Microbial Extremophiles at the Limits of Life

Total Page:16

File Type:pdf, Size:1020Kb

Microbial Extremophiles at the Limits of Life Critical Reviews in Microbiology, 33:183–209, 2007 Copyright c Informa Healthcare ISSN: 1040-841X print / 1549-7828 online DOI: 10.1080/10408410701451948 Microbial Extremophiles at the Limits of Life Elena V. Pikuta and Richard B. Hoover National Space Sciences and Technology Center/NASA, Astrobiology Laboratory, Huntsville, Alabama, USA Jane Tang Noblis, Falls Church, Virginia, USA possible places on Earth interacting with the environment and Prokaryotic extremophiles were the first representatives of life within itself (cross species relations). In nature it is very rare on Earth and they are responsible for the genesis of geological when an ecotope is inhabited by a single species. As a rule, most structures during the evolution and creation of all currently known ecosystems contain the functionally related and evolutionarily ecosystems. Flexibility of the genome probably allowed life to adapt to a wide spectrum of extreme environments. As a result, modern adjusted communities (consortia and populations). In contrast prokaryotic diversity formed in a framework of physico-chemical to the multicellular structure of eukaryotes (tissues, organs, sys- factors, and it is composed of: thermophilic, psychrophilic, aci- tems of organs, whole organism), the highest organized form of dophilic, alkaliphilic, halophilic, barophilic, and radioresistant prokaryotic life in nature is presented by the benthic colonization species. This artificial systematics cannot reflect the multiple ac- in biofilms and microbial mats. In these complex structures all tions of different environmental factors since one organism could unite characteristics of several extreme-groups. In this review we microbial cells of different species are distributed in space and Downloaded By: [University of Alabama at Birmingham] At: 16:09 17 July 2007 show the current status of studies in all fields of extremophiles time according to their functions and to physicochemical gradi- and summarize the limits of life for different species of microbial ents that allow more effective system support, self-protection, extremophiles. We also discuss the finding of extremophiles from and energy distribution. In vitro, of course, the most primitive or- unusual places such as soils, and briefly review recent studies of ganized structure for bacterial and archaeal cultures is the colony, microfossils in meteorites in the context of the significance of mi- crobial extremophiles to Astrobiology. the size, shape, color, consistency, and other specific character- istics which differ on the species or subspecies levels. In Table 1 all known types of microbial communities are shown (Pikuta Keywords Extremophiles; Microbial diversity; Astrobiology; Ecol- ogy of Microorganisms; Limits of Life et al. 2005b). Additional factors could be added to this classifi- cation Table 1: in deep-sea ecosystems (pressure), and in deep underground lithospheric ecosystems (pressure and radiation). INTRODUCTION Currently the best-studied ecosystems are: human body (due During Earth’s evolution, accompanied by geophysical and to the medical importance), and freshwater and marine ecosys- climatic changes, a number of ecosystems have been formed. tems (because of environmental concerns). For a long time, ex- These ecosystems differ by the broad variety of physicochemical tremophiles were terra incognita, since the environments with and biological factors composing our environment. Tradition- aggressive parameters (compared to the human body tempera- ally, pH and salinity are considered as geochemical extremes, as ture, pH, mineralization, and pressure) were considered a priori opposed to temperature, pressure, and radiation that are referred as a dead zone. It took time to find out that the environments with to as physical extremes (Van den Burg 2003). Life inhabits all extreme physico-chemical and climatic parameters are inhabited by a wide spectrum of different microorganisms. Extremophiles were discovered in the following chronological order: Received 2 February 2007; accepted 10 May 2007. Long ago it was known that many fungi could grow in We want to thank the reviewers for their helpful comments slightly acidic (pH 4–6) conditions, but the first obligately aci- and the NASA/MSFC Center Director’s Discretionary Fund and the dophilic bacterium to be described was Acidithiobacillus fer- NASA/JSC Center for Biomarkers in Astromaterials for support of this rooxidans (formally Thiobacillus ferrooxidans). Subsequently research. thermophilic lithotrophic acidophiles were found, and the hyper- Address correspondence to Elena V. Pikuta, Richard B. Hoover National Space Sciences and Technology Center/NASA, VP-62, 320 acidophilic species of the genus Picrophilus growing at neg- Sparkman Dr., Astrobiology Laboratory, Huntsville, AL 35805. E-mail: ative pH values were described in 1996 (Schleper et al. [email protected] or [email protected] 1996). 