Brief Introduction of Virtual Reality & Its Challenges
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Advances in Artificial Reality and Tele-Existence
R. Liang, Z. Pan, A. Cheok, M. Haller, R.W.H. Lau, H. Saito (Eds.) Advances in Artificial Reality and Tele-Existence 16th International Conference on Artificial Reality and Telexistence, ICAT 2006, Hangzhou, China, November 28 - December 1, 2006, Proceedings Series: Information Systems and Applications, incl. Internet/Web, and HCI, Vol. 4282 This book constitutes the refereed proceedings of the 16th International Conference on Artificial Reality and Telexistence, ICAT 2006, held in Hangzhou, China in November/ December 2006. The 138 revised full papers presented were carefully reviewed and selected from a total of 523 submissions. The papers are organized in topical sections on anthropomorphic intelligent robotics, artificial life, augmented reality, mixed reality, distributed and collaborative VR system, haptics, human factors of VR, innovative applications of VR, motion tracking, real time computer simulation, tools and technique for modeling VR systems, ubiquitous/wearable computing, virtual heritage, virtual medicine and health science, virtual reality, as well as VR interaction and navigation techniques. 2006, XLVI, 1350 p. In 2 volumes, not available separately. Printed book Softcover ▶ 159,99 € | £144.00 | $219.00 ▶ *171,19 € (D) | 175,99 € (A) | CHF 213.21 eBook Available from your bookstore or ▶ springer.com/shop MyCopy Printed eBook for just ▶ € | $ 24.99 ▶ springer.com/mycopy Order online at springer.com ▶ or for the Americas call (toll free) 1-800-SPRINGER ▶ or email us at: [email protected]. ▶ For outside the Americas call +49 (0) 6221-345-4301 ▶ or email us at: [email protected]. The first € price and the £ and $ price are net prices, subject to local VAT. Prices indicated with * include VAT for books; the €(D) includes 7% for Germany, the €(A) includes 10% for Austria. -
Review: Advancement in Virtual Reality Device
Available online at: http://www.ijmtst.com/vol5issue12.html International Journal for Modern Trends in Science and Technology ISSN: 2455-3778 :: Volume: 05, Issue No: 12, December 2019 Review: Advancement in Virtual Reality Device Dr. Preeti Singh Bahadur 1 | Pushpendra Bahadur2 | Dikshant Delu1 | Shivam Chaudhary1 1Department of Applied Physics, Amity University, Greater Noida(U.P.), 2 Tata Steel, BSL Limited, Sahibabad, Ghaziabad (U.P.)- 201010 To Cite this Article Dr. Preeti Singh Bahadur, Pushpendra Bahadur, Dikshant Delu and Shivam Chaudhary, “Review: Advancement in Virtual Reality Device”, International Journal for Modern Trends in Science and Technology, Vol. 05, Issue 12, December 2019, pp.-40-47. Article Info Received on 21-November-2019, Revised on 12-December-2019, Accepted on 21-December-2019, Published on 26-December-2019. ABSTRACT In this paper we shed light on the advancement in Virtual Reality devices and talk about six latest developments. Virtual reality (VR) is a technology that allows a user to interact with a simulated computer environment, whether that environment is a simulation of the real world or an imaginary world. It is the key to experiencing, feeling and touching the past, the present and the future. It is the means of creating our own world, our own personalized reality. It could range from creating a videogame to taking a virtual tour of the universe, from walking through our own dream house to experiencing a walk through a strange planet. With virtual reality, we can experience the most intimidating and exhausting situations by playing safely and with a learning perspective. However, very few people really know what virtual reality is, what are its basic principles and its open problems. -
Evaluation of Virtual Reality Tracking Systems Underwater
International Conference on Artificial Reality and Telexistence Eurographics Symposium on Virtual Environments (2019) Y. Kakehi and A. Hiyama (Editors) Evaluation of Virtual Reality Tracking Systems Underwater Raphael Costa1,Rongkai Guo2,and John Quarles1 1University of Texas at San Antonio, USA 2Kennesaw State University, USA Abstract The objective of this research is to compare the effectiveness of various virtual reality tracking systems underwater. There have been few works in aquatic virtual reality (VR) - i.e., VR systems that can be used in a real underwater environment. Moreover, the works that have been done have noted limitations on tracking accuracy. Our initial test results suggest that inertial measurement units work well underwater for orientation tracking but a different approach is needed for position tracking. Towards this goal, we have waterproofed and evaluated several consumer tracking systems intended for gaming to determine the most effective approaches. First, we informally tested infrared systems and fiducial marker based systems, which demonstrated significant limitations of optical approaches. Next, we quantitatively compared inertial measurement units (IMU) and a magnetic tracking system both above water (as a baseline) and underwater. By comparing the devices’ rotation data, we have discovered that the magnetic tracking system implemented by the Razer Hydra is approximately as accurate underwater as compared to a phone-based IMU. This suggests that magnetic tracking systems should be further explored as a possibility -
