Friedrich Hirzebruch (1927–2012)

Total Page:16

File Type:pdf, Size:1020Kb

Friedrich Hirzebruch (1927–2012) Friedrich Hirzebruch (1927–2012) Michael Atiyah and Don Zagier, Coordinating Editors riedrich Hirzebruch (universally known achievements. More detailed accounts will then as Fritz) died on May 27, 2012, at the age follow in the individual articles by the two coordi- of eighty-four. He was the outstanding nating editors, with the one by Atiyah concentrating German mathematician of the postwar on the work in topology and the years before 1970, years who helped to restore mathematics and the one by Zagier on the work in number F theory and the years after 1970. The subsequent in his country after the devastation of the Nazi era. Appointed at a very early age to a full professorship articles by the invited contributors describe further at the University of Bonn, he remained there for aspects of his personality, his scientific work, and the rest of his very active life and moved the the role that he played in the mathematical lives center of gravity of German mathematics from of many individuals, organizations, and countries. the traditional centers of Göttingen and Berlin *** to Bonn. The famous “Arbeitstagungs” (more properly Arbeitstagungen), which he established in Bonn in 1957, have been running annually or biannually ever since and are a focal point of mathematics worldwide. They carried his personal imprint in their content, attendance, and style, being always broad, topical, and informal and doing much to educate succeeding generations and to foster cross-fertilization. Many new ideas and collaborations grew out of these encounters. Another lasting contribution to mathematical research in Germany and in the world is the Max Planck Institute for Mathematics, which he founded, operating on the same lines and creating bonds between mathematicians from many countries, including those that were otherwise cut off from the international scene. Although Fritz, given his multiple roles, retired several times, he remained active till the very end and was preparing to attend a conference in his honor in Poland when he was struck down. In this introduction we will give an overview of Fritz’s life and of some of his most important Friedrich Hirzebruch in 2006 at the Max Planck Michael Atiyah is honorary mathematics professor at the Institute. University of Edinburgh. His email address is m.atiyah@ed. ac.uk. Friedrich Ernst Peter Hirzebruch was born Don Zagier is a scientific member at the Max Planck Insti- on October 17, 1927, in Hamm, Germany, to tute for Mathematics in Bonn and a professor at the Collège Dr. Fritz Hirzebruch and Martha Hirzebruch (née de France in Paris. His email address is don.zagier@ Holtschmit). His father, who was the headmaster of mpim-bonn.mpg.de. a secondary school and himself an inspiring teacher DOI: http://dx.doi.org/10.1090/noti1145 of mathematics, gave him his first introduction to 706 Notices of the AMS Volume 61, Number 7 the subject—including,p when he was nine years discussed in detail in the contribution by Michael old, the proof that 2 is irrational—and the love Atiyah. of it that was to last throughout his life. This period also in- Still a teenager, Fritz was drafted into the cluded three major German army during the final year of World War II, events in Fritz’s personal but his military career was mercifully short and life: his marriage to Inge he was never sent into combat, being assigned Spitzley in August 1952 instead to an antiaircraft battery with the task of just before taking the computing artillery trajectories. He was even able boat to Princeton, and to attend some scientific courses, though when the birth of his first two his commanding officer asked him on one such children, Ulrike (1953) occasion to confirm that winter and summer are and Barbara (1956). His caused by the earth’s varying distance to the sun third child, Michael, was and Fritz dared to contradict him, pointing out that born a little later, in 1958. then the seasons in Germany and Australia would Inge, known to and loved coincide, he was punished for insubordination. In by countless mathemati- the final months of the war the Americans put him cians, was a big part of Friedrich Hirzebruch into a prisoner of war camp, and even there he everything he built up during his life. Both of ca. 1985 in Bonn. managed to do mathematics (partly on toilet paper, his daughters later studied mathematics and still preserved today). He was released in July 1945 eventually worked in related areas (Ulrike in mathe- and entered Münster University that winter. matical publishing and Barbara as a schoolteacher), The city and the university lay in ruins and while Michael was to become a doctor. Ulrike’s conditions were very difficult, with lectures being contribution to this article gives us a vivid picture held only at long intervals, but he had very good of Fritz as a father. teachers, especially