vi A number of people graciously gave their time to provide help with data collection and analysis, while others provided useful comments on drafts of the experimental chapters. Chapter 1. Jasper van Heusden provided several photographs for use in the figures. Chapter 2. Daniel Osorio generously provided the spectrometer and Sarah Zylinski provided technical support. Chapter 3. Rosie Foster and Elli Leadbeater assisted with data collection. Mark Briffa and Elizabeth Tibbetts provided critical feedback on a published version of the chapter. Chapter 4. Jon Carruthers, Jeremy Field, Elli Leadbeater, Thibault Lengronne and Neil Rosser assisted with data collection. Juan Miguel Mancera Romero and members of his lab generously provided storage facilities in Spain. Jon Carruthers and Jasper van Heusden assisted with DNA extraction and amplification of the microsatellites, and staff at the NERC Biomolecular Analysis Facility sequenced the microsatellites. Mike Clease helped with the image analysis. Eric Lucas and Lorenzo Zanette generously provided help with writing the simulations used in the data analysis. Elli Leadbeater provided useful comments on an earlier draft of the chapter. Chapter 5. Martyn Stenning and Julia Horwood provided technical support and Neil Crickmore and Elizabeth Hill kindly provided lab space. Charles Rose assisted with data collection and Naomi Ewald advised on data analysis. Tomer Czaczkes, Rosie Foster and Elli Leadbeater provided helpful comments on an earlier draft on the chapter. Chapter 6. Rosie Foster and Elli Leadbeater assisted with data collection. Elizabeth Tibbetts provided suggestions on an earlier version of the chapter, while Mark Briffa and Rob Elwood provided helpful feedback on a published version of the chapter. Chapter 7. Juan Miguel Mancera Romero and members of his lab provided storage facilities in Spain. Charlotte Aukett, Olga Drazan and Jeremy Field assisted with data collection. Edd Almond generously provided video footage. Jon Carruthers assisted with DNA extraction and amplification of the microsatellites, and staff at the NERC Biomolecular Analysis Facility sequenced the microsatellites. vii For helpful discussions and suggestions at various stages I also thank the following people: Margaret Couvillon, Innes Cuthill, Jon Endler, Richard Gill, Christoph Greuter, Simon Griffith, David Harper, Alexander Hayward, Marian Wong, Amotz Zahavi and Jelle van Zweden. Elsewhere, I am deeply grateful to Zoltan Ács and his family for hosting me during my fieldwork in Hungary, and for generously fuelling my wasp collecting trips with fantastic quantities of food and wine. Finally, I am deeply grateful to Rosie and to my family for their unwavering support and help at all stages of my DPhil. Rosie’s patience and understanding during the final stages of writing up, as well as her kindness, her generosity and her uniquely motivating style (‘Keep on writing! Keep on writing!’) have meant, and continue to mean, a great deal to me. My grandma and my sister have been wonderfully supportive throughout, and have always been there for a good chat.
Recommended publications
  • Sensory and Cognitive Adaptations to Social Living in Insect Societies Tom Wenseleersa,1 and Jelle S
    COMMENTARY COMMENTARY Sensory and cognitive adaptations to social living in insect societies Tom Wenseleersa,1 and Jelle S. van Zwedena A key question in evolutionary biology is to explain the solitarily or form small annual colonies, depending upon causes and consequences of the so-called “major their environment (9). And one species, Lasioglossum transitions in evolution,” which resulted in the pro- marginatum, is even known to form large perennial euso- gressive evolution of cells, organisms, and animal so- cial colonies of over 400 workers (9). By comparing data cieties (1–3). Several studies, for example, have now from over 30 Halictine bees with contrasting levels of aimed to determine which suite of adaptive changes sociality, Wittwer et al. (7) now show that, as expected, occurred following the evolution of sociality in insects social sweat bee species invest more in sensorial machin- (4). In this context, a long-standing hypothesis is that ery linked to chemical communication, as measured by the evolution of the spectacular sociality seen in in- the density of their antennal sensillae, compared with sects, such as ants, bees, or wasps, should have gone species that secondarily reverted back to a solitary life- hand in hand with the evolution of more complex style. In fact, the same pattern even held for the socially chemical communication systems, to allow them to polymorphic species L. albipes if different populations coordinate their complex social behavior (5). Indeed, with contrasting levels of sociality were compared (Fig. whereas solitary insects are known to use pheromone 1, Inset). This finding suggests that the increased reliance signals mainly in the context of mate attraction and on chemical communication that comes with a social species-recognition, social insects use chemical sig- lifestyle indeed selects for fast, matching adaptations in nals in a wide variety of contexts: to communicate their sensory systems.