Morton Heilig, Through a Combination of Ingenuity, Determination, and Sheer Stubbornness, Was the First Person to Attempt to Create What We Now Call Virtual Reality
Morton Hei Iig "The [in em a of the Future" << 2 2 >> (1955) ;!fo11o11 Hdlir;. Sens<muna. Cuuri<S_) oJS1o11 Fi1lur. "Thus, individually and collectively, by thoroughly applying the methodology of art, the cinema of the future will become the first art form to reveal the new scientific world to man in the .full sensual vividness and dynamic vitality of his consciousness." 239 240 Horton Heilig << Morton Heilig, through a combination of ingenuity, determination, and sheer stubbornness, was the first person to attempt to create what we now call virtual reality. In the 1 950s it occurred to him that all the sensory splendor of life could be simulated with "reality machines." Heilig was a Hollywood cinematographer, and it was as an extension of cinema that he thought such a machine might be achieved. With his inclination, albeit amateur, toward the ontological aspirations of science, He ilig proposed that an artist's expressive powers would be enhanced by a scientific understanding of the senses and perception. His premise was sim ple but striking for its time: if an artist controlled the multisensory stimulation of the audience, he could provide them with the illusion and sensation of first person experience, of actually " being there." Inspired by short-Jived curiosities such as Cinerama and 3-D movies, it oc curred to Heilig that a logical extension of cinema would be to immerse the au dience in a fabricated world that engaged all the senses. He believed that by expanding cinema to involve not only sight and sound but also taste, touch, and smell, the traditional fourth wal l of film and theater would dissolve, transport ing the audience into an inhabitable, virtual world; a kind of "experience theater." Unable to find support in Hollywood for his extraordinary ideas, Heilig moved to Mexico City In 1954, finding himself in a fertile mix of artists, filmmakers, writers, and musicians. -
Virtual and Augmented Reality Applications in Medicine And
OPEN ACCESS Freely available online iology: C ys ur h re P n t & R y e Anatomy & Physiology: s m e o a t r a c n h A ISSN: 2161-0940 Current Research Reie Article Virtual and Augmented Reality Applications in Medicine and Surgery- The Fantastic Voyage is here Wayne L Monsky1*, Ryan James2, Stephen S Seslar3 1Division of Interventional Radiology, Department of Radiology, University of Washington Medical Center, Washington, USA; 2Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA; 3Division of Pediatric Cardiology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA ABSTRACT Virtual Reality (VR), Augmented Reality (AR) and Head Mounted Displays (HMDs) are revolutionizing the way we view and interact with the world, affecting nearly every industry. These technologies are allowing 3D immersive display and understanding of anatomy never before possible. Medical applications are wide-reaching and affect every facet of medical care from learning gross anatomy and surgical technique to patient-specific pre-procedural planning and intra-operative guidance, as well as diagnostic and therapeutic approaches in rehabilitation, pain management, and psychology. The FDA is beginning to approve these approaches for clinical use. In this review article, we summarize the application of VR and AR in clinical medicine. The history, current utility and future applications of these technologies are described. Keywords: Virtual reality; Augmented reality; Surgery; Medicine; Anatomy; Therapy INTRODUCTION DEFINITIONS AND BRIEF HISTORY Recalling the 1966 science fiction film “Fantastic Voyage”, watching The human visual system in amazement as the doctors traveled inside the patient’s body to repair a brain injury. -
Audio Challenges in Virtual and Augmented Reality Devices
Audio challenges in virtual and augmented reality devices Dr. Ivan Tashev Partner Software Architect Audio and Acoustics Research Group Microsoft Research Labs - Redmond In memoriam: Steven L. Grant Sep 15, 2016 IWAENC Audio challenges in virtual and augmented reality devices 2 In this talk • Devices for virtual and augmented reality • Binaural recording and playback • Head Related Functions and their personalization • Object-based rendering of spatial audio • Modal-based rendering of spatial audio • Conclusions Sep 15, 2016 IWAENC Audio challenges in virtual and augmented reality devices 3 Colleagues and contributors: Hannes Gamper David Johnston Ivan Tashev Mark R. P. Thomas Jens Ahrens Microsoft Research Microsoft Research Microsoft Research Dolby Laboratories Chalmers University, Sweden Sep 15, 2016 IWAENC Audio challenges in virtual and augmented reality devices 4 Devices for Augmented and Virtual Reality They both need good spatial audio Sep 15, 2016 IWAENC Audio challenges in virtual and augmented reality devices 5 Augmented vs. Virtual Reality • Augmented reality (AR) is a live direct or indirect view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics • Virtual reality (VR) is a computer technology that replicates an environment, real or imagined, and simulates a user's physical presence in a way that allows the user to interact with it. It artificially creates sensory experience, which can include sight, touch, hearing, etc. Sep -
