Social Insects: Are Ants Just Wingless Bees?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sensory and Cognitive Adaptations to Social Living in Insect Societies Tom Wenseleersa,1 and Jelle S
COMMENTARY COMMENTARY Sensory and cognitive adaptations to social living in insect societies Tom Wenseleersa,1 and Jelle S. van Zwedena A key question in evolutionary biology is to explain the solitarily or form small annual colonies, depending upon causes and consequences of the so-called “major their environment (9). And one species, Lasioglossum transitions in evolution,” which resulted in the pro- marginatum, is even known to form large perennial euso- gressive evolution of cells, organisms, and animal so- cial colonies of over 400 workers (9). By comparing data cieties (1–3). Several studies, for example, have now from over 30 Halictine bees with contrasting levels of aimed to determine which suite of adaptive changes sociality, Wittwer et al. (7) now show that, as expected, occurred following the evolution of sociality in insects social sweat bee species invest more in sensorial machin- (4). In this context, a long-standing hypothesis is that ery linked to chemical communication, as measured by the evolution of the spectacular sociality seen in in- the density of their antennal sensillae, compared with sects, such as ants, bees, or wasps, should have gone species that secondarily reverted back to a solitary life- hand in hand with the evolution of more complex style. In fact, the same pattern even held for the socially chemical communication systems, to allow them to polymorphic species L. albipes if different populations coordinate their complex social behavior (5). Indeed, with contrasting levels of sociality were compared (Fig. whereas solitary insects are known to use pheromone 1, Inset). This finding suggests that the increased reliance signals mainly in the context of mate attraction and on chemical communication that comes with a social species-recognition, social insects use chemical sig- lifestyle indeed selects for fast, matching adaptations in nals in a wide variety of contexts: to communicate their sensory systems. -
Hymenoptera: Philanthinae) Hunting for Different Prey Types
C. R. Biologies 335 (2012) 279–291 Contents lists available at SciVerse ScienceDirect Comptes Rendus Biologies ww w.sciencedirect.com Animal biology and pathology/Biologie et pathologie animales Antennal sensillar equipment in closely related predatory wasp species (Hymenoptera: Philanthinae) hunting for different prey types E´quipement sensoriel des antennes dans des espe`ces proches de gueˆpes pre´dateurs (Hymenoptera: Philanthinae), qui chassent des proies diffe´rentes a, b a Carlo Polidori *, Alberto Jorge Garcı´a , Jose´ L. Nieves-Aldrey a Departamento de Biodiversidad y Biologı´a Evolutiva, Museo Nacional de Ciencias Naturales, C/Jose´ Gutie´rrez Abascal 2, 28006 Madrid, Spain b Laboratorio de Microscopia, Museo Nacional de Ciencias Naturales, C/Jose´ Gutie´rrez Abascal 2, 28006 Madrid, Spain A R T I C L E I N F O A B S T R A C T Article history: Despite its potential value in phylogenetic and ecological studies, the morphology of Received 17 November 2011 antennal sensilla has rarely been compared quantitatively within the Apoidea. Here, Accepted after revision 19 March 2012 through a scanning electron microscopy analysis, we provide an inventory of different Available online 24 April 2012 types of antennal sensilla and compare their morphology across 10 species of predatory wasps (Crabronidae: Philanthinae) including species that hunt exclusively either on Keywords: beetles or on bees to feed their larvae. A sensilla-free area was found on the apical Hymenoptera flagellomer of all but two species, and its shape and size appear to be useful for separating Crabronidae Philanthini from Cercerini within the subfamily. A total of eight types of sensilla (sensilla Sensilla size placoidea, sensilla basiconica, two types of pit organs, sensilla coelocapitula and three Comparative morphology types of sensilla trichoidea) were found in all species, and an additional rarer type Prey selection (grooved peg sensilla) was found only in three bee-hunting species and for first time in the genus Cerceris. -