    [Show full text]
  • Apoidea (Insecta: Hymenoptera). Fauna of New Zealand 57, 295 Pp. Donovan, B. J. 2007
    Donovan, B. J. 2007: Apoidea (Insecta: Hymenoptera). Fauna of New Zealand 57, 295 pp. EDITORIAL BOARD REPRESENTATIVES OF L ANDCARE R ESEARCH Dr D. Choquenot Landcare Research Private Bag 92170, Auckland, New Zealand Dr R. J. B. Hoare Landcare Research Private Bag 92170, Auckland, New Zealand REPRESENTATIVE OF UNIVERSITIES Dr R.M. Emberson c/- Bio-Protection and Ecology Division P.O. Box 84, Lincoln University, New Zealand REPRESENTATIVE OF M USEUMS Mr R.L. Palma Natural Environment Department Museum of New Zealand Te Papa Tongarewa P.O. Box 467, Wellington, New Zealand REPRESENTATIVE OF OVERSEAS I NSTITUTIONS Dr M. J. Fletcher Director of the Collections NSW Agricultural Scientific Collections Unit Forest Road, Orange NSW 2800, Australia * * * SERIES EDITOR Dr T. K. Crosby Landcare Research Private Bag 92170, Auckland, New Zealand Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 57 Apoidea (Insecta: Hymenoptera) B. J. Donovan Donovan Scientific Insect Research, Canterbury Agriculture and Science Centre, Lincoln, New Zealand [email protected] Manaaki W h e n u a P R E S S Lincoln, Canterbury, New Zealand 2007 4 Donovan (2007): Apoidea (Insecta: Hymenoptera) Copyright © Landcare Research New Zealand Ltd 2007 No part of this work covered by copyright may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying, recording, taping information retrieval systems, or otherwise) without the written permission of the publisher. Cataloguing in publication Donovan, B. J. (Barry James), 1941– Apoidea (Insecta: Hymenoptera) / B. J. Donovan – Lincoln, N.Z. : Manaaki Whenua Press, Landcare Research, 2007. (Fauna of New Zealand, ISSN 0111–5383 ; no.
    [Show full text]
  • Systematics of Polistes (Hymenoptera: Vespidae), with a Phylogenetic Consideration of Hamilton’S Haplodiploidy Hypothesis
    Ann. Zool. Fennici 43: 390–406 ISSN 0003-455X Helsinki 29 December 2006 © Finnish Zoological and Botanical Publishing Board 2006 Systematics of Polistes (Hymenoptera: Vespidae), with a phylogenetic consideration of Hamilton’s haplodiploidy hypothesis Kurt M. Pickett*, James M. Carpenter & Ward C. Wheeler Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10023, USA * Current address: Department of Biology, University of Vermont, Room 120A Marsh Life Science Building, 109 Carrigan Drive, Burlington, VT 05405, USA Received 30 Nov. 2005, revised version received 21 Nov. 2006, accepted 4 May 2006 Pickett, K. M., Carpenter, J. M. & Wheeler, W. C. 2006: Systematics of Polistes (Hymenoptera: Vespidae), with a phylogenetic consideration of Hamilton’s haplodiploidy hypothesis. — Ann. Zool. Fennici 43: 390–406. A review of previously published cladistic analyses of Polistes is presented. The two most recent analyses of Polistes are shown to be largely consistent phylogenetically. Although the taxonomy implied by each differs, this difference is shown to be mostly due to taxon sampling. After the review, a phylogenetic analysis of Polistes — the most data-rich yet undertaken — is presented. The analysis includes new data and the data from previously published analyses. The differing conclusions of the previous studies are discussed in light of the new analysis. After discussing the status of subge- neric taxonomy in Polistes, the new phylogeny is used to test an important hypothesis regarding the origin of social behavior: the haplodiploidy hypothesis of Hamilton. Prior phylogenetic analyses so while these studies achieved their goal, with within Polistes resolutions leading to rejection of Emery’s Rule, they had little to say about broader phylogenetic Cladistic analysis of species-level relationships patterns within the genus.