Virtual Reality and Virtual Reality System Components Oluleke
Proceedings of the 2nd International Conference On Systems Engineering and Modeling (ICSEM-13) Virtual Reality and Virtual Reality System Components Oluleke Bamodu1,2, a and Xuming Ye1, b 1 College of Mechanical Engineering, Shenyang University, Shenyang, China 2 Faculty of Computing, Engineering and Technology, Staffordshire University, United Kingdom [email protected], [email protected] Keywords: virtual reality, VR, virtual reality system, hardware, software, VR engine. Abstract. This paper is a synoptic review of virtual reality, its features, types, and virtual reality systems, as well as the elements of the VR system hardware and software, which are essential components of virtual reality systems. Introduction Applications of Virtual Reality (VR) have and continue to increase over the last couple of years. This is partly due to its usefulness in many fields and as a result of the attention given to it by the media. This trend is expected to continue in the future with the advancement of technology in areas like computer graphics, computer vision, controls, image processing and other technology-affiliated components. This paper aims to dissect the nature, the role, the component, the application and applicability of the virtual reality system, as well as, explore briefly the characteristics and use of VR system hardware and software. Definition of Virtual Reality Defining Virtual Reality can prove to be a difficult task because there is no standard definition for it. It is said to be an oxymoron, as it is referred to by some school of thought as “reality that does not exist” [1]. Many different fields have different meaning associated to it, while some people have even misused the term in many cases. -
Virtual Reality and Augmented Reality (VR/AR)
Quad Cities Manufacturing Innovation Hub Playbook Series Virtual Reality and Augmented Reality (VR/AR) How to Use This Playbook Each Quad Cities Manufacturing Innovation Hub playbook is created with the business growth needs of our area’s small and medium manufacturers in mind. By utilizing the information in the VR/AR Playbook, you are taking the first steps to creating a competitive advantage for your company by innovating in the face of disruptive technologies. This playbook follows a logical flow to guide you as you learn more about VR/AR (see Fig. 1). Review the sections as they apply to your individual opportunities and resources, either in the order they’re presented or jump around to fit your immediate needs. Figure 1: VR/AR Playbook Information Flow Understand Identify Build the the Find Help Opportunities Business Case Technologies This is your toolkit for plugging into the virtual and augmented reality network in the Quad Cities. Together, all eight of our playbooks work in concert to uplift our regional manufacturers and Department of Defense suppliers through increasing digital readiness; working together to accelerate the understanding and investment in emerging technologies; and foster a culture of innovation in the manufacturing industry. We encourage you to review the other playbooks (see appendix for more information) as well. Whom can I contact at the Quad Cities Manufacturing Innovation Hub with questions? Email [email protected], and a member of the Hub team will respond to your question. About the Quad Cities Manufacturing Innovation Hub and Our Partners The Quad Cities Manufacturing Innovation Hub assists businesses by offering services such as operational assessments, registry in a regional catalog of manufacturers and suppliers, trade and business- to-business events, access to national and international marketing, access to subject matter experts through the Chamber’s Critical Talent Network, connections to the Quad City Manufacturing Lab and national research, and training seminars targeted at key technologies. -
Virtual and Augmented Reality
Virtual and Augmented Reality Virtual and Augmented Reality: An Educational Handbook By Zeynep Tacgin Virtual and Augmented Reality: An Educational Handbook By Zeynep Tacgin This book first published 2020 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2020 by Zeynep Tacgin All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-4813-9 ISBN (13): 978-1-5275-4813-8 TABLE OF CONTENTS List of Illustrations ................................................................................... x List of Tables ......................................................................................... xiv Preface ..................................................................................................... xv What is this book about? .................................................... xv What is this book not about? ............................................ xvi Who is this book for? ........................................................ xvii How is this book used? .................................................. xviii The specific contribution of this book ............................. xix Acknowledgements ........................................................... -
