Eastern North Sea Basin, Denmark)

Total Page:16

File Type:pdf, Size:1020Kb

Eastern North Sea Basin, Denmark) Palaeogeography, Palaeoclimatology, Palaeoecology 411 (2014) 267–280 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Discrepancy between Sr isotope and biostratigraphic datings of the upper middle and upper Miocene successions (Eastern North Sea Basin, Denmark) Tor Eidvin a,⁎, Clemens Vinzenz Ullmann b, Karen Dybkjær c, Erik Skovbjerg Rasmussen c, Stefan Piasecki d a Norwegian Petroleum Directorate (NPD), Professor Olav Hanssens vei 10, P. O. Box 600, N-4003, Norway b University of Copenhagen, Department of Geosciences and Natural Resource Management, Section of Geology, IGN, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark c Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350, Copenhagen K, Denmark d Geological Museum, Natural History Museum of Denmark, Øster Voldgade 5-7, DK-1350, Copenhagen K, Denmark article info abstract Article history: One hundred and fifty-six 87Sr/86Sr analyses have been performed on 129 samples from 18 outcrops and bore- Received 6 February 2014 holes in Oligocene–Miocene deposits from Jylland, Denmark. These analyses were mainly conducted on mollusc Received in revised form 19 June 2014 shells but foraminiferal tests, Bolboforma and one shark tooth were also analysed. Accepted 6 July 2014 The main purpose of the study is to compare the ages of the Danish succession suggested by the biostratigraphic Available online 18 July 2014 zonation on dinoflagellate cysts (Dybkjær and Piasecki, 2010) with the ages based on analyses of the 87Sr/86Sr composition of marine calcareous fossils in the same succession. Keywords: Strontium isotope stratigraphy Analyses of samples from the Danish Brejning, Vejle Fjord, Klintinghoved, Arnum, Odderup, Hodde, Ørnhøj and Danish Upper Oligocene–Miocene succession Gram formations gave ages between 25.7 My (late Oligocene) and 10.3 My (late Miocene). The Sr isotope ages from the lower part of the succession, i.e. Brejning to Odderup formations, agree with the age estimates based on biostratigraphy. However, the 87Sr/86Sr ratios of fossil carbonates from the middle–upper Miocene, Hodde to Gram succession consistently indicate ages older than those recorded by biostratigraphy. Post-depositional process- es as an explanation for this offset are inconsistent with good preservation of shell material and little reworking. A palaeoenvironmental cause for the observed mismatch is therefore indicated. Search for geological events that could explain the older ages obtained by Sr isotope compositions have not led to any conclusions and we had recognised the same problem in earlier reports and communications. We conclude that this is a general and possibly global, middle–late Miocene problem that has to be reconsidered and explained geologically. © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). 1. Introduction Fennoscandian Shield, led to increased sediment transport from the north (present-day Finland, Sweden and particularly Norway). This re- In Jylland (Denmark), uppermost Paleogene and Neogene sediments sulted in deposition of extensive, fluvio-deltaic sand systems intercalat- occur below the glacial deposits over large areas (Fig. 1). Outcrops ed with marine clay in the eastern North Sea Basin including the present representing uppermost Oligocene and Miocene occur along the east day Jylland (Rasmussen, 2004; Rasmussen et al., 2010). A new drilling coast of Jylland, in the Limfjorden area and in clay-, coal- and sandpits programme was initiated by the county authorities and the geology in the southern and middle part of Jylland. In 1999, a Danish national was re-interpreted by the Geological Survey of Denmark and Greenland programme was initiated, aiming to map all major subsurface reservoirs (GEUS; e.g. Rasmussen et al., 2004; Rasmussen et al., 2010). It includes for drinking water (aquifers). The most important aquifers in this part of detailed sedimentological and log-interpretations of new stratigraphic Jylland are sand layers deposited in the early to middle Miocene boreholes and interpretation of high-resolution seismic data. More (Dybkjær and Piasecki, 2010; Rasmussen et al., 2010) when global cli- than 50 boreholes (including some offshore boreholes) and about matic variations and major sea-level changes (Zachos et al., 2001; twenty-five outcrops have been studied palynologically (Fig. 1). Fossil Miller et al., 2005), combined with uplift of the southern part of the dinoflagellate cysts (dinocysts) occur in nearly all of the deposits. The palynological studies have resulted in a dinocyst zonation scheme of – ⁎ Corresponding author. Tel.: +47 51876473. nineteen dinocyst zones spanning from the Oligocene Miocene transi- E-mail address: [email protected] (T. Eidvin). tion to the Pliocene (Dybkjær and Piasecki, 2010). http://dx.doi.org/10.1016/j.palaeo.2014.07.005 0031-0182/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). 