183 184 E. V. PIKUTA ET AL. TABLE 1 chrophilic microorganisms. Firstly in our Astrobiology Labo- Known types of microbial communities ratory at NASA/MSFC/NSSTC the aerobic and anaerobic bac- terial growth (in pure culture) was determined at −5◦Cona NaCl, Temperature, ◦ liquid and solid media (Hoover et al. 2002; Pikuta and Hoover Types of communities pH %(w/v) C 2003; Pikuta et al. 2003b), and our Russian colleges successfully 1. Freshwater psychrophilic 5–7 0–1 <10 cultivated aerobic bacterial cultures on solid agar media also at −5◦C (Gilichinsky et al. 2005). The observations of living mi- 2. Freshwater, meso-thermal 15–40 ◦ 3. Freshwater moderately 50–60 croorganisms in situ at –20 C in highly mineralized media were thermophilic reported previously (Staley and Gosink 1999). 4. Freshwater thermophilic 70–110 The first mentioned alkaliphile was the bacterium Strepto- coccus faecalis (Downie and Cruickshank 1928), but several 5. Marine psychrophilic 8 3–4 <10 years earlier an article about alkalitolerant nitrifying bacteria 6. Marine, meso-thermal 15–40 was published (Meek and Lipman 1922). Extreme alkaliphiles 7. Marine moderately 50–60 belonging to genera Clostridium and Bacillus were isolated from thermophilic soils (Horikoshi and Akiba 1982), but truly alkaliphilic microor- 8. Marine thermophilic 70–120 ganisms belonging to separate genera such as Natronobacterium and Natronococcus were described later (Tindall et al. 1984). 9. Alkaliphilic psychrophilic 9–11 0–1 <10 Study of halophilic microorganisms has started from work 10. Alkaliphilic mesophilic 15–40 with saline soils and lakes, and now the record of good growth 11. Alkaliphilic moderately 50–60 for Haloferax mediterranei has been demonstrated at 30% NaCl. thermophilic The study of barophiles became possible after the develop- 12. Alkaliphilic thermophilic 70–110 ment of deep-ocean submersible crafts. In the Black Smokers 13. Haloalkaliphilic 9–10 3–25 <10 studies it was shown that there are microorganisms that require psychrophilic high pressure in addition to high temperature, and the highest 14. Haloalkaliphilic mesophilic 15–40 known limit of life was detected at 100 MPa (Yayanos et al. 15. Haloalkaliphilic moderately 50–60 1979). Downloaded By: [University of Alabama at Birmingham] At: 16:09 17 July 2007 thermophilic The first radioresistant bacterium Deinococcus radiodurans was found during the process of food conservation and stor- 16. Halophilic psychrophilic 8.0 3–30 <10 age. This bacterium could survive ionizing irradiation and other 17. Halophilic mesophilic 15–40 DNA-damaging assaults at doses that are lethal to all other or- 18. Halophilic moderately 50–60 ganisms (Raj et al. 1960). Among archaea the hyperthermophilic thermophilic sulfur-reducing Thermococcus gammatolerans that is capable of resisting 30 kGy of γ -irradiation was described comparatively 19. Acidophilic mesophilic 0–4 0–2 15–40 recently (Edmond et al. 2003). 20. Acidophilic moderately 50–60 Anaerobiosis, as an alternative to the aerobic life, was dis- thermophilic covered by Pasteur in his fermentation work (Pasteur 1861), 21. Acidophilic thermophilic 70–120 but an anaerobic technique for the cultivation of obligately anaerobic microorganisms was developed much later (Hungate The discovery of thermophilic bacteria is generally attributed 1969). Among the bacteria and archaea there are many anaerobic to Miquel (1888), but Brewer (1866) had already described ther- species, and most of them are not extremophiles. For this reason mophilic Chlamydobacteriales from the geysers of California. an anaerobiosis is not considered as imperative to extremophilic The modern epoch of the study of thermophilic microorganisms life. However, it should be remembered that the first life forms was triggered by the discovery of Thermus aquaticus (Brock and on early Earth were anaerobic extremophiles, and therefore, this Freeze 1969), and now the maximum temperature for growth at capacity is a very important issue for the logical discussion about 113◦C was found for Pyrolobus fumarii (Bl¨oechl et al. 1997). the limits of life. Another hyperthermophilic microorganism, strain 121(not From the point of view of systematics, both eukaryotic and validly published) that was isolated by Kashefi and Loveley prokaryotic organisms represent life in extreme ecosystems, (2003) survives for short periods of time at 130◦C (Cowan 2004). and the comparison of all taxa in complex biocoenosis of each The first mention of the term “psychrophile” was made by ecosystem will provide answers to the fundamental questions Schmidt-Nielsen in 1902 for the description of bacteria capa-
Recommended publications
  • Microbiology of Barrier Component Analogues of a Deep Geological Repository