New Realities Risks in the Virtual World 2
Emerging Risk Report 2018 Technology New realities Risks in the virtual world 2 Lloyd’s disclaimer About the author This report has been co-produced by Lloyd's and Amelia Kallman is a leading London futurist, speaker, Amelia Kallman for general information purposes only. and author. As an innovation and technology While care has been taken in gathering the data and communicator, Amelia regularly writes, consults, and preparing the report Lloyd's does not make any speaks on the impact of new technologies on the future representations or warranties as to its accuracy or of business and our lives. She is an expert on the completeness and expressly excludes to the maximum emerging risks of The New Realities (VR-AR-MR), and extent permitted by law all those that might otherwise also specialises in the future of retail. be implied. Coming from a theatrical background, Amelia started Lloyd's accepts no responsibility or liability for any loss her tech career by chance in 2013 at a creative or damage of any nature occasioned to any person as a technology agency where she worked her way up to result of acting or refraining from acting as a result of, or become their Global Head of Innovation. She opened, in reliance on, any statement, fact, figure or expression operated and curated innovation lounges in both of opinion or belief contained in this report. This report London and Dubai, working with start-ups and corporate does not constitute advice of any kind. clients to develop connections and future-proof strategies. Today she continues to discover and bring © Lloyd’s 2018 attention to cutting-edge start-ups, regularly curating All rights reserved events for WIRED UK. -
Adam NOWAK Czcionka Times New Roman (TNR) 13
SILESIAN UNIVERSITY OF TECHNOLOGY PUBLISHING HOUSE SCIENTIFIC PAPERS OF THE SILESIAN UNIVERSITY OF TECHNOLOGY 2019 ORGANISATION AND MANAGEMENT SERIES NO. 134 1 POPULAR STRATEGIES AND METHODS FOR USING AUGMENTED 2 REALITY 3 Dawid PIECHACZEK1*, Ireneusz JÓŹWIAK2 4 1 University of Science and Technology, Wroclaw; [email protected], 5 ORCID: 0000-0001-6670-7568 6 2 University of Science and Technology, Wroclaw; [email protected], 7 ORCID: 0000-0002-2160-7077 8 * Correspondence author 9 Abstract: Augmented reality (AR) is a modern technology which integrates 3D virtual objects 10 into the real environment in real time. It can be used for many purposes, which should improve 11 different processes in daily life. The paper will analyze the areas in which this technology is 12 currently used. First, the history of the development of augmented reality will be recalled. 13 Then, this technology will be compared to virtual reality because these terms are often 14 incorrectly used interchangeably. This paper describes the tools and popular platform solutions 15 related to augmented reality. The most common problems related to the use of this technology 16 will be discussed, including popular approaches concerning optical and video combining 17 methods. The existing applications and their potential in solving everyday problems will be 18 analyzed. Finally, the perspectives for the development of augmented reality and its possibilities 19 in the future will be discussed. This paper provides a starting point for using and learning about 20 augmented reality for everyone. 21 Keywords: augmented reality, graphical elements, image processing, image recognition. 22 1. -
Virtual Reality: What Is the State of Play in Education?
Australian Journal of Educational Technology 1998, 14(1), 60-74 Virtual reality: What is the state of play in education? Colin Macpherson Central Queensland University Mike Keppell University of Melbourne Background The term 'virtual reality' (VR) is currently used to describe a range of computer-based systems in which a user can explore a hardware and software generated 'microworld' that bears some resemblance to reality. An early application of such systems was the flight simulator used to train pilots. However, it is in the area of hi-tech games that many of the more recent developments in this field have occurred. Typically, a user will wear a helmet containing either a small video screen positioned in front of each eye, or a device that projects images directly onto the user’s retinas. She might also wear an elaborately wired glove that provides tactile feedback as she attempts to physically interact with the computer- generated visual environment. It was on devices and systems of this nature that our proposed investigation was to concentrate. Although this has remained the case, we have expanded our work to also include VR that mainly uses screen-based graphics – thus reflecting the expanded definition of VR (more of which later). Overall aim Our overall aim was to determine the nature and capabilities of VR devices and systems that have already been developed, and of those that are under development; and to investigate the educational and instructional uses to which these devices and systems are already being put and to which they may be put in the near future.