268 T. Eidvin et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 411 (2014) 267–280 Boreholes/wells 100 km German Basin (also southern Jylland), Laursen and Kristoffersen (1999) Exposures have established a detailed foraminiferal biostratigraphy of the Miocene Frida-1 Ribe and Måde groups based on examination of the foraminiferal and Studied localities Jylland Lone-1 North Sea Bolboforma contents in marine clay from 18 onshore boreholes. 50 km S-1 Tove-1 2. Material and methods 57°N Limfjorden Sweden 2.1. Material Salling 87Sr/86Sr ratios of 143 samples from 18 localities were obtained Lyby Strand (Fig. 1; Table 1); 54 of these samples were from the Rødding well, Harre-1 Denmark DGUnr. 141.1141. The analyses were carried out mainly on fragments Præstbjerg of mollusc shells, tests of foraminifera and one sample was a shark tooth (Table 1). Bolboforma are a group of calcareous microscopic fossils Fasterholt Jylland of uncertain affinity, probably algae. They have stratigraphic value in the 55°N Eocene to Pliocene, but especially in the middle and upper Miocene. The Sdr. Vium Jensgård recently collected shell material was supplemented with mollusc shells Fakkegrav Dykær picked from the collection of Leif Banke Rasmussen, stored at the Geo- Vejle Fjord logical Museum in Copenhagen (Rasmussen, 1966, 1968). Føvling Brejning Bøgeskov Sjælland 2.2. Methods Gram-2 Rødding Fyn Gram The analytical work was executed by the Mass Spectrometry Labora- 53°NLille Tønde tory at the University of Bergen, Norway. All Sr isotope ratios were nor- Hørup Hav malised to 86Sr/88Sr = 0.1194 and to the National Institute for Standard Klintinghoved and Technology (NIST) SRM 987 = 0.710248 (McArthur et al., 2001). Germany Reproducibility of the methodology is estimated to be 0.000023 (2 sd, 8°E 10°E 12°E n = 239) by multiple measurements of NIST SRM 987 between 2008 and 2012. Sr isotope values were converted to age estimates using the Fig. 1. Map of onshore and offshore Denmark showing wells, boreholes and outcrops Strontium isotope stratigraphy Look-Up Table Version 4: 08/04 analysed for dinoflagellate cysts (Dybkjær and Piasecki, 2010), Bolboforma and foraminifera (Eidvin et al., 2013d) and showing the sites where shell material has been Sr dated. Small cir- (Howarth and McArthur, 2004). See also Eidvin and Rundberg (2001, cles: outcrops and boreholes which formed the basis for the dinocyst study (Dybkjær and 2007) and Eidvin et al. (2013d) for more details about the method. Piasecki, 2010). Large circles: outcrops and boreholes which formed the basis for the dinocyst The correlative dinoflagellate stratigraphy in this study is based on study (Dybkjær and Piasecki, 2010) as well as the present Sr isotope study. the 2004 time-scale (Gradstein et al., 2004) and consequently the ages from Sr isotope values have been correlated with the Look-Up The succession is well dated by dinocyst biostratigraphy. Strati- Table Version 4: 08/04. graphic events in the Danish succession are correlated with correspond- ing events e.g. in DSDP/ODP/IODP cores from the North Atlantic region 3. Geological setting and integrated with biostratigraphy, palaeomagnetic stratigraphy, ra- diometric dating and Sr isotope stratigraphy. However, long distance The Norwegian–Danish Basin is confined by the Fennoscandian Shield correlation from the North Sea region to events in the North Atlantic re- in the north and the Fennoscandian Border Zone also known as the gion may introduce uncertainties in the precision. With the purpose of Sorgenfrei–Tornquist Zone in the northeast. In the south, the elucidating this uncertainty, Sr isotope dating on selected shell material Ringkøbing-Fyn High separates the Norwegian–Danish Basin from from the Danish Miocene succession has been performed on the same the North German Basin. The deepest part of the basin is located in the well and outcrop samples as the dinocyst investigations. The results of west, bordering the Central Graben (Ziegler, 1990; Rasmussen et al., these analyses form the basis of this contribution. 2005). The basin was formed during a period of Permian rift tectonism Strontium isotope stratigraphy (SIS) is a very useful tool for chrono- (Ziegler, 1982, 1990; Berthelsen, 1992). Thick, coarse-grained, delta fan stratigraphic control. The 87Sr/86Sr ratio of seawater is very uniform on a deposits were laid down during the rift event.