Heinrich Behnke, from whom When Fritz returned to Germany in 1956 to he learned the function theory of several complex take up his duties at his new chair in Bonn, he variables, and Behnke’s assistant, Karl Stein, a had a clear ambition and a mission: to establish a former pupil of his father’s. His third teacher was center that would attract mathematicians from all Heinz Hopf, a German who had gone to Switzerland over the world. After the First World War, German before the Nazi takeover and who invited the young mathematics had been ostracized by the interna- Fritz, first to be his house guest and then for one tional community, led by France. This lasted for and a half years to be a research student at the many years and embittered relations. Fortunately, ETH in Zürich. Fritz returned to Münster with the 1945 generation of French mathematicians, the essentials of a beautiful doctoral thesis about led by Henri Cartan, was more enlightened, and the resolution of certain singularities in complex prewar mathematical friendships were rapidly surfaces. Already this earliest work showed the renewed. The Münster school members under characteristics of all of his mathematics: elegance Heinrich Behnke were welcomed back into the field and brevity of thought and exposition, an effortless by Cartan, while Fritz, part of the Behnke team, synthesis of sophisticated theoretical ideas with insights inspired by nontrivial concrete examples, and the fusion of ideas from analysis, topology, and number theory. In 1952 came the development that was not only to be a turning point in Fritz’s mathematical career but, as it transpired, to have a major influence on the later development of mathematics in Germany and in Europe: he was invited to the IAS in Princeton, where he remained for two years. At the IAS, he came into contact with many of the most brilliant mathematicians and most exciting new ideas of the period and where he made the two discoveries with which his name is most strongly associated: the Signature Theorem and the Hirzebruch-Riemann-Roch Theorem. Those years and also the early years in Bonn, when Karl Stein, Reinhold Remmert, Friedrich the core of Fritz’s research was still in topology Hirzebruch, and Henri Cartan in the 1950s. and its applications to algebraic geometry, will be August 2014 Notices of the AMS 707 direction. With his Sonderforschungsbereich, he started the envisaged visitor program on a limited basis. This turned out to be so successful that when the support ended and Fritz applied for a takeover from the Max Planck Society, his project no longer met with the former reservations, and a permanent Max Planck Institute for Mathematics was founded in Bonn in 1981 and has been flourishing ever since. Through the Arbeitstagung, the Sonderforschungsbereich, and finally the Max Planck Institute, Fritz created an extensive visitor program that he guided with his many outstanding qualities: his personal tastes in mathematics were Friedrich Hirzebruch with Gerd Faltings in the broad and generous—he was no narrow specialist; MPIM Library ca. 2000. his international contacts were extensive; his efficiency became legendary; and above all, he encouraged an informal and friendly atmosphere, played a full role in this rapprochement. So with his far removed from the traditional rigidity of German Princeton contacts, including Kodaira from Japan academia. and the new talent emerging from Paris (Serre, After about 1970 the main thrust of Fritz’s Borel, Grothendieck, …), Fritz was well placed to mathematical work slowly moved from pure topol- reintegrate German mathematics into the world ogy and algebraic geometry to the connections community. Contacts with Britain came initially of these domains with number theory. They will via the Cambridge geometry school of Hodge and be discussed in more detail in the contribution Todd and later the younger generation (Atiyah, by Don Zagier. During these years he also be- Adams, Wall, …). The division of Germany and, came more and more active and influential in more generally, the cold war partition of Europe the development of mathematics, both nationally were particularly challenging, but Fritz spent many and internationally. These activities, which will years of his life forging links between East and be described in more detail later, included most West, including notably the German Democratic notably his unflagging efforts to build up relations Republic and the Soviet Union. with the countries of the Eastern Bloc, his many He achieved his goals remarkably quickly. At contributions to rehabilitating Germany’s image Bonn University he built up the mathematics after the years of the Third Reich and to creating department to a high level, doubling the number new scientific and human bonds with Israel, his two of full professors and attracting people such presidencies of the German Mathematical Union, as Klingenberg, Tits, Brieskorn, and Harder.