Coversheet for Thesis in Sussex Research Online
A University of Sussex DPhil thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details Information gathering and conflict resolution in Polistes wasps Jonathan Philip Green Submitted for the degree of Doctor of Philosophy University of Sussex September 2011 ii Declaration The design and data collection for the study presented in Chapter 4 were undertaken in collaboration with Dr. Elli Leadbeater at the Institute of Zoology and Professor Jeremy Field at the University of Sussex. However, the particular analyses undertaken in that chapter, as well as the interpretations drawn from the data, are my own. I certify that, with the above qualification, the work carried out in this thesis is entirely my own, and that any help provided by other individuals with data collection and analysis is fully acknowledged. In addition, I certify that this thesis has not been, and will not be, submitted in whole or in part to another university for the award of any other degree. Signature: Jonathan Philip Green iii UNIVERISTY OF SUSSEX JONATHAN PHILIP GREEN, DOCTOR OF PHILOSOPHY INFORMATION GATHERING AND CONFLICT RESOLUTION IN POLISTES WASPS SUMMARY Signals are used to communicate resource-holding potential (RHP) to rivals during contests across a wide range of taxa. -
Apoidea (Insecta: Hymenoptera). Fauna of New Zealand 57, 295 Pp. Donovan, B. J. 2007
Donovan, B. J. 2007: Apoidea (Insecta: Hymenoptera). Fauna of New Zealand 57, 295 pp. EDITORIAL BOARD REPRESENTATIVES OF L ANDCARE R ESEARCH Dr D. Choquenot Landcare Research Private Bag 92170, Auckland, New Zealand Dr R. J. B. Hoare Landcare Research Private Bag 92170, Auckland, New Zealand REPRESENTATIVE OF UNIVERSITIES Dr R.M. Emberson c/- Bio-Protection and Ecology Division P.O. Box 84, Lincoln University, New Zealand REPRESENTATIVE OF M USEUMS Mr R.L. Palma Natural Environment Department Museum of New Zealand Te Papa Tongarewa P.O. Box 467, Wellington, New Zealand REPRESENTATIVE OF OVERSEAS I NSTITUTIONS Dr M. J. Fletcher Director of the Collections NSW Agricultural Scientific Collections Unit Forest Road, Orange NSW 2800, Australia * * * SERIES EDITOR Dr T. K. Crosby Landcare Research Private Bag 92170, Auckland, New Zealand Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 57 Apoidea (Insecta: Hymenoptera) B. J. Donovan Donovan Scientific Insect Research, Canterbury Agriculture and Science Centre, Lincoln, New Zealand [email protected] Manaaki W h e n u a P R E S S Lincoln, Canterbury, New Zealand 2007 4 Donovan (2007): Apoidea (Insecta: Hymenoptera) Copyright © Landcare Research New Zealand Ltd 2007 No part of this work covered by copyright may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying, recording, taping information retrieval systems, or otherwise) without the written permission of the publisher. Cataloguing in publication Donovan, B. J. (Barry James), 1941– Apoidea (Insecta: Hymenoptera) / B. J. Donovan – Lincoln, N.Z. : Manaaki Whenua Press, Landcare Research, 2007. (Fauna of New Zealand, ISSN 0111–5383 ; no. -
Hymenoptera (Stinging Wasps)
Return to insect order home Page 1 of 3 Visit us on the Web: www.gardeninghelp.org Insect Order ID: Hymenoptera (Stinging Wasps) Life Cycle–Complete metamorphosis: Queens or solitary adults lay eggs. Larvae eat, grow and molt. This stage is repeated a varying number of times, depending on species, until hormonal changes cause the larvae to pupate. Inside a cell (in nests) or a pupal case (solitary), they change in form and color and develop wings. The adults look completely different from the larvae. Solitary wasps: Social wasps: Adults–Stinging wasps have hard bodies and most have membranous wings (some are wingless). The forewing is larger than the hindwing and the two are hooked together as are all Hymenoptera, hence the name "married wings," but this is difficult to see. Some species fold their wings lengthwise, making their wings look long and narrow. The head is oblong and clearly separated from the thorax, and the eyes are compound eyes, but not multifaceted. All have a cinched-in waist (wasp waist). Eggs are laid from the base of the ovipositor, while the ovipositor itself, in most species, has evolved into a stinger. Thus only females have stingers. (Click images to enlarge or orange text for more information.) Oblong head Compound eyes Folded wings but not multifaceted appear Cinched in waist long & narrow Return to insect order home Page 2 of 3 Eggs–Colonies of social wasps have at least one queen that lays both fertilized and unfertilized eggs. Most are fertilized and all fertilized eggs are female. Most of these become workers; a few become queens. -