    [Show full text]
  • A New Species of the Paper Wasp Genus Polistes (Hymenoptera, Vespidae, Polistinae) in Europe Revealed by Morphometrics and Molecular Analyses
    A peer-reviewed open-access journal ZooKeys 400:A 67–118new species (2014) of the paper wasp genus Polistes (Hymenoptera, Vespidae, Polistinae)... 67 doi: 10.3897/zookeys.400.6611 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research A new species of the paper wasp genus Polistes (Hymenoptera, Vespidae, Polistinae) in Europe revealed by morphometrics and molecular analyses Rainer Neumeyer1,†, Hannes Baur2,‡, Gaston-Denis Guex3,§, Christophe Praz4,| 1 Probsteistrasse 89, CH-8051 Zürich, Switzerland 2 Abteilung Wirbellose Tiere, Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, CH-3005 Bern, Switzerland 3 Institute of Evolutionary Biology and Environmental Studies, Field Station Dätwil, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland 4 Evolutionary Entomology, Institute of Biology, University of Neuchatel, Emile-Argand 11, CH-2000 Neuchâtel, Switzerland † http://zoobank.org/B0BFC898-8FDF-4E01-8657-CBADE08292D3 ‡ http://zoobank.org/76BB8FCD-3EC9-4774-8FF3-194D57A8A905 § http://zoobank.org/D038CAA8-4662-4BD9-931A-C0FD5FC623D8 | http://zoobank.org/0718546C-5D1A-44D4-921C-C7EA0C11BE0A Corresponding author: Rainer Neumeyer ([email protected]) Academic editor: M. Buffington | Received 13 November 2013 | Accepted 18 March 2014 | Published 11 April 2014 http://zoobank.org/91DC4784-F49A-4353-B4C8-DC0F67B1EF92 Citation: Neumeyer R, Baur H, Guex G-D, Praz C (2014) A new species of the paper wasp genus Polistes (Hymenoptera, Vespidae, Polistinae) in Europe revealed by morphometrics and molecular analyses. ZooKeys 400: 67–118. doi: 10.3897/ zookeys.400.6611 Abstract We combine multivariate ratio analysis (MRA) of body measurements and analyses of mitochondrial and nuclear data to examine the status of several species of European paper wasps (Polistes Latreille, 1802) closely related to P.