Recommended publications
  • Mathematical
    2-12 JULY 2011 MATHEMATICAL HOST AND VENUE for Students Jacobs University Scientific Committee Étienne Ghys (École Normale The summer school is based on the park-like campus of Supérieure de Lyon, France), chair Jacobs University, with lecture halls, library, small group study rooms, cafeterias, and recreation facilities within Frances Kirwan (University of Oxford, UK) easy walking distance. Dierk Schleicher (Jacobs University, Germany) Alexei Sossinsky (Moscow University, Russia) Jacobs University is an international, highly selective, Sergei Tabachnikov (Penn State University, USA) residential campus university in the historic Hanseatic Anatoliy Vershik (St. Petersburg State University, Russia) city of Bremen. It features an attractive math program Wendelin Werner (Université Paris-Sud, France) with personal attention to students and their individual interests. Jean-Christophe Yoccoz (Collège de France) Don Zagier (Max Planck-Institute Bonn, Germany; › Home to approximately 1,200 students from over Collège de France) 100 different countries Günter M. Ziegler (Freie Universität Berlin, Germany) › English language university › Committed to excellence in higher education Organizing Committee › Has a special program with fellowships for the most Anke Allner (Universität Hamburg, Germany) talented students in mathematics from all countries Martin Andler (Université Versailles-Saint-Quentin, › Venue of the 50th International Mathematical Olympiad France) (IMO) 2009 Victor Kleptsyn (Université de Rennes, France) Marcel Oliver (Jacobs University, Germany) For more information about the mathematics program Stephanie Schiemann (Freie Universität Berlin, Germany) at Jacobs University, please visit: Dierk Schleicher (Jacobs University, Germany) math.jacobs-university.de Sergei Tabachnikov (Penn State University, USA) at Jacobs University, Bremen The School is an initiative in the framework of the European Campus of Excellence (ECE).
    [Show full text]
  • Arithmetic Properties of the Herglotz Function
    ARITHMETIC PROPERTIES OF THE HERGLOTZ FUNCTION DANYLO RADCHENKO AND DON ZAGIER Abstract. In this paper we study two functions F (x) and J(x), originally found by Herglotz in 1923 and later rediscovered and used by one of the authors in connection with the Kronecker limit formula for real quadratic fields. We discuss many interesting properties of these func- tions, including special values at rational or quadratic irrational arguments as rational linear combinations of dilogarithms and products of logarithms, functional equations coming from Hecke operators, and connections with Stark's conjecture. We also discuss connections with 1-cocycles for the modular group PSL(2; Z). Contents 1. Introduction 1 2. Elementary properties 2 3. Functional equations related to Hecke operators 4 4. Special values at positive rationals 8 5. Kronecker limit formula for real quadratic fields 10 6. Special values at quadratic units 11 7. Cohomological aspects 15 References 18 1. Introduction Consider the function Z 1 log(1 + tx) (1) J(x) = dt ; 0 1 + t defined for x > 0. Some years ago, Henri Cohen 1 showed one of the authors the identity p p π2 log2(2) log(2) log(1 + 2) J(1 + 2) = − + + : 24 2 2 In this note we will give many more similar identities, like p π2 log2(2) p J(4 + 17) = − + + log(2) log(4 + 17) 6 2 arXiv:2012.15805v1 [math.NT] 31 Dec 2020 and p 2 11π2 3 log2(2) 5 + 1 J = + − 2 log2 : 5 240 4 2 We will also investigate the connection to several other topics, such as the Kronecker limit formula for real quadratic fields, Hecke operators, Stark's conjecture, and cohomology of the modular group PSL2(Z).