Insects & Spiders of Kanha Tiger Reserve
Some Insects & Spiders of Kanha Tiger Reserve Some by Aniruddha Dhamorikar Insects & Spiders of Kanha Tiger Reserve Aniruddha Dhamorikar 1 2 Study of some Insect orders (Insecta) and Spiders (Arachnida: Araneae) of Kanha Tiger Reserve by The Corbett Foundation Project investigator Aniruddha Dhamorikar Expert advisors Kedar Gore Dr Amol Patwardhan Dr Ashish Tiple Declaration This report is submitted in the fulfillment of the project initiated by The Corbett Foundation under the permission received from the PCCF (Wildlife), Madhya Pradesh, Bhopal, communication code क्रम 車क/ तकनीकी-I / 386 dated January 20, 2014. Kanha Office Admin office Village Baherakhar, P.O. Nikkum 81-88, Atlanta, 8th Floor, 209, Dist Balaghat, Nariman Point, Mumbai, Madhya Pradesh 481116 Maharashtra 400021 Tel.: +91 7636290300 Tel.: +91 22 614666400 [email protected] www.corbettfoundation.org 3 Some Insects and Spiders of Kanha Tiger Reserve by Aniruddha Dhamorikar © The Corbett Foundation. 2015. All rights reserved. No part of this book may be used, reproduced, or transmitted in any form (electronic and in print) for commercial purposes. This book is meant for educational purposes only, and can be reproduced or transmitted electronically or in print with due credit to the author and the publisher. All images are © Aniruddha Dhamorikar unless otherwise mentioned. Image credits (used under Creative Commons): Amol Patwardhan: Mottled emigrant (plate 1.l) Dinesh Valke: Whirligig beetle (plate 10.h) Jeffrey W. Lotz: Kerria lacca (plate 14.o) Piotr Naskrecki, Bud bug (plate 17.e) Beatriz Moisset: Sweat bee (plate 26.h) Lindsay Condon: Mole cricket (plate 28.l) Ashish Tiple: Common hooktail (plate 29.d) Ashish Tiple: Common clubtail (plate 29.e) Aleksandr: Lacewing larva (plate 34.c) Jeff Holman: Flea (plate 35.j) Kosta Mumcuoglu: Louse (plate 35.m) Erturac: Flea (plate 35.n) Cover: Amyciaea forticeps preying on Oecophylla smargdina, with a kleptoparasitic Phorid fly sharing in the meal. -
A Preliminary Detective Survey of Hymenopteran Insects at Jazan Lake Dam Region, Southwest of Saudi Arabia
Saudi Journal of Biological Sciences 28 (2021) 2342–2351 Contents lists available at ScienceDirect Saudi Journal of Biological Sciences journal homepage: www.sciencedirect.com Original article A preliminary detective survey of hymenopteran insects at Jazan Lake Dam Region, Southwest of Saudi Arabia Hanan Abo El-Kassem Bosly 1 Biology Department - Faculty of Science - Jazan University, Saudi Arabia article info abstract Article history: A preliminary detective survey for the hymenopteran insect fauna of Jazan Lake dam region, Southwest Received 16 November 2020 Saudi Arabia, was carried out for one year from January 2018 to January 2019 using mainly sweep nets Revised 6 January 2021 and Malaise traps. The survey revealed the presence of three hymenopteran Superfamilies (Apoidea, Accepted 12 January 2021 Vespoidea and Evanioidea) representing 15 species belonging to 10 genera of 6 families (Apidae, Available online 28 January 2021 Crabronidae, Sphecidae, Vespidae, Mutillidae, and Evaniidae). The largest number of species has belonged to the family Crabronidae is represented by 6 species under 2 genera. While the family Apidae, is repre- Keywords: sented by 2 species under 2 genera. Family Vespidae is represented by 2 species of one genus. While, the Survey rest of the families Sphecidae, Mutillida, and Evaniidae each is represented by only one species and one Insect fauna Hymenoptera genus each. Eleven species are predators, two species are pollinators and two species are parasitics. Note Jazan for each family was provided, and species was provided with synonyms and general and taxonomic Saudi Arabia remarks and their worldwide geographic distribution and information about their economic importance are also included. -
