Zircon Geochronology, Provenance, and Basin

Total Page:16

File Type:pdf, Size:1020Kb

Zircon Geochronology, Provenance, and Basin Research Paper GEOSPHERE The Permo-Triassic Gondwana sequence, central Transantarctic 1 of 24 Mountains, Antarctica: Zircon geochronology, provenance, and / GEOSPHERE; v. 13, no. 1 basin evolution doi:10.1130/GES01345.1 David H. Elliot1, C. Mark Fanning2, John L. Isbell3, and Samuel R.W. Hulett4 20 fgures; 1 table; 3 supplemental fles 1School of Earth Sciences and Byrd Polar and Climate Research Center, Ohio State University, Columbus, Ohio 43210, USA 2 Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia 2nd pages 3Department of Geosciences, University of Wisconsin–Milwaukee, Wisconsin 53201, USA CORRESPONDENCE: elliot.1@ osu .edu 4Department of Earth, Atmospheric and Planetary Sciences, Notre Dame University, Notre Dame, Indiana 46556, USA CITATION: Elliot, D.H., Fanning, C.M., Isbell, J.L., and Hulett, S.R.W., 2016, The Permo-Triassic Gond- wana sequence, central Transantarctic Mountains, ABSTRACT (McLoughlin and Drinnan, 1997a, 1997b) are part of the East Gondwana interior Antarctica: Zircon geochronology, provenance, rift system (Harrowfeld et al., 2005) and are linked by Glossopteris and palyno- and basin evolution: Geosphere, v. 13, no. 1, p. 1– The most complete Permian–Triassic Gondwana succession in Antarctica morphs to the Trans ant arc tic Mountains and other Gondwana successions. 24, doi:10.1130/GES01345.1. crops out in the central Trans ant arc tic Mountains. The lower Permian strata Vertebrate remains and plant assemblages (Glossopteris and Dicroidium were deposited in an intracratonic basin that evolved into a foreland basin in foras) provide paleontological ages for the Beacon strata, giving a Devonian elliot_01345 Received 15 April 2016 Revision received 24 August 2016 late Permian time. Sedimentary petrology and paleocurrent data have been age for the Taylor Group and a Permian through Triassic age for the Victoria Accepted 24 October 2016 interpreted as indicating a granitic (craton) provenance and a West Antarctic Group (Truswell, 1991; Young, 1991). Pollen and spore analysis has established volcanic provenance. To address the West Antarctic provenance and evolution a palynostratigraphy for the Victoria Group (Schopf and Askin, 1980; Kyle and of the detrital input, detrital-zircon grains from nine sandstones (plus three Schopf, 1982; Farabee et al., 1990) and enabled correlation with the Austral- sandstones reported previously) representing the full extent of the Permo-Tri- asian palynostratigraphic zonation (Mantle et al., 2010). Strata in eastern Ells- assic succession exposed on that fank of the basin, have been analyzed by worth Land and the Ellsworth Mountains have yielded Glossopteris and thus sensitive high-resolution ion microprobe. Results defne three provenances: have Permian ages (Gee, 1989; Taylor and Taylor, 1992). Vertebrate faunas have an early (early to middle Permian) provenance that is dominated by zircons been recovered from Lower and Middle Triassic strata (Smith et al., 2011; Sidor having Ross orogen ages (600–480 Ma); a middle (late Permian) provenance et al., 2014). dominated by Permian zircons with subordinate older magmatic arc grains Sandstone petrology and paleocurrent data for the Victoria Group in plus lesser Ross orogen–age grains; and a late (Triassic) provenance, which is the central Trans ant arc tic Mountains (CTM) established a granitic source quite variable and in which the predominant Triassic arc component ranges interpreted to be the East Antarctic craton and a volcanic source located in from very minor to signifcant and again with a component of Ross orogen– West Antarctica (Barrett et al., 1986). Outcrops that might be representative age grains. Detrital zircons imply a more extensive Permo-Triassic arc, in time of the potential sources in East Antarctic are confned in CTM to the Miller and space, on the Gondwana margin than is evident from outcrop data. The Range (Fig. 3). The volcanic source has been correlated with the few isolated zircon data are