    [Show full text]
  • Arxiv:1402.0409V1 [Math.HO]
    THE PICARD SCHEME STEVEN L. KLEIMAN Abstract. This article introduces, informally, the substance and the spirit of Grothendieck’s theory of the Picard scheme, highlighting its elegant simplicity, natural generality, and ingenious originality against the larger historical record. 1. Introduction A scientific biography should be written in which we indicate the “flow” of mathematics ... discussing a certain aspect of Grothendieck’s work, indicating possible roots, then describing the leap Grothendieck made from those roots to general ideas, and finally setting forth the impact of those ideas. Frans Oort [60, p. 2] Alexander Grothendieck sketched his proof of the existence of the Picard scheme in his February 1962 Bourbaki talk. Then, in his May 1962 Bourbaki talk, he sketched his proofs of various general properties of the scheme. Shortly afterwards, these two talks were reprinted in [31], commonly known as FGA, along with his commentaries, which included statements of nine finiteness theorems that refine the single finiteness theorem in his May talk and answer several related questions. However, Grothendieck had already defined the Picard scheme, via the functor it represents, on pp.195-15,16 of his February 1960 Bourbaki talk. Furthermore, on p.212-01 of his February 1961 Bourbaki talk, he had announced that the scheme can be constructed by combining results on quotients sketched in that talk along with results on the Hilbert scheme to be sketched in his forthcoming May 1961 Bourbaki talk. Those three talks plus three earlier talks, which prepare the way, were also reprinted in [31]. arXiv:1402.0409v1 [math.HO] 3 Feb 2014 Moreover, Grothendieck noted in [31, p.
    [Show full text]
  • The Bloch-Wigner-Ramakrishnan Polylogarithm Function
    Math. Ann. 286, 613424 (1990) Springer-Verlag 1990 The Bloch-Wigner-Ramakrishnan polylogarithm function Don Zagier Max-Planck-Insfitut fiir Mathematik, Gottfried-Claren-Strasse 26, D-5300 Bonn 3, Federal Republic of Germany To Hans Grauert The polylogarithm function co ~n appears in many parts of mathematics and has an extensive literature [2]. It can be analytically extended to the cut plane ~\[1, ~) by defining Lira(x) inductively as x [ Li m_ l(z)z-tdz but then has a discontinuity as x crosses the cut. However, for 0 m = 2 the modified function O(x) = ~(Liz(x)) + arg(1 -- x) loglxl extends (real-) analytically to the entire complex plane except for the points x=0 and x= 1 where it is continuous but not analytic. This modified dilogarithm function, introduced by Wigner and Bloch [1], has many beautiful properties. In particular, its values at algebraic argument suffice to express in closed form the volumes of arbitrary hyperbolic 3-manifolds and the values at s= 2 of the Dedekind zeta functions of arbitrary number fields (cf. [6] and the expository article [7]). It is therefore natural to ask for similar real-analytic and single-valued modification of the higher polylogarithm functions Li,. Such a function Dm was constructed, and shown to satisfy a functional equation relating D=(x-t) and D~(x), by Ramakrishnan E3]. His construction, which involved monodromy arguments for certain nilpotent subgroups of GLm(C), is completely explicit, but he does not actually give a formula for Dm in terms of the polylogarithm. In this note we write down such a formula and give a direct proof of the one-valuedness and functional equation.
    [Show full text]
  • All That Math Portraits of Mathematicians As Young Researchers
    Downloaded from orbit.dtu.dk on: Oct 06, 2021 All that Math Portraits of mathematicians as young researchers Hansen, Vagn Lundsgaard Published in: EMS Newsletter Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Hansen, V. L. (2012). All that Math: Portraits of mathematicians as young researchers. EMS Newsletter, (85), 61-62. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Editorial Obituary Feature Interview 6ecm Marco Brunella Alan Turing’s Centenary Endre Szemerédi p. 4 p. 29 p. 32 p. 39 September 2012 Issue 85 ISSN 1027-488X S E European M M Mathematical E S Society Applied Mathematics Journals from Cambridge journals.cambridge.org/pem journals.cambridge.org/ejm journals.cambridge.org/psp journals.cambridge.org/flm journals.cambridge.org/anz journals.cambridge.org/pes journals.cambridge.org/prm journals.cambridge.org/anu journals.cambridge.org/mtk Receive a free trial to the latest issue of each of our mathematics journals at journals.cambridge.org/maths Cambridge Press Applied Maths Advert_AW.indd 1 30/07/2012 12:11 Contents Editorial Team Editors-in-Chief Jorge Buescu (2009–2012) European (Book Reviews) Vicente Muñoz (2005–2012) Dep.
