Quantitative Inferences from the Lung Microbiome by Laura Tipton BA, University of Virginia, 2007 MS, George Washington Universi
Total Page:16
File Type:pdf, Size:1020Kb
Quantitative Inferences from the Lung Microbiome by Laura Tipton BA, University of Virginia, 2007 MS, George Washington University, 2011 Submitted to the Graduate Faculty of School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2016 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Laura Tipton It was defended on December 14, 2016 and approved by Penayiotis Benos, PhD, Department of Computational & Systems Biology Alison Morris, MD, MS, Department of Immunology Kyle Bibby, PhD, PE, Swanson School of Engineering, Civil and Environmental Engineering Kathryn Roeder, PhD, CMU Department of Statistics Dissertation Advisor: Elodie Ghedin, PhD, NYU Department of Biology ii Copyright © by Laura Tipton 2016 iii QUANTITATIVE INFERENCE FROM THE LUNG MICROBIOME Laura Tipton, PhD University of Pittsburgh, 2016 Within the last decade, we have progressed from the belief that the healthy human lung is a sterile environment to attempts to study inter-kingdom interactions between microbial residents of the lungs. It has been repeatedly confirmed that the lungs contain both bacteria, predominantly from the Streptococcus, Veillonella, and Prevotella genera, and fungi, predominantly from the Cladosporium, Eurotium, Penicillium, and Aspergillus genera. The community composition as a whole undergoes shifts in every lung disease and condition that has been studied, including asthma, chronic obstructive pulmonary disorder, and cystic fibrosis. The studies that have observed these shifts have largely been descriptive, comparing the taxonomies present in healthy lungs to taxonomies in diseased lungs. Here we investigated the lung microbiome and relationships within the microbial community and between microbes and the host in a more quantitative and inferential manner. First, we introduced the lasso-penalized generalized linear mixed model (LassoGLMM) for microbiomes. LassoGLMM was applied to a short time-course study of the human oral bacterial microbiome with standard blood chemical measurements and to repeated measurements of the human lung bacterial microbiome and fungal mycobiome with local and systemic markers of inflammation. We sought to show that increased inflammation and other continuous clinical variables in human hosts are associated with distinct microbes present in the lung or oral microbiomes. Then, we examined cross-domain interactions between bacteria and fungi. Ecological interaction networks were inferred for the human lung and skin micro- and myco-biomes. Networks limited to a single domain of life were compared with those that iv include both bacteria and fungi to identify important components of the microbial community that would be overlooked in a single domain study. Finally, we explored the metabolism of the bacteria within the human lung using three different “-omics” datasets: taxonomic assignments from 16S rRNA gene sequences, gene families from metatranscriptomic sequences, and mass-to- charge ratio (m/z) features from metabolomics. Correlations were examined between pairs of datasets and all three datasets were integrated to identify bacteria contributing metabolic processes that may have otherwise gone unnoticed, resulting in the first complete characterization of the metabolism of the human lung bacterial microbiome. v TABLE OF CONTENTS preface ......................................................................................................................................... xiii 1.0 Introduction .................................................................................................................. 1 1.1 Bacteria in the Lungs........................................................................................... 2 1.1.1 Bacteria During Disease .................................................................................. 5 1.2 Fungi in the Lungs ............................................................................................... 8 1.2.1 Why is the lung mycobiome important?........................................................ 8 1.2.2 What do we know about the lung mycobiome? .......................................... 10 1.3 Other Microbes in the Lungs ............................................................................ 15 1.4 Challenges to Studying the Lung Microbiome ................................................ 16 1.5 Future of Lung Microbiome Research ............................................................ 21 1.6 Overview ............................................................................................................. 23 2.0 Measuring associations between the microbiota and repeated measures of continuous clinical variables using a lasso-penalized generalized linear mixed model ........ 25 2.1 Background ........................................................................................................ 25 2.2 Methods .............................................................................................................. 29 2.2.1 Sequence Data Processing ............................................................................. 30 2.2.2 Variable Screening Step ................................................................................ 31 2.2.3 Lasso-Penalized Generalized Linear Mixed Model .................................... 33 vi 2.2.4 Evaluating Models ......................................................................................... 35 2.2.5 Dichotomous Methods ................................................................................... 36 2.2.6 Ethics approval and consent to participate ................................................. 36 2.2.7 Availability of data ........................................................................................ 37 2.3 Results ................................................................................................................. 37 2.3.1 Associations between Oral Bacteria and Laboratory Measurements ...... 37 2.3.2 Associations of Lung Bacteria and Fungi with Cytokines ......................... 43 2.3.3 Model Evaluation ........................................................................................... 47 2.3.4 Comparison to Categorical Methods ........................................................... 50 2.4 Discussion ........................................................................................................... 54 2.5 Conclusions ......................................................................................................... 56 3.0 Inferred Cross-Domain Interactions in the Lung and Skin Microbiomes ........... 58 3.1 Introduction........................................................................................................ 58 3.2 Results ................................................................................................................. 63 3.2.1 Lung Microbiome .......................................................................................... 64 3.2.2 Skin Microbiome............................................................................................ 71 3.2.3 Co-culture Validation .................................................................................... 74 3.3 Discussion ........................................................................................................... 77 3.4 Methods .............................................................................................................. 81 3.4.1 Adapting SPIEC-EASI for Two Domains ................................................... 81 3.4.2 Datasets ........................................................................................................... 84 3.4.3 Sample and sequence processing .................................................................. 87 3.4.4 Constructing Networks ................................................................................. 89 vii 3.4.5 Evaluating and Comparing Networks ......................................................... 90 3.4.6 Microbial Co-cultures ................................................................................... 90 3.4.7 Accession Numbers ........................................................................................ 92 4.0 Multi-omics Investigation of the Lung Microbiome ............................................... 93 4.1 Background ........................................................................................................ 93 4.2 Results ................................................................................................................. 95 4.2.1 Single datasets ................................................................................................ 95 4.2.2 Two datasets ................................................................................................. 103 4.2.2.1 Correlations ....................................................................................... 103 4.2.2.2 Taxonomic Composition Comparison ............................................. 105 4.2.2.3 KEGG Ontology Comparison .......................................................... 109 4.2.3 Three Datasets.............................................................................................. 117 4.2.3.1 Block Identification ........................................................................... 117 4.3 Discussion ........................................................................................................