Recommended publications
  • Isthminia Panamensis, a New Fossil Inioid (Mammalia, Cetacea) from the Chagres Formation of Panama and the Evolution of ‘River Dolphins’ in the Americas
    Isthminia panamensis, a new fossil inioid (Mammalia, Cetacea) from the Chagres Formation of Panama and the evolution of ‘river dolphins’ in the Americas Nicholas D. Pyenson1,2, Jorge Velez-Juarbe´ 3,4, Carolina S. Gutstein1,5, Holly Little1, Dioselina Vigil6 and Aaron O’Dea6 1 Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA 2 Departments of Mammalogy and Paleontology, Burke Museum of Natural History and Culture, Seattle, WA, USA 3 Department of Mammalogy, Natural History Museum of Los Angeles County, Los Angeles, CA, USA 4 Florida Museum of Natural History, University of Florida, Gainesville, FL, USA 5 Comision´ de Patrimonio Natural, Consejo de Monumentos Nacionales, Santiago, Chile 6 Smithsonian Tropical Research Institute, Balboa, Republic of Panama ABSTRACT In contrast to dominant mode of ecological transition in the evolution of marine mammals, different lineages of toothed whales (Odontoceti) have repeatedly invaded freshwater ecosystems during the Cenozoic era. The so-called ‘river dolphins’ are now recognized as independent lineages that converged on similar morphological specializations (e.g., longirostry). In South America, the two endemic ‘river dolphin’ lineages form a clade (Inioidea), with closely related fossil inioids from marine rock units in the South Pacific and North Atlantic oceans. Here we describe a new genus and species of fossil inioid, Isthminia panamensis, gen. et sp. nov. from the late Miocene of Panama. The type and only known specimen consists of a partial skull, mandibles, isolated teeth, a right scapula, and carpal elements recovered from Submitted 27 April 2015 the Pina˜ Facies of the Chagres Formation, along the Caribbean coast of Panama.
    [Show full text]
  • Cenozoic Palaeogeography and Isochores Predating the Neogene Exhumation of the Eastern North Sea Basin
    Cenozoic palaeogeography and isochores predating the Neogene exhumation of the eastern North Sea Basin Peter Japsen, Erik S. Rasmussen, Paul F. Green, Lars Henrik Nielsen and Torben Bidstrup Denmark is a key region for studies of the Cenozoic develop- maximum burial during the Cenozoic occurred prior to the ment of Scandinavia because Paleocene to Upper Miocene sed- early Neogene exhumation phase. iments crop out across the country and because it is possible to Late Neogene exhumation began between 10 and 5 Ma correlate these occurrences with the up to 3 km thick Cenozoic ago according to the AFTA data from e.g. the Års-1 and succession of the North Sea Basin. However, the reason why Felicia-1 wells. Only one sample limits the onset of this phase the Cenozoic deposits occur close to the surface of the Earth in to begin before 5 Ma, and the onset of the exhumation prob- Denmark is that the sediments have been exhumed from their ably began in the early Pliocene at c. 4 Ma as suggested by the cover of younger rocks. This implies that a reconstruction of prominent unconformity of this age. After 4 Ma significant the Cenozoic development across Denmark – involving both progradation from Scandinavia into the North Sea Basin and burial and exhumation – must rely on sedimentological and increased subsidence in the central North Sea were initiated. seismic studies of preserved sediments as well as on physical A section of 450–850 m was removed in the central part of the parameters that may yield evidence of the postdepositional his- Norwegian–Danish Basin in association with this reshaping tory of the sediments now at the surface.