    [Show full text]
  • Analysis in Complex Geometry
    1946-4 School and Conference on Differential Geometry 2 - 20 June 2008 Analysis in Complex Geometry Shing-Tung Yau Harvard University, Dept. of Mathematics Cambridge, MA 02138 United States of America Analysis in Complex Geometry Shing-Tung Yau Harvard University ICTP, June 18, 2008 1 An important question in complex geometry is to char- acterize those topological manifolds that admit a com- plex structure. Once a complex structure is found, one wants to search for the existence of algebraic or geo- metric structures that are compatible with the complex structure. 2 Most geometric structures are given by Hermitian met- rics or connections that are compatible with the com- plex structure. In most cases, we look for connections with special holonomy group. A connection may have torsion. The torsion tensor is not well-understood. Much more research need to be done especially for those Hermitian connections with special holonomy group. 3 Karen Uhlenbeck Simon Donaldson By using the theorem of Donaldson-Uhlenbeck-Yau, it is possible to construct special holonomy connections with torsion. Their significance in relation to complex or algebraic structure need to be explored. 4 K¨ahler metrics have no torsion and their geometry is very close to that of algebraic geometry. Yet, as was demonstrated by Voisin, there are K¨ahler manifolds that are not homotopy equivalent to any algebraic manifolds. The distinction between K¨ahler and algebraic geometry is therefore rather delicate. Erich K¨ahler 5 Algebraic geometry is a classical subject and there are several natural equivalences of algebraic manifolds: bi- rational equivalence, biregular equivalence, and arith- metic equivalence.
    [Show full text]
  • Programme & Information Brochure
    Programme & Information 6th European Congress of Mathematics Kraków 2012 6ECM Programme Coordinator Witold Majdak Editors Agnieszka Bojanowska Wojciech Słomczyński Anna Valette Typestetting Leszek Pieniążek Cover Design Podpunkt Contents Welcome to the 6ECM! 5 Scientific Programme 7 Plenary and Invited Lectures 7 Special Lectures and Session 10 Friedrich Hirzebruch Memorial Session 10 Mini-symposia 11 Satellite Thematic Sessions 12 Panel Discussions 13 Poster Sessions 14 Schedule 15 Social events 21 Exhibitions 23 Books and Software Exhibition 23 Old Mathematical Manuscripts and Books 23 Art inspired by mathematics 23 Films 25 6ECM Specials 27 Wiadomości Matematyczne and Delta 27 Maths busking – Mathematics in the streets of Kraków 27 6ECM Medal 27 Coins commemorating Stefan Banach 28 6ECM T-shirt 28 Where to eat 29 Practical Information 31 6ECM Tourist Programme 33 Tours in Kraków 33 Excursions in Kraków’s vicinity 39 More Tourist Attractions 43 Old City 43 Museums 43 Parks and Mounds 45 6ECM Organisers 47 Maps & Plans 51 Honorary Patron President of Poland Bronisław Komorowski Honorary Committee Minister of Science and Higher Education Barbara Kudrycka Voivode of Małopolska Voivodship Jerzy Miller Marshal of Małopolska Voivodship Marek Sowa Mayor of Kraków Jacek Majchrowski WELCOME to the 6ECM! We feel very proud to host you in Poland’s oldest medieval university, in Kraków. It was in this city that the Polish Mathematical Society was estab- lished ninety-three years ago. And it was in this country, Poland, that the European Mathematical Society was established in 1991. Thank you very much for coming to Kraków. The European Congresses of Mathematics are quite different from spe- cialized scientific conferences or workshops.