    Microbiology of Barrier Component Analogues of a Deep Geological Repository by Rachel Beaver A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Science in Biology Waterloo, Ontario, Canada, 2020 ©Rachel Beaver 2020 Author’s Declaration This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Statement of Contributions Chapter 2 The Tsukinuno bentonite sampling was coordinated by Erik Kremmer (NWMO). The Opalinus core was received from Niels Burzan and Rizlan Bernier-Latmani (École Polytechnique Fédérale de Lausanne, Switzerland). The Northern Ontario crystalline rock core sampling was coordinated by Jeff Binns (Nuclear Waste Management Organization). Sian Ford (McMaster University) swabbed the outer layer of the Northern Ontario crystalline rocK core and crushed the inner layer. Melody Vachon (University of Waterloo) assisted with the cultivation of anaerobic heterotrophs and SRB. iii Abstract Many countries are in the process of designing and implementing long-term storage solutions for used nuclear fuel. Like many of these countries, Canada is considering a deep geological repository (DGR) wherein used fuel bundles will be placed in copper-coated carbon steel used fuel containers encased in bentonite buffer boxes. Previously published research has simulated aspects of a DGR experimentally to identify DGR conditions that would prevent microbial activity. Although such microcosm-type experiments can observe microbial growth and activity over relatively limited time frames, a DGR will remain functional for at least a million years, and will be exposed to fluctuating environmental conditions.
    [Show full text]
  • New Opportunities Revealed by Biotechnological Explorations of Extremophiles - Mircea Podar and Anna-Louise Reysenbach
    BIOTECHNOLOGY – Vol .III – New Opportunities Revealed by Biotechnological Explorations of Extremophiles - Mircea Podar and Anna-Louise Reysenbach NEW OPPORTUNITIES REVEALED BY BIOTECHNOLOGICAL EXPLORATIONS OF EXTREMOPHILES Mircea Podar and Anna-Louise Reysenbach Department of Biology, Portland State University, Portland, OR 97201, USA. Keywords: extremophiles, genomics, biotechnology, enzymes, metagenomics. Contents 1. Introduction 2. Extremophiles and Biomolecules 3. Extremophile Genomics Exposing the Biotechnological Potential 4. Tapping into the Hidden Biotechnological Potential through Metagenomics 5. Unexplored Frontiers and Future Prospects Acknowledgements Glossary Bibliography Biographical Sketches Summary Over the past few decades the extremes at which life thrives has continued to challenge our understanding of biochemistry, biology and evolution. As more new extremophiles are brought into laboratory culture, they have provided a multitude of new potential applications for biotechnology. Furthermore, more recently, innovative culturing approaches, environmental genome sequencing and whole genome sequencing have provided new opportunities for biotechnological exploration of extremophiles. 1. Introduction Organisms that live at the extremes of pH (>pH 8.5,< pH 5.0), temperature (>45°C, <15°C), pressure (>500 atm), salinity (>1.0M NaCl) and in high concentrations of recalcitrant substances or heavy metals (extremophiles) represent one of the last frontiers for biotechnological and industrial discovery. As we learn more about the
    [Show full text]
  • Shrubs, Trees and Contingent Evolution of Wood Anatomical Diversity Using Croton (Euphorbiaceae) As a Model System
    Annals of Botany 119: 563–579, 2017 doi:10.1093/aob/mcw243, available online at www.aob.oxfordjournals.org Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system Rafael Are´valo1,2,*, Benjamin W. van Ee3, Ricarda Riina4, Paul E. Berry5 and Alex C. Wiedenhoeft1,2 1Center for Wood Anatomy Research, USDA Forest Service, Forest Products Laboratory, Madison, WI 53726, USA, 2Department of Botany, University of Wisconsin, Madison, WI 53706, USA, 3University of Puerto Rico at Mayagu¨ez Herbarium, Department of Biology, Universidad de Puerto Rico, Call Box 9000, Mayagu¨ez, 00680, Puerto Rico, 4Real Jardın Botanico, RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain and 5University of Michigan, Ecology and Evolutionary Biology Department and Herbarium, Ann Arbor, MI 48108, USA *For correspondence. E-mail [email protected] Received: 7 July 2016 Returned for revision: 3 September 2016 Accepted: 5 October 2016 Published electronically: 8 January 2017 Background and Aims Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context of these plant habits. Methods Phylogenetic comparative methods were used to test for contingent evolution of habit, habitat and wood anatomy in the mega-diverse genus Croton (Euphorbiaceae), across the largest and most complete molecular phy- logeny of the genus to date. Key Results Plant habit and habitat are highly correlated, but most wood anatomical features correlate more strongly with habit.