    [Show full text]
  • Miocene Leatherback Turtle Material of the Genus Psephophorus (Testudines: Dermochelyoidea) from the Gram Formation (Denmark)
    ISSN: 0211-8327 Studia Palaeocheloniologica IV: pp. 205-216 MIOCENE LEATHERBACK TURTLE MATERIAL OF THE GENUS PSEPHOPHORUS (TESTUDINES: DERMOCHELYOIDEA) FROM THE GRAM FORMATION (DENMARK) [Tortugas de cuero miocénicas del género Psephophorus (Testudines: Dermochelyoidea) de la Formación Gram (Dinamarca)] Hans-Volker KARL 1,2, Bent E. K. LINDOW 3 & Thomas TÜT K EN 4 1 Thüringisches Landesamt für Denkmalpflege und Archäologie (TLDA). Humboldtstr. 11. D-99423, Weimar, Germany. Email: [email protected] 2c\o Geobiology, Center of Earth Sciences at the University of Göttingen. Goldschmidtstraße 3. DE-37077 Göttingen, Germany 3 Natural History Museum of Denmark. University of Copenhagen. Øster Voldgade 5-7. DK-1350 Copenhagen K, Denmark. Email: [email protected] 4 Emmy Noether-Gruppe “Knochengeochemie”. Steinmann Institut für Geologie, Mineralogie und Paläontologie. Arbeitsbereich Mineralogie-Petrologie. Rheinische Friedrich-Wilhelms-Universität Bonn. Poppelsdorfer Schloß. 53115 Bonn, Germany. (FECHA DE RECEPCIÓN: 2011-01-12) BIBLID [0211-8327 (2012) Vol. espec. 9; 205-216] ABSTRACT: Several specimens of fossil leatherback turtle from the upper Miocene (Tortonian) Gram Formation are described and illustrated scientifically for the first time. The specimens are all referred to the taxon Psephophorus polygonus and constitute the northernmost occurrence of this taxon in the geological record. Additionally, they indicate that leatherback turtles were a common constituent of the marine fauna of the Late Miocene North Sea Basin. Key words: Testudines, Psephophorus, Miocene, Gram Formation, Denmark. RESUMEN: Se describen y figuran por primera vez algunos ejemplares de tortugas de cuero fósiles del Mioceno superior (Tortoniense) de la Formación Gram, en © Ediciones Universidad de Salamanca Studia Palaeocheloniologica IV (Stud. Geol. Salmant.
    [Show full text]
  • Geological Survey of Denmark and Greenland Bulletin 12, 73-77
    Frida-1 GR Sonic Fig. 62. Frida-1, reference well for the Freja Member. Black bar shows m cored section. 1400 1487.7 ber in the Inez-1 well (shown as unnamed sandstones in 1500 Fig. 2); these sandstones may be contemporaneous or even contiguous with those of the Freja Member. However, confident correlation on the basis of log and seismic data Lark Fm is not possible at present. Freja Mb Acknowledgements Aage Bach Sørensen (GEUS) is thanked for help with 1600 seismic interpretations. Yvonne Desezar, Johnny E. Hansen and Birthe Amdrup are thanked for preparation of mi- 1623.5 crofossil and palynology samples. The referees Robert W.O’B. Knox (British Geological Survey) and Paul van Veen (ConocoPhilips Norway) are thanked for their con- structive criticism of the manuscript; the editorial contri- butions of Adam A. Garde, Jon R. Ineson and Martin Sønderholm are gratefully acknowledged. This work was made possible through grants from the Danish Energy 1700 Authority, under the Energy Research Project Framework 2000. References Ahmadi, Z.M., Sawyers, M., Kenyon-Roberts, S., Stanworth, C.W., Aubry, M.-P. et al. 2002: Proposal: Global Standard Stratotype-section Kugler, K.A., Kristensen, J. & Fugelli, E.M.G. 2003: Paleocene. In: and Point (GSSP) at the Dababiya section (Egypt) for the base of Evans, D. et al. (eds): The millenium atlas: petroleum geology of the the Eocene Series, 58 pp. Unpublished report, International Sub- central and northern North Sea, 235–259. London: Geological commision on Paleogene Stratigraphy. Society. Aubry, M.-P. et al. 2003: Chronostratigraphic terminology at the Paleo- Armentrout, J.M., Malecek, S.J., Fearn, L.B., Sheppard, C.E., Nayler, cene/Eocene boundary.