    [Show full text]
  • Life and Work of Friedrich Hirzebruch
    Jahresber Dtsch Math-Ver (2015) 117:93–132 DOI 10.1365/s13291-015-0114-1 HISTORICAL ARTICLE Life and Work of Friedrich Hirzebruch Don Zagier1 Published online: 27 May 2015 © Deutsche Mathematiker-Vereinigung and Springer-Verlag Berlin Heidelberg 2015 Abstract Friedrich Hirzebruch, who died in 2012 at the age of 84, was one of the most important German mathematicians of the twentieth century. In this article we try to give a fairly detailed picture of his life and of his many mathematical achievements, as well as of his role in reshaping German mathematics after the Second World War. Mathematics Subject Classification (2010) 01A70 · 01A60 · 11-03 · 14-03 · 19-03 · 33-03 · 55-03 · 57-03 Friedrich Hirzebruch, who passed away on May 27, 2012, at the age of 84, was the outstanding German mathematician of the second half of the twentieth century, not only because of his beautiful and influential discoveries within mathematics itself, but also, and perhaps even more importantly, for his role in reshaping German math- ematics and restoring the country’s image after the devastations of the Nazi years. The field of his scientific work can best be summed up as “Topological methods in algebraic geometry,” this being both the title of his now classic book and the aptest de- scription of an activity that ranged from the signature and Hirzebruch-Riemann-Roch theorems to the creation of the modern theory of Hilbert modular varieties. Highlights of his activity as a leader and shaper of mathematics inside and outside Germany in- clude his creation of the Arbeitstagung,
    [Show full text]
  • Oberwolfach Jahresbericht Annual Report 2008 Herausgeber / Published By
    titelbild_2008:Layout 1 26.01.2009 20:19 Seite 1 Oberwolfach Jahresbericht Annual Report 2008 Herausgeber / Published by Mathematisches Forschungsinstitut Oberwolfach Direktor Gert-Martin Greuel Gesellschafter Gesellschaft für Mathematische Forschung e.V. Adresse Mathematisches Forschungsinstitut Oberwolfach gGmbH Schwarzwaldstr. 9-11 D-77709 Oberwolfach-Walke Germany Kontakt http://www.mfo.de [email protected] Tel: +49 (0)7834 979 0 Fax: +49 (0)7834 979 38 Das Mathematische Forschungsinstitut Oberwolfach ist Mitglied der Leibniz-Gemeinschaft. © Mathematisches Forschungsinstitut Oberwolfach gGmbH (2009) JAHRESBERICHT 2008 / ANNUAL REPORT 2008 INHALTSVERZEICHNIS / TABLE OF CONTENTS Vorwort des Direktors / Director’s Foreword ......................................................................... 6 1. Besondere Beiträge / Special contributions 1.1 Das Jahr der Mathematik 2008 / The year of mathematics 2008 ................................... 10 1.1.1 IMAGINARY - Mit den Augen der Mathematik / Through the Eyes of Mathematics .......... 10 1.1.2 Besuch / Visit: Bundesministerin Dr. Annette Schavan ............................................... 17 1.1.3 Besuche / Visits: Dr. Klaus Kinkel und Dr. Dietrich Birk .............................................. 18 1.2 Oberwolfach Preis / Oberwolfach Prize ....................................................................... 19 1.3 Oberwolfach Vorlesung 2008 .................................................................................... 27 1.4 Nachrufe ..............................................................................................................