    [Show full text]
  • Genome-Resolved Meta-Analysis of the Microbiome in Oil Reservoirs Worldwide
    microorganisms Article Genome-Resolved Meta-Analysis of the Microbiome in Oil Reservoirs Worldwide Kelly J. Hidalgo 1,2,* , Isabel N. Sierra-Garcia 3 , German Zafra 4 and Valéria M. de Oliveira 1 1 Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas–UNICAMP, Av. Alexandre Cazellato 999, 13148-218 Paulínia, Brazil; [email protected] 2 Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Cidade Universitária, 13083-862 Campinas, Brazil 3 Biology Department & CESAM, University of Aveiro, Aveiro, Portugal, Campus de Santiago, Avenida João Jacinto de Magalhães, 3810-193 Aveiro, Portugal; [email protected] 4 Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Microbiología, Universidad Industrial de Santander, Cra 27 calle 9, 680002 Bucaramanga, Colombia; [email protected] * Correspondence: [email protected]; Tel.: +55-19981721510 Abstract: Microorganisms inhabiting subsurface petroleum reservoirs are key players in biochemical transformations. The interactions of microbial communities in these environments are highly complex and still poorly understood. This work aimed to assess publicly available metagenomes from oil reservoirs and implement a robust pipeline of genome-resolved metagenomics to decipher metabolic and taxonomic profiles of petroleum reservoirs worldwide. Analysis of 301.2 Gb of metagenomic information derived from heavily flooded petroleum reservoirs in China and Alaska to non-flooded petroleum reservoirs in Brazil enabled us to reconstruct 148 metagenome-assembled genomes (MAGs) of high and medium quality. At the phylum level, 74% of MAGs belonged to bacteria and 26% to archaea. The profiles of these MAGs were related to the physicochemical parameters and recovery management applied.
    [Show full text]
  • A Web Tool for Hydrogenase Classification and Analysis Dan Søndergaard1, Christian N
    www.nature.com/scientificreports OPEN HydDB: A web tool for hydrogenase classification and analysis Dan Søndergaard1, Christian N. S. Pedersen1 & Chris Greening2,3 H2 metabolism is proposed to be the most ancient and diverse mechanism of energy-conservation. The Received: 24 June 2016 metalloenzymes mediating this metabolism, hydrogenases, are encoded by over 60 microbial phyla Accepted: 09 September 2016 and are present in all major ecosystems. We developed a classification system and web tool, HydDB, Published: 27 September 2016 for the structural and functional analysis of these enzymes. We show that hydrogenase function can be predicted by primary sequence alone using an expanded classification scheme (comprising 29 [NiFe], 8 [FeFe], and 1 [Fe] hydrogenase classes) that defines 11 new classes with distinct biological functions. Using this scheme, we built a web tool that rapidly and reliably classifies hydrogenase primary sequences using a combination of k-nearest neighbors’ algorithms and CDD referencing. Demonstrating its capacity, the tool reliably predicted hydrogenase content and function in 12 newly-sequenced bacteria, archaea, and eukaryotes. HydDB provides the capacity to browse the amino acid sequences of 3248 annotated hydrogenase catalytic subunits and also contains a detailed repository of physiological, biochemical, and structural information about the 38 hydrogenase classes defined here. The database and classifier are freely and publicly available at http://services.birc.au.dk/hyddb/ Microorganisms conserve energy by metabolizing H2. Oxidation of this high-energy fuel yields electrons that can be used for respiration and carbon-fixation. This diffusible gas is also produced in diverse fermentation and 1 anaerobic respiratory processes . H2 metabolism contributes to the growth and survival of microorganisms across the three domains of life, including chemotrophs and phototrophs, lithotrophs and heterotrophs, aerobes and 1,2 anaerobes, mesophiles and extremophiles alike .