    [Show full text]
  • Investigation of Oligocene to Lower Pliocene Deposits in the Nordic
    Investigation of Oligocene to Lower Pliocene deposits in the Nordic NPD Bulletin 10 offshore area and onshore Denmark (Including interactive maps and diagrams) Oligocene to Pliocene well and borehole database and Oligocene to Lower Pliocene sandy deposits (Please note that well, borehole and prole numbers are linked to descriptions and gures) 0˚ LEGEND 9° 18˚ Wells and boreholes in the data base Other wells/boreholes investigated by the NPD Shelf break N (mainly without Oligocene - Miocene) Wells/boreholes investigated by other companies/institutions Hutton sand (Upper Oligocene/Lower Miocene - Upper Pliocene) Utsira Formation (Upper Miocene - Lower Pliocene) ? ? 4° Upper Miocene - Lower Pliocene part of the Molo Formation Skade Formation (Lower Miocene) Lower Miocene part of the Molo Formation Lower Miocene (Burdigalian - early Langhian) delta sand (Denmark) 6704/12-GB1 6610/3-1 6610/2-1 S Lowermost Miocene (Aquitanian) delta sand (Denmark) 6607/5-2 6609/5-1 6607/5-1 P13 6610/7-2 Oligocene to Pliocene well, borehole and outcrop data base Oligocene sands P12 Oligocene part of the Molo Formation 6610/7-1 Lower Oligocene argillaceous wedge unit 6609/11-1 North Sea Oligocene play (NOL-1) according to the NPD. 6510/2-1 6508/5-1 P11 Possible drainage route to Oligocene- Miocene deposit 6507/12-1 P10 Based on onshore morphology and offshore deposition patterns 49-23 6403/5-GB-1 6407/9-2 64˚ 6407/9-1 Based on provenance studies, onshore 6407/9-5 morphology and offshore 6404/11-1 deposition patterns Svalbard 6305/4-1 Forlandsundet 6305/5-1 Present water divide Paleo water divide ODP Site 986 Areas with abundant river captures SWEDEN 36/1-2 P9 Bjørnøya 35/2-1 34/2-4 35/3-1 34/4-6 G r e e n l a n d 34/7-1 34/4-7 34/8-1 34/8-3 A 34/7-R-1 H 34/7-2 P8 34/7-12 P7a 35/11-1 Shetland 34/10-17 35/11-14 S 7316/5-1 29/3-1 Fig.
    [Show full text]
  • Geology of the North Sea and Skagerrak, :; Aarhus University, 1993 :
    JL-y VJ XJ GEOLOGICAL SURVEY OF DENMARK SERIES C* NO. 12 C)<cO ZB ZZ (V£Sr ■ ZiH - - Z‘-iOh, "T-rTF Proceedings of the1V- 2nd SymposraniQn:||||||;,v Marine Geology V ■ - . *•••'• ■ ' rw- . ■ "it. : , - Geology of the North Sea and Skagerrak, :; Aarhus University, 1993 : - EDITOR ,2 ## OLAF MICHELSEN - -. M-r U "■Kv-T-L-. ...L- . ■••■;••• ■. T; •: MAS Uffsa ^iaai %iTH!BUT:GN OF CCCL^EHT :S U^.;,RTTL Miljo- og Energiministeriet • Kobenhavn 1995 Ministry of Environment and Energy • Copenhagen 1995 r vjjdwjuwivajl SURVEY UE DENMARK « SERIES C NO. 12 Proceedings of the 2nd Symposium on Marine Geology: Geology of the North Sea and Skagerrak, Aarhus Universitet, 1993 RED AKT0R / EDITOR OLAF MICHELSEN K Miljp- og Energiministeriet • Kpbenhavn 1995 Ministry of Environment and Energy • Copenhagen 1995 JJtTtUGEOLOGICAL SURVEY OF DENMARK SERIES C NO. 12 Proceedings of the 2nd Symposium on Marine Geology: Geology of the North Sea and Skagerrak, Aarhus Universitet, 1993 RED AKT0R / EDITOR OLAF MICHELSEN Miljp- og Energiministeriet • Kpbenhavn 1995 Ministry of Environment and Energy • Copenhagen 1995 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Proceedings of the 2nd Symposium on Marine Geology: Geology of the North Sea and Skagerrak Aarhus Universitet, 1993 Editor: Olaf Michelsen Contents Preface ............................................................................................................................... 4 Authors addresses ............................................................................................................. 5 Origin of a deep buried valley system in Pleistocene deposits of the eastern North Sea. Inger Salomonsen......................................................... 7 Mid-Miocene progradational barrier island and back-barrier deposits, central Jylland, Denmark. S0ren A. V. Nielsen and Lars H. Nielsen............................................................................. 21 Tertiary fluvial deposits of Jylland, Addit area.