    [Show full text]
  • EMS Newsletter September 2012 1 EMS Agenda EMS Executive Committee EMS Agenda
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY Editorial Obituary Feature Interview 6ecm Marco Brunella Alan Turing’s Centenary Endre Szemerédi p. 4 p. 29 p. 32 p. 39 September 2012 Issue 85 ISSN 1027-488X S E European M M Mathematical E S Society Applied Mathematics Journals from Cambridge journals.cambridge.org/pem journals.cambridge.org/ejm journals.cambridge.org/psp journals.cambridge.org/flm journals.cambridge.org/anz journals.cambridge.org/pes journals.cambridge.org/prm journals.cambridge.org/anu journals.cambridge.org/mtk Receive a free trial to the latest issue of each of our mathematics journals at journals.cambridge.org/maths Cambridge Press Applied Maths Advert_AW.indd 1 30/07/2012 12:11 Contents Editorial Team Editors-in-Chief Jorge Buescu (2009–2012) European (Book Reviews) Vicente Muñoz (2005–2012) Dep. Matemática, Faculdade Facultad de Matematicas de Ciências, Edifício C6, Universidad Complutense Piso 2 Campo Grande Mathematical de Madrid 1749-006 Lisboa, Portugal e-mail: [email protected] Plaza de Ciencias 3, 28040 Madrid, Spain Eva-Maria Feichtner e-mail: [email protected] (2012–2015) Society Department of Mathematics Lucia Di Vizio (2012–2016) Université de Versailles- University of Bremen St Quentin 28359 Bremen, Germany e-mail: [email protected] Laboratoire de Mathématiques Newsletter No. 85, September 2012 45 avenue des États-Unis Eva Miranda (2010–2013) 78035 Versailles cedex, France Departament de Matemàtica e-mail: [email protected] Aplicada I EMS Agenda .......................................................................................................................................................... 2 EPSEB, Edifici P Editorial – S. Jackowski ........................................................................................................................... 3 Associate Editors Universitat Politècnica de Catalunya Opening Ceremony of the 6ECM – M.
    [Show full text]
  • Life and Work of Egbert Brieskorn (1936-2013)
    Life and work of Egbert Brieskorn (1936 – 2013)1 Gert-Martin Greuel, Walter Purkert Brieskorn 2007 Egbert Brieskorn died on July 11, 2013, a few days after his 77th birthday. He was an impressive personality who left a lasting impression on anyone who knew him, be it in or out of mathematics. Brieskorn was a great mathematician, but his interests, knowledge, and activities went far beyond mathematics. In the following article, which is strongly influenced by the authors’ many years of personal ties with Brieskorn, we try to give a deeper insight into the life and work of Brieskorn. In doing so, we highlight both his personal commitment to peace and the environment as well as his long–standing exploration of the life and work of Felix Hausdorff and the publication of Hausdorff ’s Collected Works. The focus of the article, however, is on the presentation of his remarkable and influential mathematical work. The first author (GMG) has spent significant parts of his scientific career as a arXiv:1711.09600v1 [math.AG] 27 Nov 2017 graduate and doctoral student with Brieskorn in Göttingen and later as his assistant in Bonn. He describes in the first two parts, partly from the memory of personal cooperation, aspects of Brieskorn’s life and of his political and social commitment. In addition, in the section on Brieskorn’s mathematical work, he explains in detail 1Translation of the German article ”Leben und Werk von Egbert Brieskorn (1936 – 2013)”, Jahresber. Dtsch. Math.–Ver. 118, No. 3, 143-178 (2016). 1 the main scientific results of his publications.
    [Show full text]
  • Science Lives: Video Portraits of Great Mathematicians
    Science Lives: Video Portraits of Great Mathematicians accompanied by narrative profiles written by noted In mathematics, beauty is a very impor- mathematics biographers. tant ingredient… The aim of a math- Hugo Rossi, director of the Science Lives project, ematician is to encapsulate as much as said that the first criterion for choosing a person you possibly can in small packages—a to profile is the significance of his or her contribu- high density of truth per unit word. tions in “creating new pathways in mathematics, And beauty is a criterion. If you’ve got a theoretical physics, and computer science.” A beautiful result, it means you’ve got an secondary criterion is an engaging personality. awful lot identified in a small compass. With two exceptions (Atiyah and Isadore Singer), the Science Lives videos are not interviews; rather, —Michael Atiyah they are conversations between the subject of the video and a “listener”, typically a close friend or colleague who is knowledgeable about the sub- Hearing Michael Atiyah discuss the role of beauty ject’s impact in mathematics. The listener works in mathematics is akin to reading Euclid in the together with Rossi and the person being profiled original: You are going straight to the source. The to develop a list of topics and a suggested order in quotation above is taken from a video of Atiyah which they might be discussed. “But, as is the case made available on the Web through the Science with all conversations, there usually is a significant Lives project of the Simons Foundation. Science amount of wandering in and out of interconnected Lives aims to build an archive of information topics, which is desirable,” said Rossi.
    [Show full text]