    [Show full text]
  • Terrestrial Decomposition
    Terrestrial Decomposition • Objectives – Controls over decomposition • Litter breakdown • Soil organic matter formation and dynamics – Carbon balance of ecosystems • Soil carbon storage 1 Overview • In terrestrial ecosystems, soils (organic horizon + mineral soil) > C than in vegetation and atmosphere combined 2 Overview • Decomposition is: 1. Major pathway for C loss from ecosystems 2. Central to ecosystem C loss and storage 3 Overview 4 Incorporation 1 year later Overview • Predominant controls on litter decomposition are fairly well constrained 1. Temperature and moisture 2. Litter quality • N availability • Lignin concentration • Lignin:N • Mechanisms for soil organic matter stabilization: 1. Recalcitrance (refers to chemistry) 2. Physical protection • Within soil aggregates • Organo-mineral associations 3. Substrate supply regulation (energetic limitation) 5 Overview • Disturbance can override millenia in a matter of days or years: 1. Land use change 2. Invasive species 3. Climate change • Understanding the mechanistic drivers of decomposition, soil organic matter formation, and carbon stabilization help us make management decisions, take mitigation steps, and protect resources. 6 Overview Native Ōhiʻa - Koa forest Conversion to Reforestation in grass-dominated pasture (80 yr) Eucalyptus plantation (10 yr) Conventional sugar cane harvest. 20° C 18° C 16° C 14° C 7 Sustainable ratoon harvest. Decomposition • Decomposition is the biological, physical and chemical breakdown of organic material – Provides energy for microbial growth
    [Show full text]
  • Heterospory: the Most Iterative Key Innovation in the Evolutionary History of the Plant Kingdom
    Biol. Rej\ (1994). 69, l>p. 345-417 345 Printeii in GrenI Britain HETEROSPORY: THE MOST ITERATIVE KEY INNOVATION IN THE EVOLUTIONARY HISTORY OF THE PLANT KINGDOM BY RICHARD M. BATEMAN' AND WILLIAM A. DiMlCHELE' ' Departments of Earth and Plant Sciences, Oxford University, Parks Road, Oxford OXi 3P/?, U.K. {Present addresses: Royal Botanic Garden Edinburiih, Inverleith Rojv, Edinburgh, EIIT, SLR ; Department of Geology, Royal Museum of Scotland, Chambers Street, Edinburgh EHi ijfF) '" Department of Paleohiology, National Museum of Natural History, Smithsonian Institution, Washington, DC^zo^bo, U.S.A. CONTENTS I. Introduction: the nature of hf^terospon' ......... 345 U. Generalized life history of a homosporous polysporangiophyle: the basis for evolutionary excursions into hetcrospory ............ 348 III, Detection of hcterospory in fossils. .......... 352 (1) The need to extrapolate from sporophyte to gametophyte ..... 352 (2) Spatial criteria and the physiological control of heterospory ..... 351; IV. Iterative evolution of heterospory ........... ^dj V. Inter-cladc comparison of levels of heterospory 374 (1) Zosterophyllopsida 374 (2) Lycopsida 374 (3) Sphenopsida . 377 (4) PtiTopsida 378 (5) f^rogymnospermopsida ............ 380 (6) Gymnospermopsida (including Angiospermales) . 384 (7) Summary: patterns of character acquisition ....... 386 VI. Physiological control of hetcrosporic phenomena ........ 390 VII. How the sporophyte progressively gained control over the gametophyte: a 'just-so' story 391 (1) Introduction: evolutionary antagonism between sporophyte and gametophyte 391 (2) Homosporous systems ............ 394 (3) Heterosporous systems ............ 39(1 (4) Total sporophytic control: seed habit 401 VIII. Summary .... ... 404 IX. .•Acknowledgements 407 X. References 407 I. I.NIRODUCTION: THE NATURE OF HETEROSPORY 'Heterospory' sensu lato has long been one of the most popular re\ie\v topics in organismal botany.