    [Show full text]
  • Lithostratigraphy of the Palaeogene–Lower Neogene Succession of The
    GEOLOGICAL SURVEY OF DENMARK AND GREENLAND BULLETIN 12 · 2007 Lithostratigraphy of the Palaeogene – Lower Neogene succession of the Danish North Sea Poul Schiøler, Jan Andsbjerg, Ole R. Clausen, Gregers Dam, Karen Dybkjær, Lars Hamberg, Claus Heilmann-Clausen, Erik P. Johannessen, Lars E. Kristensen, Iain Prince and Jan A. Rasmussen GEOLOGICAL SURVEY OF DENMARK AND GREENLAND DANISH MINISTRY OF THE ENVIRONMENT 1 Geological Survey of Denmark and Greenland Bulletin 12 Keywords Lithostratigraphy, biostratigraphy, North Sea Basin, Palaeogene, Neogene. Cover Complex fabric created by multiple small-scale sand intrusions (light) into dark mudstones – such enigmatic fabrics are commonly associated with the sand-rich units of the Rogaland Group in the Siri Canyon area, offshore Denmark. The illustrated section of core is about 10 cm across and is from the lower Tyr Member (Lista Formation) in the Cecilie-1B well (2346.8 m). Photograph: Jakob Lautrup. Chief editor of this series: Adam A. Garde Editorial board of this series: John A. Korstgård, Geological Institute, University of Aarhus; Minik Rosing, Geological Museum, University of Copenhagen; Finn Surlyk, Department of Geography and Geology, University of Copenhagen Scientific editors of this volume: Jon R. Ineson and Martin Sønderholm Editorial secretaries: Jane Holst and Esben W. Glendal Referees: Paul van Veen (Norway) and Robert O’B. Knox (UK) Illustrations: Stefan Sølberg Digital photographic work: Benny M. Schark Graphic production: Knud Gr@phic Consult, Odense, Denmark Printers: Schultz Grafisk, Albertslund, Denmark Manuscript received: 29 August 2005 Final version approved: 8 September 2006 Printed: 29 June 2007 ISSN 1604-8156 ISBN 978-87-7871-196-0 Geological Survey of Denmark and Greenland Bulletin The series Geological Survey of Denmark and Greenland Bulletin replaces Geology of Denmark Survey Bulletin and Geology of Greenland Survey Bulletin.
    [Show full text]
  • Lithostratigraphy of the Upper Oligocene–Miocene Succession Of
    Lithostratigraphy of the upper Oligocene–Miocene succession in Denmark Rasmussen, Erik Skovbjerg; Dybkjær, Karen; Piasecki, Stefan Published in: Bulletin of the Geological Society of Denmark Publication date: 2010 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Rasmussen, E. S., Dybkjær, K., & Piasecki, S. (2010). Lithostratigraphy of the upper Oligocene–Miocene succession in Denmark. Bulletin of the Geological Society of Denmark, 22. Download date: 30. sep.. 2020 Bulletin 22_ GSB191-Indhold 04/03/11 12.40 Side 1 GEOLOGICAL SURVEY OF DENMARK AND GREENLAND BULLETIN 22· 2010 Lithostratigraphy of the Upper Oligocene – Miocene succession of Denmark Erik Skovbjerg Rasmussen, Karen Dybkjær and Stefan Piasecki GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF CLIMATE AND ENERGY Bulletin 22_ GSB191-Indhold 04/03/11 12.40 Side 2 Geological Survey of Denmark and Greenland Bulletin 22 Keywords Lithostratigraphy, Miocene, Upper Oligocene, North Sea, Denmark Cover Upper shoreface sands of the Billund Formation in the Addit gravel pit, central Jylland showing prominent burrows (Ophiomorpha isp.); illustrated section is 40 cm high. Photo: Tom Pallesen. Frontispiece Outcrop of the Kolding Fjord Member, Klintinghoved Formation at Hagenør, Lillebælt. The succession is dominated by organic-rich, lagoonal, silty clay and sand beds deposited as washover fans on the back-barrier flat. Photo: Peter Warna-Moors. Chief editor of this series: Adam A. Garde Editorial board of this series: John A. Korstgård, Department of Earth Sciences, University of Aarhus; Minik Rosing, Geological Museum, University of Copenhagen; Finn Surlyk, Department of Geography and Geology, University of Copenhagen Scientific editor of this volume: Jon R.