    [Show full text]
  • Attack of the Yucca Bugs
    Kimberly Schofield Program Specialist-Urban IPM [email protected] Attack of the Yucca Bugs This year you many have noticed abundant numbers of yucca bugs, Haticotoma spp. (Hemiptera: Miridae), if you have yucca in your landscape. The adults are about ¼ inches in length with a red head and pronotum and grayish-black wings. The yucca bugs are usually found in large groups on the upper leaf surface and will tend to move quickly when disturbed. The immature stage or nymphal stage (those without wings), will also be present on the leaves. The yucca bugs have piercing sucking mouthparts so their feeding causes small pale spots or blotches on leaf surfaces where the green chlorophyll has been removed. Some control options for the immature stage include insecticidal soap or pyrethrins. Systemic insecticide products, such as those containing acephate, dinotefuran or imidacloprid, are also effective for control of these bugs. Haticotoma (Hemiptera: Miridae) species on yucca. Photo by Bart Drees, Professor and Extension Entomologist, Texas A&M University. Stinging Insects Are Active As the temperature warms and summer approaches, we will begin to see larger populations of wasps, including paper wasps, mud daubers and yellow jackets. There are two species of paper wasps, Polistes exclamans which is brown with yellow markings on the head, thorax and bands on the abdomen and Polistes carolina which is reddish-brown in color. Both have smoky colored wings and are ¾ to 1 inch in length. In the spring, the fertile queens find a nesting site and begin to build a nest. Paper wasp nests are composed of wood fibers that are chewed and formed into open hexagonal cells arranged in a comb- like shape.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • Morphology of Testicular and Post-Testicular Spermatozoa in Microstigmus Arlei Richards, 1972 and M
    Arthropod Structure & Development 36 (2007) 304e316 www.elsevier.com/locate/asd Morphology of testicular and post-testicular spermatozoa in Microstigmus arlei Richards, 1972 and M. nigrophthalmus Melo, 1992 (Hymenoptera: Apoidea: Pemphredoninae) with phylogenetic consideration Uyra´ Zama a,c, Jane Moreira b,Soˆnia Nair Ba´o a, Lucio Antonio de Oliveira Campos b, Heidi Dolder c, Jose´ Lino-Neto b,* a Departamento de Biologia Celular, Universidade de Brası´lia (UnB), Brası´lia, DF, Brazil b Departamento de Biologia Geral, Universidade Federal de Vic¸osa (UFV), 36571 000 Vic¸osa, MG, Brazil c Departamento de Biologia Celular, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil Received 23 June 2006; accepted 9 November 2006 Abstract The sperm of Microstigmus arlei and Microstigmus nigrophthalmus are twisted in a spiral and consist of two regions: the head, formed by an acrosome and a nucleus, and the flagellum, formed by two asymmetric mitochondrial derivatives, a long centriolar adjunct, an axoneme (9 þ 9 þ 2) and two accessory bodies. The head shows a characteristic morphology. The acrosome is very long and is basically made up of a para- crystalline structure. In the central head region, the acrosome is inserted into the nucleus, which is observed coiling laterally around the para- crystalline structure. In the subsequent part of the spermatozoon the nucleus appears round in transverse sections, and over some length it is still penetrated by the acrosome until shortly distal to the flagellar insertion. At this point the nucleus forms an inverted cone-shaped projection. These morphological characteristics of acrosome and nucleus of the Microstigmus wasp have not been previously described in Apoidea and are useful for phylogenetic evaluation of this superfamily.
    [Show full text]
  • Hymenoptera: Crabronidae)
    Paleontological Contributions Number 10I A new genus and species of pemphredonine wasp in Late Cretaceous Vendean amber (Hymenoptera: Crabronidae) Daniel J. Bennett, Vincent Perrichot, and Michael S. Engel December 1, 2014 Lawrence, Kansas, USA ISSN 1946-0279 (online) paleo.ku.edu/contributions Paleontological Contributions December 1, 2014 Number 10I A NEW GENUS AND SPECIES OF PEMPHREDONINE WASP IN LATE CRETACEOUS VENDEAN AMBER (HYMENOPTERA: CRABRONIDAE) Daniel J. Bennett1, Vincent Perrichot2,3,*, and Michael S. Engel3,4 1Department of Biology, Stephen F. Austin State University, P.O. Box 13003, SFA Station, Nacogdoches, Texas, 75962-3003, USA, ben- [email protected], 2CNRS UMR 6118 Géosciences & Observatoire des Sciences de l’Univers de Rennes, Université Rennes 1, 263 avenue du Général Leclerc, 35042 Rennes, France, [email protected], 3University of Kansas Biodiversity Institute, Division of Entomology (Paleoentomology), and 4Department of Ecology & Evolutionary Biology, University of Kansas, 1501 Crestline Drive – Suite 140, Lawrence, Kansas 66045, USA, [email protected] ABSTRACT A new genus and species of pemphredonine wasp is described and figured in Late Cretaceous (Cenomanian to Santonian) amber from Vendée, in northwestern France. Menopsila dupeae n. gen. and sp., is based on a partial male preserved in a small sliver of translucent amber. The genus is placed incertae sedis within the Pemphredonini, as it intermingles features, likely plesiomorphies, of various lineages within the tribe. It likely represents a stem group to one or more of the constituent subtribes, yet it is arguably most similar to the Spilomenina. Keywords: Insecta, Apoidea, Spheciformes, Pemphredoninae, Cretaceous, France RÉSUMÉ Un nouveau genre et une nouvelle espèce de guêpe pemphredonine sont décrits de l’ambre crétacé supérieur (Cénomanien à Santonien) de Vendée, nord-ouest de la France.