    [Show full text]
  • Geomicrobiological Processes in Extreme Environments: a Review
    202 Articles by Hailiang Dong1, 2 and Bingsong Yu1,3 Geomicrobiological processes in extreme environments: A review 1 Geomicrobiology Laboratory, China University of Geosciences, Beijing, 100083, China. 2 Department of Geology, Miami University, Oxford, OH, 45056, USA. Email: [email protected] 3 School of Earth Sciences, China University of Geosciences, Beijing, 100083, China. The last decade has seen an extraordinary growth of and Mancinelli, 2001). These unique conditions have selected Geomicrobiology. Microorganisms have been studied in unique microorganisms and novel metabolic functions. Readers are directed to recent review papers (Kieft and Phelps, 1997; Pedersen, numerous extreme environments on Earth, ranging from 1997; Krumholz, 2000; Pedersen, 2000; Rothschild and crystalline rocks from the deep subsurface, ancient Mancinelli, 2001; Amend and Teske, 2005; Fredrickson and Balk- sedimentary rocks and hypersaline lakes, to dry deserts will, 2006). A recent study suggests the importance of pressure in the origination of life and biomolecules (Sharma et al., 2002). In and deep-ocean hydrothermal vent systems. In light of this short review and in light of some most recent developments, this recent progress, we review several currently active we focus on two specific aspects: novel metabolic functions and research frontiers: deep continental subsurface micro- energy sources. biology, microbial ecology in saline lakes, microbial Some metabolic functions of continental subsurface formation of dolomite, geomicrobiology in dry deserts, microorganisms fossil DNA and its use in recovery of paleoenviron- Because of the unique geochemical, hydrological, and geological mental conditions, and geomicrobiology of oceans. conditions of the deep subsurface, microorganisms from these envi- Throughout this article we emphasize geomicrobiological ronments are different from surface organisms in their metabolic processes in these extreme environments.
    [Show full text]
  • Dynamic Consolidated Bioprocessing for Innovative Lab-Scale Production of Bacterial Alkaline Phosphatase from Bacillus Paraliche
    www.nature.com/scientificreports OPEN Dynamic consolidated bioprocessing for innovative lab‑scale production of bacterial alkaline phosphatase from Bacillus paralicheniformis strain APSO Soad A. Abdelgalil1,2*, Nadia A. Soliman1, Gaber A. Abo‑Zaid1 & Yasser R. Abdel‑Fattah1 To meet the present and forecasted market demand, bacterial alkaline phosphatase (ALP) production must be increased through innovative and efcient production strategies. Using sugarcane molasses and biogenic apatite as low‑cost and easily available raw materials, this work demonstrates the scalability of ALP production from a newfound Bacillus paralicheniformis strain APSO isolated from a black liquor sample. Mathematical experimental designs including sequential Plackett– Burman followed by rotatable central composite designs were employed to select and optimize the concentrations of the statistically signifcant media components, which were determined to be molasses, (NH4)2NO3, and KCl. Batch cultivation in a 7‑L stirred‑tank bioreactor under uncontrolled pH conditions using the optimized medium resulted in a signifcant increase in both the volumetric and specifc productivities of ALP; the alkaline phosphatase throughput 6650.9 U L−1, and µ = 0.0943 ­h−1; respectively, were obtained after 8 h that, ameliorated more than 20.96, 70.12 and 94 folds compared to basal media, PBD, and RCCD; respectively. However, neither the increased cell growth nor enhanced productivity of ALP was present under the pH‑controlled batch cultivation. Overall, this work presents novel strategies for the statistical optimization and scaling up of bacterial ALP production using biogenic apatite. Te bioeconomy represents the value chain of sustainable manufacturing using renewable, low-cost biological resources to sustainably produce food, energy, and industrial products1.