    [Show full text]
  • Palaeogeography and Facies Distnbution in the Tertiary of Denmark and Surrounding Areas
    Palaeogeography and Facies Distnbution in the Tertiary of Denmark and Surrounding Areas NILS SPJELDNÆS Spjeldnæs, N. 1975: Palaegeography and facies distribution in the Tertiary of Denmark and surrounding areas. Norges geol. Unders. 316, 289-311. A short review of the stratigraphical terminology and nomenclature of the Danish Tertiary is presented. The Lower Paleocene (Danian) is lithologically similar to the Upper Cretaceous but has a more variable facies distribution, and is mainly restricted to the area north of the Fyn-Ringkøbing ridge. The Upper Paleocene (Selandian) is also variable in facies and consists mostly of glauconitic clays and maris. In the Eocene, volcanic ash, diatomites and extremely fine-grained clays were deposited. One of the still incompletely understood palaeogeographical peculiarities in the area during the Cretaceous to Oligocene is the predominance of sediments and faunas of open oceanic, and partly deep water type close to the Fennoscandian (Baltic) Shield. Possible explanations for this anomaly are discussed. In the Upper Oligocene terrigenous clastic sand begins to appear in quantity, and the Miocene is dominated by an alternation between terrestrial/limnic sands with lignite, and marine, glauconitic and micaceous clays and sands. A Miocene drainage system from the east and north-east can be discerned, and it appears to be shifted towards the south during the Pliocene, possibly reflecting the uplift of the Atlantic margin of the Fennoscandian Shield. The mechanism and and timing of this tectonic event is not completely understood, but it must have been of major importance for the palaeogeographical development of the region, and for the formation of the sedimentary basins.
    [Show full text]
  • Catalogue Palaeontology Invertebrates (Updated July 2020)
    Hermann L. Strack Livres Anciens - Antiquarian Bookdealer - Antiquariaat Histoire Naturelle - Sciences - Médecine - Voyages Sciences - Natural History - Medicine - Travel Wetenschappen - Natuurlijke Historie - Medisch - Reizen Porzh Hervé - 22780 Loguivy Plougras - Bretagne - France Tel.: +33-(0)679439230 - email: [email protected] site: www.strackbooks.nl Dear friends and customers, I am pleased to present my new catalogue. Most of my book stock contains many rare and seldom offered items. I hope you will find something of interest in this catalogue, otherwise I am in the position to search any book you find difficult to obtain. Please send me your want list. I am always interested in buying books, journals or even whole libraries on all fields of science (zoology, botany, geology, medicine, archaeology, physics etc.). Please offer me your duplicates. Terms of sale and delivery: We accept orders by mail, telephone or e-mail. All items are offered subject to prior sale. Please do not forget to mention the unique item number when ordering books. Prices are in Euro. Postage, handling and bank costs are charged extra. Books are sent by surface mail (unless we are instructed otherwise) upon receipt of payment. Confirmed orders are reserved for 30 days. If payment is not received within that period, we are in liberty to sell those items to other customers. Return policy: Books may be returned within 14 days, provided we are notified in advance and that the books are well packed and still in good condition. Catalogue Palaeontology Invertebrates (Updated July 2020) Africa GA00285 FOLLOT, J. ET AL, 1952 € 90,00 Monographies Régionales, Algérie; 2 vols consisting of 27 parts.