    [Show full text]
  • Download PDF ( Final Version , 2Mb )
    Eigen vangsten en leuke waarnemingen aanbijen en wespen in 1996 Theo+M.J. Peeters tevreden Al vóór het eind van het aculeatenseizoen was ik zeer over mijn vangsten en waarne- mingen in 1996. Bij het samenstellen van een lijst voor de rubriek ’leuke vangsten’ bleek deze te ben met alleen wel erg lang worden. Tevens ik niet zo gek op lijstjes maar vindplaats en datum! Daarom klim ik liever achter het scherm en tracht enkele gedachten op een rij te zetten het over mijn bijzondere ervaringen met betrekking tot afgelopen bijen- en wespenjaar. zullen deze Na de (voorlopige) dodencijfers van bijen en wespen in mijn collectie enkele van onder de ’leuke vangsten kort worden besproken. Andere vangsten zijn genoemd rubriek De de vangsten’ of in het verslag van de zomervergadering op Terschelling. rest van waarne- heb ik mingen en vangsten wordt elders gepubliceerd, bewaar ik voor een andere keer danwel niet nog op naam gebracht. Excursies excursies Evenals vorig jaar ben ik veelal samen met collega’s in het veld geweest. Naast de het naar Terschelling en de Millingerwaard waren dat weer verrukkelijke tochten zoals in Noordhollands Duinreservaat samen met Henny Wiering, de Amsterdamse Waterleidingduinen, Veghel en Isabellegreend samen met Pieter van Breugel, Schouwen, Tholen en Zuid-Beveland enkele met Mervyn Roos en Ede e.o. samen met Wijnand Heitmans. Daarnaast heb ik excusies gemaakt naar gebieden in de omgeving van mijn woonplaats Tilburg en tevens blijven mijn steeds ouderlijke thuishaven Thom en enkele terreinen in het Midden-Limburgse me nog die inmiddels in boeien. Dat leverde uiteraard een grote hoeveelheid aan gegevens grotendeels Alleen deel de en van het mijn computer zijn opgenomen.
    [Show full text]
  • Rote Liste Der Faltenwespen / 2013 / 1. Fassung
    Hessisches Ministerium für Umwelt, Energie, Landwirtschaft und Verbraucherschutz Rote Liste der Faltenwespen Hessens (Hymenoptera Vespidae: Eumeninae, Polistinae, Vespinae) Rote Liste der Faltenwespen Hessens (Hymenoptera Vespidae: Eumeninae, Polistinae, Vespinae) 1. Fassung (Stand 6. 6. 2013) Stefan Tischendorf, Karl-Heinz Schmalz, Hans-Joachim Flügel, Ulrich Frommer, Wolfgang H. O. Dorow, Franz Malec im Auftrag des Hessischen Ministeriums für Umwelt, Energie, Landwirtschaft und Verbraucherschutz (HMUELV). Inhaltsübersicht Zusammenfassung ................................................................................................. 3 Einleitung ................................................................................................................. 4 Faltenwespen .......................................................................................................... 5 Systematik ............................................................................................................ 5 Artenzahlen und Gefährdung in Deutschland ...................................................... 5 Lebensraum, Nistweise und Beutetiere ................................................................ 6 Stand der Erforschung der Faltenwespenfauna in Hessen .................................. 7 Material und Methoden ........................................................................................... 9 Grundlagen zur Einstufung nach BfN-Kriterien .................................................... 9 Kategorien und Eicharten ....................................................................................