Food Load Manipulation Ability Shapes Flight Morphology in Females Of
Polidori et al. Frontiers in Zoology 2013, 10:36 http://www.frontiersinzoology.com/content/10/1/36 RESEARCH Open Access Food load manipulation ability shapes flight morphology in females of central-place foraging Hymenoptera Carlo Polidori1*, Angelica Crottini2, Lidia Della Venezia3,5, Jesús Selfa4, Nicola Saino5 and Diego Rubolini5 Abstract Background: Ecological constraints related to foraging are expected to affect the evolution of morphological traits relevant to food capture, manipulation and transport. Females of central-place foraging Hymenoptera vary in their food load manipulation ability. Bees and social wasps modulate the amount of food taken per foraging trip (in terms of e.g. number of pollen grains or parts of prey), while solitary wasps carry exclusively entire prey items. We hypothesized that the foraging constraints acting on females of the latter species, imposed by the upper limit to the load size they are able to transport in flight, should promote the evolution of a greater load-lifting capacity and manoeuvrability, specifically in terms of greater flight muscle to body mass ratio and lower wing loading. Results: Our comparative study of 28 species confirms that, accounting for shared ancestry, female flight muscle ratio was significantly higher and wing loading lower in species taking entire prey compared to those that are able to modulate load size. Body mass had no effect on flight muscle ratio, though it strongly and negatively co-varied with wing loading. Across species, flight muscle ratio and wing loading were negatively correlated, suggesting coevolution of these traits. Conclusions: Natural selection has led to the coevolution of resource load manipulation ability and morphological traits affecting flying ability with additional loads in females of central-place foraging Hymenoptera. -
Comparative Methods Offer Powerful Insights Into Social Evolution in Bees Sarah Kocher, Robert Paxton
Comparative methods offer powerful insights into social evolution in bees Sarah Kocher, Robert Paxton To cite this version: Sarah Kocher, Robert Paxton. Comparative methods offer powerful insights into social evolution in bees. Apidologie, Springer Verlag, 2014, 45 (3), pp.289-305. 10.1007/s13592-014-0268-3. hal- 01234748 HAL Id: hal-01234748 https://hal.archives-ouvertes.fr/hal-01234748 Submitted on 27 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2014) 45:289–305 Review article * INRA, DIB and Springer-Verlag France, 2014 DOI: 10.1007/s13592-014-0268-3 Comparative methods offer powerful insights into social evolution in bees 1 2 Sarah D. KOCHER , Robert J. PAXTON 1Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA 2Institute for Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany Received 9 September 2013 – Revised 8 December 2013 – Accepted 2 January 2014 Abstract – Bees are excellent models for studying the evolution of sociality. While most species are solitary, many form social groups. The most complex form of social behavior, eusociality, has arisen independently four times within the bees. -
Morphology of Testicular and Post-Testicular Spermatozoa in Microstigmus Arlei Richards, 1972 and M
Arthropod Structure & Development 36 (2007) 304e316 www.elsevier.com/locate/asd Morphology of testicular and post-testicular spermatozoa in Microstigmus arlei Richards, 1972 and M. nigrophthalmus Melo, 1992 (Hymenoptera: Apoidea: Pemphredoninae) with phylogenetic consideration Uyra´ Zama a,c, Jane Moreira b,Soˆnia Nair Ba´o a, Lucio Antonio de Oliveira Campos b, Heidi Dolder c, Jose´ Lino-Neto b,* a Departamento de Biologia Celular, Universidade de Brası´lia (UnB), Brası´lia, DF, Brazil b Departamento de Biologia Geral, Universidade Federal de Vic¸osa (UFV), 36571 000 Vic¸osa, MG, Brazil c Departamento de Biologia Celular, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil Received 23 June 2006; accepted 9 November 2006 Abstract The sperm of Microstigmus arlei and Microstigmus nigrophthalmus are twisted in a spiral and consist of two regions: the head, formed by an acrosome and a nucleus, and the flagellum, formed by two asymmetric mitochondrial derivatives, a long centriolar adjunct, an axoneme (9 þ 9 þ 