integrated into a model for basin evolution and inflling, pro- Permian and Triassic granitoids and gneisses along the West Antarctic margin viding broad constraints on the timing of tectonic events and the provenance. (Pankhurst et al., 1993; Collinson et al., 1994; Pankhurst et al., 1998; Mukasa and Dalziel, 2000; Elliot and Fanning, 2008). A volcanic provenance in Permian time was also recorded from Mount Weaver in the Scott Glacier region (Min- INTRODUCTION shew, 1967), and although such a source was not noted by Long (1965) for the Permian sandstones in the Ohio Range, petrological reexamination of the The Permo-Triassic Gondwana stratigraphy is best developed in the Trans- sandstones has revealed a volcanic component in the upper part of the section. ant arc tic Mountains (Figs. 1 and 2), where it is divided into a lower Taylor No unequivocal tuffs have been identifed in the upper part of the Permian Group (Devonian) and an upper Victoria Group (Permian to Triassic), the two Buckley Formation in the CTM despite the presence of much volcaniclastic together often referred to as the Beacon Supergroup (Barrett, 1991). In West material derived from an active magmatic arc (Collinson et al., 1994). Glass Antarctica, Permian strata crop out in the Ellsworth Mountains (Collinson et al., shards have been identifed in a number of Permian and Triassic sandstones For permission to copy, contact Copyright 1992) and in small isolated outcrops in eastern Ellsworth Land (Laudon, 1987). (Collinson et al., 1994), but attempts to date the rocks have been unsuccessful. Permissions, GSA, or [email protected]. Permian and Lower Triassic strata in the northern Prince Charles Mountains Tuff beds in the lower part of the middle informal member of the siliciclastic © 2016 Geological Society of America GEOSPHERE | Volume 13 | Number 1 Elliot et al. | The Permo-Triassic Gondwana sequence 1 Research Paper CTM Central Transantarctic Mtns. 0° Central South MR Miller Range Prince Age Ohio Range Transantarctic Charles Victoria Land NVL North Victoria Land Mountains SVL South Victoria Land Mtns. ANTARCTICA Theron 90°E 2 of 24 90°W Weddell Sea Mtns. Falla 80°S 160–282m / VVVV VVVV 180° VVV Lashly VVV VVVV 520+m Filchner- Triassic VVVV VVV Ronne 0° VVV Fremouw VVVV Ice Shelf VVVV 700m VVV VVVV East VVV Feather Haag N. Pensacola Mtns. Erehwon N. 250m 2nd pages Antarctica T VVV r a VVVV VVVV 90°W Ellsworth n 90°E Mount VVV 70°S Mtns 80°S s ctoria Group Ohio Ra. a Glossopteris Vi VVVV Buckley n t 690+m VVV 750m West CT a r Thurston I. Mt. Weaver M c Weller t i Antarctica c Permian 250m Scott Gl. MR M Fairchild Marie Shackleton Gl. 130–220m Byrd o u Discovery Beardmore Gl. Fig. 3 Mackellar elliot_01345 Land n Ridge 60–140m Ross t 165m Byrd Gl. a SVL Ice 80°S i n Buckeye Pagoda Metschel Shelf s Triassic gneisses 275m 0–175m 0–70m Late Triassic granitoids Permo-T Carboniferous Permian-Triassic strata riassic Permian gneisses N Ross V Permian granitoids arc L Aztec Beacon Hts Generalized areas of Sea bedrock outcrop Devonian Horlick Alexandra Arena Edge of shelf ice 0–150m 0–300m Altar 500 km New Mtn 2000 m bathymetric contour 180° Taylor Gp. 70°S 300–1500m Figure 1. Location map for Antarctica. Stretched continental crust underlies the Ross Sea, Ross Sandstone (volcaniclastic: Coal Ice Shelf, and interior West Antarctica through to Ellsworth Land (the Ross embayment) and VVVV was generated during Late Cretaceous to Late Cenozoic time. Stretched continental crust also arc derived) Carbonaceous shale underlies the Filchner-Ronne Ice Shelf region and the adjacent Weddell Sea (the Weddell em- Sandstone (quartzose) bayment) but was extended during the Early–Middle Jurassic breakup of Gondwana. Shale, siltstone Diamictite Hiatus Permian Polarstar Formation of the Ellsworth Mountains (Fig. 1) have yielded Figure 2. Simplifed geologic columns for Devonian to Lower Jurassic strata in the zircons with Late Permian U-Pb sensitive high-resolution ion microprobe Transant ar ctic Mountains (Ohio Range, central Trans antar ctic Mountains, south (SHRIMP) ages of 258.0 ± 2.1 Ma and 262.5 ± 2.2 Ma (Elliot et al., 2016a). Victoria Land). Sources: Ohio Range—Long (1964, 1965); central Trans ant arc tic The aim of this paper is to evaluate the evolution of the Permo-Triassic ba- Mountains and south Victoria Land—Elliot (2013). Note that the marine Horlick Formation, although a siliciclastic succession of similar Early Devonian age, is not sin in the light of new and existing detrital-zircon geochronologic data. Specif- part of the Taylor Group. cally, this paper records new detrital-zircon data for nine sandstones and inter- prets the results in terms of the evolution of the basin and the source regions. An initial program of detrital-zircon geochronology (Elliot and Fanning, 2008) REGIONAL GEOLOGY showed that the Permian upper Buckley Formation in the Shackleton Glacier region includes near contemporaneous igneous zircon grains. The possibil- The pre-Devonian basement in the CTM (Fig. 3) comprises Neoproterozoic ity existed, therefore, that reanalysis of the young zircons in these and other and Cambrian siliciclastic and volcaniclastic strata and limestones (Stump, samples using SHRIMP II in the higher resolution geochronology mode would 1995) intruded by granitoids emplaced during the Cambrian to Early Ordovi- provide refned and improved age data for those formations. cian Ross orogeny (Goodge et al., 2012). A regional erosion surface, the Kukri GEOSPHERE | Volume 13 | Number 1 Elliot et al. | The Permo-Triassic Gondwana sequence 2 Research Paper Mt. Weeks 175°E Surficial deposits 83°30′S Clarkson Pk. v v L. Jurassic basaltic rocks (11-4) v v Mt. Miller 3 of 24 83°30′S L. Jurassic Hanson Fm. / Tillite Gl. Triassic strata Permian strata Fremouw Peak Devonian strata Mt. Ropar Pre-Devonian igneous 84°S and metamorphic rocks 2nd pages Layman Peak Queen Alexandra Ra. (96-35) l. Figure 3. Geologic sketch map of the cen- G y tral Trans ant arc tic Mountains.
Recommended publications
  • Office of Polar Programs
    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
    [Show full text]
  • Reevaluation of the Timing and Extent of Late Paleozoic Glaciation in Gondwana: Role of the Transantarctic Mountains
    Reevaluation of the timing and extent of late Paleozoic glaciation in Gondwana: Role of the Transantarctic Mountains John L. Isbell Department of Geosciences, University of Wisconsin, Milwaukee, Wisconsin 53201, USA Paul A. Lenaker Rosemary A. Askin Byrd Polar Research Center, Ohio State University, Columbus, Ohio 43210, USA Molly F. Miller Department of Earth and Environmental Science, Vanderbilt University, Nashville, Tennessee 37235, USA Loren E. Babcock Department of Geological Sciences and Byrd Polar Research Center, Ohio State University, Columbus, Ohio 43210, USA ABSTRACT Evidence from Antarctica indicates that a 2000-km-long section of the Transantarctic MountainsÐincluding Victoria Land, the Darwin Glacier region, and the central Transantarctic MountainsÐwas not located near the center of an enormous Car- boniferous to Early Permian ice sheet, as depicted in many paleo- Figure 1. Carboniferous and geographic reconstructions. Weathering pro®les and soft-sediment Permian paleogeographic map deformation immediately below the preglacial (pre-Permian) un- of Gondwana (after Powell and Li, 1994), showing several hy- conformity suggest an absence of ice cover during the Carbonif- pothetical ice sheets. erous; otherwise, multiple glacial cycles would have destroyed these features. The occurrence of glaciotectonite, massive and strat- i®ed diamictite, thrust sheets, sandstones containing dewatering structures, and lonestone-bearing shales in southern Victoria Land and the Darwin Glacier region indicate that Permian sedimenta- tion occurred in ice-marginal, periglacial, and/or glaciomarine set- tings. No evidence was found that indicates the Transantarctic Mountains were near a glacial spreading center during the late Paleozoic. Although these ®ndings do not negate Carboniferous Powell, 1987; Ziegler et al., 1997; Scotese, 1997; Scotese et al., 1999; glaciation in Antarctica, they do indicate that Gondwanan glacia- Veevers, 2000, 2001).