    [Show full text]
  • Archaeoglobus Profundus Type Strain (AV18T)
    Standards in Genomic Sciences (2010) 2:327-346 DOI:10.4056/sigs.942153 Complete genome sequence of Archaeoglobus profundus type strain (AV18T) Mathias von Jan1, Alla Lapidus2, Tijana Glavina Del Rio2, Alex Copeland2, Hope Tice2, Jan-Fang Cheng2, Susan Lucas2, Feng Chen2, Matt Nolan2, Lynne Goodwin2,3, Cliff Han2,3, Sam Pitluck2, Konstantinos Liolios2, Natalia Ivanova2, Konstantinos Mavromatis2, Galina Ovchinnikova2, Olga Chertkov2, Amrita Pati2, Amy Chen4, Krishna Palaniappan4, Miriam Land2,5, Loren Hauser2,5, Yun-Juan Chang2,5, Cynthia D. Jeffries2,5, Elizabeth Saunders2, Thomas Brettin2,3, John C. Detter2,3, Patrick Chain2,4, Konrad Eichinger6, Harald Huber6, Ste- fan Spring1, Manfred Rohde7, Markus Göker1, Reinhard Wirth6, Tanja Woyke2, Jim Bristow2, Jonathan A. Eisen2,8, Victor Markowitz4, Philip Hugenholtz2, Nikos C Kyrpides2, and Hans-Peter Klenk1* 1 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, California, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 University of Regensburg, Microbiology – Archaeenzentrum, Regensburg, Germany 7 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 8 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Hans-Peter Klenk Keywords: hyperthermophilic, marine, strictly anaerobic, sulfate respiration, hydrogen utili- zation, hydrothermal systems, Archaeoglobaceae, GEBA Archaeoglobus profundus (Burggraf et al. 1990) is a hyperthermophilic archaeon in the eu- ryarchaeal class Archaeoglobi, which is currently represented by the single family Archaeog- lobaceae, containing six validly named species and two strains ascribed to the genus 'Geoglobus' which is taxonomically challenged as the corresponding type species has no va- lidly published name.
    [Show full text]
  • Plant Species Effects on Nutrient Cycling: Revisiting Litter Feedbacks
    Review Plant species effects on nutrient cycling: revisiting litter feedbacks Sarah E. Hobbie Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA In a review published over two decades ago I asserted reinforce those gradients and patterns of NPP, focusing that, along soil fertility gradients, plant traits change in on feedbacks operating through plant litter decomposition. ways that reinforce patterns of soil fertility and net Specifically, I evaluate two key assumptions underlying primary productivity (NPP). I reevaluate this assertion the plant litter feedback idea: (i) plant litter traits vary in light of recent research, focusing on feedbacks to NPP predictably along fertility gradients, and (ii) such variation operating through litter decomposition. I conclude that reinforces soil fertility gradients through effects on decom- mechanisms emerging since my previous review might position and litter N release. Given the number of synthetic weaken these positive feedbacks, such as negative cross-site analyses of plant traits and their consequences effects of nitrogen on decomposition, while others for nutrient cycling over the past two decades, the time is might strengthen them, such as slower decomposition ripe for revisiting my original assertions. Indeed, I show of roots compared to leaf litter. I further conclude that that my original assertion is more nuanced and complex predictive understanding of plant species effects on than originally claimed. In particular, I discuss the need to nutrient cycling will require developing new frameworks consider leaf litter decomposition more carefully and move that are broadened beyond litter decomposition to con- beyond consideration of leaf litter feedbacks to a more sider the full litter–soil organic matter (SOM) continuum.
    [Show full text]
  • Specific Enrichment of Hyperthermophilic Electroactive Archaea From
    bioRxiv preprint doi: https://doi.org/10.1101/272039; this version posted February 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Specific enrichment of hyperthermophilic electroactive Archaea from 2 deep-sea hydrothermal vent on electrically conductive support. 3 4 Guillaume Pillot1, Eléonore Frouin1, Emilie Pasero1, Anne Godfroy2, Yannick Combet-Blanc1, 5 Sylvain Davidson1 & Pierre-Pol Liebgott1* 6 1 Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France. 7 2 Laboratoire de Microbiologie des Environnements Extrêmes - UMR6197 IFREMER, CNRS, 8 UBO Centre de Brest–CS10070/IUEM, Plouzané, France. 9 *Corresponding author: [email protected]; Mediterranean Institute of 10 Oceanography, Campus de Luminy, Bâtiment OCEANOMED, 13288 Marseille Cedex 09. 11 Abstract 12 While more and more investigations are done to isolate hyperthermophilic exoelectrogenic 13 communities from environments, none have been performed yet on deep-sea hydrothermal vent. 14 Samples of black smoker chimney from Rainbow site on the Atlantic mid-oceanic ridge have 15 been harvested for enriching exoelectrogens in microbial electrolysis cells under hyperthermophilic 16 (80°C) condition. Two enrichments have been performed: one from direct inoculation of crushed 17 chimney and the other one from inoculation of a pre-cultivation on iron (III) oxide. In both 18 experiments, a current production was observed from 2.4 A/m² to 5.8 A/m² with a set anode 19 potential of +0.05 vs SHE. Taxonomic affiliation of the exoelectrogen communities obtained 20 exhibited a specific enrichment of Archaea from Thermococcales and Archeoglobales orders on the 21 electrode, even when both inocula were dominated by Bacteria.
    [Show full text]