2) and two accessory bodies. The head shows a characteristic morphology. The acrosome is very long and is basically made up of a para- crystalline structure. In the central head region, the acrosome is inserted into the nucleus, which is observed coiling laterally around the para- crystalline structure. In the subsequent part of the spermatozoon the nucleus appears round in transverse sections, and over some length it is still penetrated by the acrosome until shortly distal to the flagellar insertion. At this point the nucleus forms an inverted cone-shaped projection. These morphological characteristics of acrosome and nucleus of the Microstigmus wasp have not been previously described in Apoidea and are useful for phylogenetic evaluation of this superfamily. -
Hymenoptera: Crabronidae)
Paleontological Contributions Number 10I A new genus and species of pemphredonine wasp in Late Cretaceous Vendean amber (Hymenoptera: Crabronidae) Daniel J. Bennett, Vincent Perrichot, and Michael S. Engel December 1, 2014 Lawrence, Kansas, USA ISSN 1946-0279 (online) paleo.ku.edu/contributions Paleontological Contributions December 1, 2014 Number 10I A NEW GENUS AND SPECIES OF PEMPHREDONINE WASP IN LATE CRETACEOUS VENDEAN AMBER (HYMENOPTERA: CRABRONIDAE) Daniel J. Bennett1, Vincent Perrichot2,3,*, and Michael S. Engel3,4 1Department of Biology, Stephen F. Austin State University, P.O. Box 13003, SFA Station, Nacogdoches, Texas, 75962-3003, USA, ben- [email protected], 2CNRS UMR 6118 Géosciences & Observatoire des Sciences de l’Univers de Rennes, Université Rennes 1, 263 avenue du Général Leclerc, 35042 Rennes, France, [email protected], 3University of Kansas Biodiversity Institute, Division of Entomology (Paleoentomology), and 4Department of Ecology & Evolutionary Biology, University of Kansas, 1501 Crestline Drive – Suite 140, Lawrence, Kansas 66045, USA, [email protected] ABSTRACT A new genus and species of pemphredonine wasp is described and figured in Late Cretaceous (Cenomanian to Santonian) amber from Vendée, in northwestern France. Menopsila dupeae n. gen. and sp., is based on a partial male preserved in a small sliver of translucent amber. The genus is placed incertae sedis within the Pemphredonini, as it intermingles features, likely plesiomorphies, of various lineages within the tribe. It likely represents a stem group to one or more of the constituent subtribes, yet it is arguably most similar to the Spilomenina. Keywords: Insecta, Apoidea, Spheciformes, Pemphredoninae, Cretaceous, France RÉSUMÉ Un nouveau genre et une nouvelle espèce de guêpe pemphredonine sont décrits de l’ambre crétacé supérieur (Cénomanien à Santonien) de Vendée, nord-ouest de la France. -
Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea) Zhiwei Liu Eastern Illinois University, [email protected]
Eastern Illinois University The Keep Faculty Research & Creative Activity Biological Sciences January 2007 Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea) Zhiwei Liu Eastern Illinois University, [email protected] Michael S. Engel University of Kansas, Lawrence David A. Grimaldi American Museum of Natural History Follow this and additional works at: http://thekeep.eiu.edu/bio_fac Part of the Biology Commons Recommended Citation Liu, Zhiwei; Engel, Michael S.; and Grimaldi, David A., "Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea)" (2007). Faculty Research & Creative Activity. 197. http://thekeep.eiu.edu/bio_fac/197 This Article is brought to you for free and open access by the Biological Sciences at The Keep. It has been accepted for inclusion in Faculty Research & Creative Activity by an authorized administrator of The Keep. For more information, please contact [email protected]. PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3583, 48 pp., 27 figures, 4 tables September 6, 2007 Phylogeny and Geological History of the Cynipoid Wasps (Hymenoptera: Cynipoidea) ZHIWEI LIU,1 MICHAEL S. ENGEL,2 AND DAVID A. GRIMALDI3 CONTENTS Abstract . ........................................................... 1 Introduction . ....................................................... 2 Systematic Paleontology . ............................................... 3 Superfamily Cynipoidea Latreille . ....................................... 3