    [Show full text]
  • Vulnerable Marine Ecosystems – Processes and Practices in the High Seas Vulnerable Marine Ecosystems Processes and Practices in the High Seas
    ISSN 2070-7010 FAO 595 FISHERIES AND AQUACULTURE TECHNICAL PAPER 595 Vulnerable marine ecosystems – Processes and practices in the high seas Vulnerable marine ecosystems Processes and practices in the high seas This publication, Vulnerable Marine Ecosystems: processes and practices in the high seas, provides regional fisheries management bodies, States, and other interested parties with a summary of existing regional measures to protect vulnerable marine ecosystems from significant adverse impacts caused by deep-sea fisheries using bottom contact gears in the high seas. This publication compiles and summarizes information on the processes and practices of the regional fishery management bodies, with mandates to manage deep-sea fisheries in the high seas, to protect vulnerable marine ecosystems. ISBN 978-92-5-109340-5 ISSN 2070-7010 FAO 9 789251 093405 I5952E/2/03.17 Cover photo credits: Photo descriptions clockwise from top-left: Acanthagorgia spp., Paragorgia arborea, Vase sponges (images courtesy of Fisheries and Oceans, Canada); and Callogorgia spp. (image courtesy of Kirsty Kemp, the Zoological Society of London). FAO FISHERIES AND Vulnerable marine ecosystems AQUACULTURE TECHNICAL Processes and practices in the high seas PAPER 595 Edited by Anthony Thompson FAO Consultant Rome, Italy Jessica Sanders Fisheries Officer FAO Fisheries and Aquaculture Department Rome, Italy Merete Tandstad Fisheries Resources Officer FAO Fisheries and Aquaculture Department Rome, Italy Fabio Carocci Fishery Information Assistant FAO Fisheries and Aquaculture Department Rome, Italy and Jessica Fuller FAO Consultant Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2016 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • The Sauropodomorph Biostratigraphy of the Elliot Formation of Southern Africa: Tracking the Evolution of Sauropodomorpha Across the Triassic–Jurassic Boundary
    Editors' choice The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary BLAIR W. MCPHEE, EMESE M. BORDY, LARA SCISCIO, and JONAH N. CHOINIERE McPhee, B.W., Bordy, E.M., Sciscio, L., and Choiniere, J.N. 2017. The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary. Acta Palaeontologica Polonica 62 (3): 441–465. The latest Triassic is notable for coinciding with the dramatic decline of many previously dominant groups, followed by the rapid radiation of Dinosauria in the Early Jurassic. Among the most common terrestrial vertebrates from this time, sauropodomorph dinosaurs provide an important insight into the changing dynamics of the biota across the Triassic–Jurassic boundary. The Elliot Formation of South Africa and Lesotho preserves the richest assemblage of sauropodomorphs known from this age, and is a key index assemblage for biostratigraphic correlations with other simi- larly-aged global terrestrial deposits. Past assessments of Elliot Formation biostratigraphy were hampered by an overly simplistic biozonation scheme which divided it into a lower “Euskelosaurus” Range Zone and an upper Massospondylus Range Zone. Here we revise the zonation of the Elliot Formation by: (i) synthesizing the last three decades’ worth of fossil discoveries, taxonomic revision, and lithostratigraphic investigation; and (ii) systematically reappraising the strati- graphic provenance of important fossil locations. We then use our revised stratigraphic information in conjunction with phylogenetic character data to assess morphological disparity between Late Triassic and Early Jurassic sauropodomorph taxa. Our results demonstrate that the Early Jurassic upper Elliot Formation is considerably more taxonomically and morphologically diverse than previously thought.
    [Show full text]
  • West Antarctica: Tectonics and Paleogeography
    Chapter 2 West Antarctica: Tectonics and Paleogeography The origin of West Antarctica (WANT) can be traced back to the Terra Australis orogenesis that began between 520 Ma and 510 Ma—shortly after the terminal suturing of Gondwana (Boger 2011). The onset of this event was responsible for the termination of passive margin sedimentation along much of the Pacific margin of Gondwana and marks the beginning of widespread and broadly coeval deforma- tion and arc-type plutonism. It also began a long-lived process of accretion that added much of the crust that defines eastern Australia, West Antarctica (domain 5 of Boger 2011, Fig. 2.1), and western South America (Cawood 2005, 2009). Post-Gondwana accretionary growth—the Terra Australis and Gondwanide Orogenies—The suturing of the West Gondwana and Australo–Antarctic plates along the Kuunga Orogen brought to an end the long-lived process of convergence between the pre-collision components of Gondwana. The result was a reconfigura- tion of the early to middle Cambrian plate system and the consequent transfer of ocean floor consumption from between the pre-Gondwana cratons to the outboard Pacific margin of newly formed Gondwana supercontinent (Cawood2005 ). This led to the establishment of the accretionary Terra Austrais Orogen (Cawood 2005), a general name given to the orogenic belt that stretched continuously from north- ern South America to northern Australia and which began in the early to middle Cambrian and lasted until the late Carboniferous. In Antarctica Terra Australis (Ross) orogenesis also deformed and variably metamorphosed the pre-Gondwana passive margin (Fig. 2.2). The Gondwana supercontinent underwent a sequential fragmentation over approximately 165 Ma.