    [Show full text]
  • Entomological Society of America
    ENTOMOLOGICAL SOCIETY OF AMERICA 10001 Derekwood Lane, Suite 100, Lanham, MD 20706-4876 Phone: (301) 731-4535 • Fax: (301) 731-4538 E-mail: [email protected] • http://www.entsoc.org Proposal Form for new Common Name or Change of ESA-Approved Common Name Complete this form and send or e-mail to the above address. Submissions will not be considered unless this form is filled out completely. The proposer is expected to be familiar with the rules, recommendations, and procedures outlined in the “Use and Submission of Common Names” on the ESA website and with the discussion by A.B. Gurney, 1953, Journal of Economic Entomology 46:207-211. 1. Proposed new common name: European paper wasp 2. Previously approved common name (if any): None 3. Scientific name (genus, species, author): Polistes dominula (Christ) Order: Hymenoptera Family: Vespidae Supporting Information 4. Reasons supporting the need for the proposed common name: Since its introduction into North America (ca. 1968 New Jersey, ca. 1976 Boston area), this vespid has become widespread throughout the northern half of the United States and southern Canada. It some locations it has become the dominant Polistes species and a very visible insect in yards and gardens. 5. Stage or characteristic to which the proposed common name refers: “Paper wasp” refers to its habit of constructing a multi-celled umbrella-form nest. This is typical of Polistes spp., including those currently recognized as “paper wasps” in the ESA Common Names listing (e.g., Polistes aurifer/golden paper wasp, Polistes olivaceous/Macao paper wasp). This insect is native to Europe and a recent colonizer of North America.
    [Show full text]
  • The Invasion of Two Species of Social Wasps (Hymenoptera, Vespidae) to the Faroe Islands
    BioInvasions Records (2019) Volume 8, Issue 3: 558–567 CORRECTED PROOF Rapid Communication The invasion of two species of social wasps (Hymenoptera, Vespidae) to the Faroe Islands Sjúrður Hammer1,* and Jens-Kjeld Jensen2 1Environment Agency, FO-165, Argir, Faroe Islands 2Í Geilini 37, FO-270 Nólsoy, Faroe Islands Author e-mails: [email protected] (SH), [email protected] (JKJ) *Corresponding author Citation: Hammer S and Jensen J-K (2019) The invasion of two species of Abstract social wasps (Hymenoptera, Vespidae) to the Faroe Islands. BioInvasions Records Two species of social wasps have established in the Faroe Islands in 1999 – common 8(3): 558–567, https://doi.org/10.3391/bir. wasp Vespula vulgaris and German wasp Vespula germanica. The population 2019.8.3.11 growth, and dispersal in the Faroes has been followed in detail through Received: 9 January 2019 correspondence and contact with local residents and authorities throughout the Accepted: 10 June 2019 Faroes. Collected wasps have been identified, and nest eradication data from the Published: 12 August 2019 local municipalities is also presented. In total there have been 1.222 nests located and destroyed, mostly in Tórshavn, where they were first introduced, but nests have Handling editor: Tim Adriaens also been found on neighbouring islands. Both the introduction and the spread Thematic editor: Stelios Katsanevakis within the Faroes suggest a strong relationship with human settlements and travel. Copyright: © Hammer S and Jensen J-K Social wasps have established on four out of 18 islands – all of which are This is an open access article distributed under terms connected by land, suggesting that their spread within the islands is also human of the Creative Commons Attribution License (Attribution 4.0 International - CC BY 4.0).
    [Show full text]