    [Show full text]
  • 347 (2005) Family In
    160 160 - SPIRULA nr. 347 (2005) Tijdschriftartikelen Journalpapers W. Faber Artikelen over mariene weekdieren in andere tijdschriften. Buikpotigen en tweekleppigen in per familie alfabetische volgorde. [] redactionele opmerkingen. about marine molluscs in other and bivalves in Papers magazines. Gastropods per family alfabetical order. [] editorial notes. - GENERAL/ALGEMEEN Families. Malacolgia 47(1-2): 1-397 Dall, 1871. with illustrations of other * KILLEEN, IJ, & M.B. SEDDON (eds.), 2004. named forras of the species. — The Fes- - Molluscan Biodiversity and Conserva- REGIONAL/REGIONAAL tivus 37(10): 111-115. * * tion. Proceedings of the Molluscan Biodi- AVILA, S.P. et al., 2005. - The molluscs of MONSECOUR. K. & D. MONSECOUR, 2005. - verity & Conservation symposium, August the intertidal algal turf in the Azores. [con On the status of Columbella lafresnayi — 1- — & 1856 and 2001. J. Conch. Spec. publ. No. 3: resumen Espagnol] Iberus 23(1): 67-76. Fischer Bernardi, Columbella * 172. KABASAKAL, H. & E. KABASAKAL, 2005. - translirata Ravenel, 1861. — Novapex * RAMAKRISHNA, A. DEY & S.C. MITRA, Prosobranch Gastropods Collected from 6(3): 73-77. 2004. - Catalogue of Type species the Anatolian Coast of North Aegean Sea. ((Bivalvia, Scphapoda & Cephalopoda) — Club Conchylia Informationen 37(1-2): CONIDAE * present in the Mollusca section ofZoolog- 49-57. CUNHA, R.L., R. CASTILHO, L. ROBER & R. * — - Patteras ical Survey of India. Records Zool. ZELAYA, D.G., 2005. - Systematics and ZARDOYA, 2005. of Cladogene- Survey India, Occasional paper No. 228: biogeography of marine gastropod mol- sis in the Venomous Marine Gastropod 1-97. luscs from South Georgia. — Spixiana Conus from Cape Verde Islands. — Sys- 28(2): 109-139. tematic Biology 54(4): 634-650.
    [Show full text]
  • Bulletin of the Geological Society of Denmark, Vol. 29/1-2, Pp. 53-76
    Dinoflagellate cyst stratigraphy of the Miocene Hodde and Gram Formations, Denmark STEFAN PIASECKI Piasecki, S.: Dinoflagellate cyst stratigraphy of the Miocene Hodde and Gram Formations, Denmark. DGF Bull. geol. Soc, Denmark, vol. 29, pp. 53-76, Copenhagen, June 10th, 1980. A dinoflagellate cyst stratigraphy is proposed for the Hodde and Gram Formations in western Jylland, Denmark. Four biozones are defined and the formations are dated by dinoflagellate cysts to be of Middle and Upper Miocene age, which supports previous dating by molluscs. One new genus and four new species are described: Labyrinthodinium truncatum gen. nov. sp. nov., Dinopterygium verriculum sp. nov., Ap- teodinium tectatum sp. nov. and Nematosphaeropsis aquaeducta sp. nov. Stefan Piasecki, Institut for Historisk Geologi og Palæontologi, Øster Voldgade 10, DK-1350^ København K, Danmark, January 18th, 1980. ""•'' During Miocene time the eastern margin of the been worked out in details. A planktonic North Sea Basin was located in Denmark. A foraminifera fauna, in sample 5.0-5.5 metres series of transgressions and regressions resulted below surface in the Gram boring, consists of in a series of interfingering marine and non- very small forms of Globorotalia continuosa marine deposits several hundred metres thick. Blow, Neogloboquadrina cf. acostaensis (Blow) Three main transgressions and two main regres­ and very few specimens of Globigerina bulloides sions have been recognized giving the basis for a d'Orb. and Neogloboquadrina dutetrei — group division of the Miocene sediments into six forma­ (Dr. F. Rögl, pers. comm.). This fauna corres­ tions (Sorgenfrei, 1940, 1958 and Rasmussen, ponds to the planktonic foraminiferal zones N 15 1956, 1961).
    [Show full text]