    [Show full text]
  • The Age and Origin of Miocene-Pliocene Fault Reactivations in the Upper Plate of an Incipient Subduction Zone, Puysegur Margin
    RESEARCH ARTICLE The Age and Origin of Miocene‐Pliocene Fault 10.1029/2019TC005674 Reactivations in the Upper Plate of an Key Points: • Structural analyses and 40Ar/39Ar Incipient Subduction Zone, Puysegur geochronology reveal multiple fault reactivations accompanying Margin, New Zealand subduction initiation at the K. A. Klepeis1 , L. E. Webb1 , H. J. Blatchford1,2 , R. Jongens3 , R. E. Turnbull4 , and Puysegur Margin 5 • The data show how fault motions J. J. Schwartz are linked to events occurring at the 1 2 Puysegur Trench and deep within Department of Geology, University of Vermont, Burlington, VT, USA, Now at Department of Earth Sciences, University continental lithosphere of Minnesota, Minneapolis, MN, USA, 3Anatoki Geoscience Ltd, Dunedin, New Zealand, 4Dunedin Research Centre, GNS • Two episodes of Late Science, Dunedin, New Zealand, 5Department of Geological Sciences, California State University, Northridge, Northridge, Miocene‐Pliocene reverse faulting CA, USA resulted in short pulses of accelerated rock uplift and topographic growth Abstract Structural observations and 40Ar/39Ar geochronology on pseudotachylyte, mylonite, and other Supporting Information: fault zone materials from Fiordland, New Zealand, reveal a multistage history of fault reactivation and • Supporting information S1 uplift above an incipient ocean‐continent subduction zone. The integrated data allow us to distinguish • Table S1 true fault reactivations from cases where different styles of brittle and ductile deformation happen • Figure S1 • Table S2 together. Five stages of faulting record the initiation and evolution of subduction at the Puysegur Trench. Stage 1 normal faults (40–25 Ma) formed during continental rifting prior to subduction. These faults were reactivated as dextral strike‐slip shear zones when subduction began at ~25 Ma.
    [Show full text]
  • The Neogene Biota of the Transantarctic Mountains
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Related Publications from ANDRILL Affiliates Antarctic Drilling Program 2007 The Neogene biota of the Transantarctic Mountains A. C. Ashworth North Dakota State University, [email protected] A. R. Lewis North Dakota State University, [email protected] D. R. Marchant Boston University, [email protected] R. A. Askin [email protected] D. J. Cantrill Royal Botanic Gardens, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/andrillaffiliates Part of the Environmental Indicators and Impact Assessment Commons Ashworth, A. C.; Lewis, A. R.; Marchant, D. R.; Askin, R. A.; Cantrill, D. J.; Francis, J. E.; Leng, M. J.; Newton, A. E.; Raine, J. I.; Williams, M.; and Wolfe, A. P., "The Neogene biota of the Transantarctic Mountains" (2007). Related Publications from ANDRILL Affiliates. 5. https://digitalcommons.unl.edu/andrillaffiliates/5 This Article is brought to you for free and open access by the Antarctic Drilling Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Related Publications from ANDRILL Affiliates by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors A. C. Ashworth, A. R. Lewis, D. R. Marchant, R. A. Askin, D. J. Cantrill, J. E. Francis, M. J. Leng, A. E. Newton, J. I. Raine, M. Williams, and A. P. Wolfe This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ andrillaffiliates/5 U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Extended Abstract.071 The Neogene biota of the Transantarctic Mountains A.
    [Show full text]
  • Exploration of New Zealand's Deepwater Frontier * GNS Science
    exploration of New Zealand’s deepwater frontier The New Zealand Exclusive Economic Zone (EEZ) is the 4th largest in the world at about GNS Science Petroleum Research Newsletter 4 million square kilometres or about half the land area of Australia. The Legal Continental February 2008 Shelf claim presently before the United Nations, may add another 1.7 million square kilometres to New Zealand’s jurisdiction. About 30 percent of the EEZ is underlain by sedimentary basins that may be thick enough to generate and trap petroleum. Although introduction small to medium sized discoveries continue to be made in New Zealand, big oil has so far This informal newsletter is produced to tell the eluded the exploration companies. industry about highlights in petroleum-related research at GNS Science. We want to inform Exploration of the New Zealand EEZ has you about research that is going on, and barely started. Deepwater wells will be provide useful information for your operations. drilled in the next few years and encouraging We welcome your opinions and feedback. results would kick start the New Zealand deepwater exploration effort. Research Petroleum research at GNS Science efforts have identified a number of other potential petroleum basins around New Our research programme on New Zealand's Zealand, including the Pegasus Sub-basin, Petroleum Resources receives $2.4M p.a. of basins in the Outer Campbell Plateau, the government funding, through the Foundation of deepwater Solander Basin, the Bellona Basin Research Science and Technology (FRST), between the Challenger Plateau and Lord and is one of the largest research programmes in GNS Science.
    [Show full text]
  • The Gondwana Margin: Proterozoic to Mesozoic
    CORE Metadata, citation and similar papers at core.ac.uk Provided by EPrints Complutense The Gondwana margin: Proterozoic to Mesozoic The longevity and extent of the oceanic southern of '--'H��'.JAJ.J.'u., E. I.M. Gonzalez-Casado and I.A. Dahlquist Gondwana have made it the of intense study for more on "The Maz terrane: a Mesoproterozoic domain in the western than 70 years. It was one of the cradles of terrane and Sierras equivalent to the remains a proving ground for theories of Antofalla block of southern Peru? for West LL.L�""".LE, """'.LJL.LU''-'H and Investigation on this Gondwana evolution" sheds new light on the Middle margin, such as accretionary orogenesis and terrane analysis, is and Late Proterozoic evolution of the western Amazonia margin vital to our understanding of the Proterozoic and Phanerozoic that preceded final amalgamation of West Gondwana in the Late evolution of the continental crust. In this issue of Cambrian. The Maz terrane Gondwana Research, entitled "The West Gondwana Margin: Sierras Pampeanas) is recognised as a new continental terrane Proterozoic to Mesozoic", we have assembled 9 research papers that underwent Grenvillian-age orogeny and was thoroughly various of the evolution of the West the Ordovician Famatinian orogeny. Nd- and Gondwana margin, frrst at the international .L.Ln-''-'�'J.�F. allows correlation of Maz metasedi­ 'Gondwana 12 (Geological and Biological Heritage of Gond- rnp'nt�n"\T rocks with the Mesoproterozoic northern part of the wana)', held in in November 2005. Many -'-'J.�V.L<-"HU craton, of pre-Andean basement in concern southern South which has a continuous southern Peru.
    [Show full text]
  • Fault Kinematic Studies in the Transantarctic Mountains, Southern Victoria Land TERRY J
    studies. Together these data will be used to develop a model to plate tectonic modeling. In R.A. Hodgson, S.P. Gay, Jr., and J.Y. of the structural architecture and motion history associated Benjamins (Eds.), Proceedings of the First International Conference with the Transantarctic Mountains in southern Victoria Land. on the New Basement Tectonics (Publication number 5). Utah Geo- logical Association. We thank Jane Ferrigno for cooperation and advice on Lucchita, B.K., J. Bowell, K.L. Edwards, E.M. Eliason, and H.M. Fergu- image selection; John Snowden, David Cunningham, and son. 1987. Multispectral Landsat images of Antarctica (U.S. Geo- Tracy Douglass at the Ohio State University Center for Map- logical Survey bulletin 1696). Washington, D.C.: U.S. Government ping for help with computer processing; and Carolyn Merry, Printing Office. Gary Murdock, and Ralph von Frese for helpful discussions Wilson, T.J. 1992. Mesozoic and Cenozoic kinematic evolution of the Transantarctic Mountains. In Y. Yoshida, K. Kaminuma, and K. concerning image analysis. This research was supported by Shiraishi (Eds.), Recent progress in antarctic earth science. Tokyo: National Science Foundation grant OPP 90-18055 and by the Terra Scientific. Byrd Polar Research Center of Ohio State University. Wilson, T.J. 1993. Jurassic faulting and magmatism in the Transantarctic Mountains: Implication for Gondwana breakup. In R.H. Findlay, M.R. Banks, R. Unrug, and J. Veevers (Eds.), Gond- References wana 8—Assembly, evolution, and dispersal. Rotterdam: A.A. Balkema. Wilson, T.J., P. Braddock, R.J. Janosy, and R.J. Elliot. 1993. Fault kine- Isachsen, Y.W. 1974.
    [Show full text]
  • Lyons SCIENCE 2021 the Influence of Juvenile Dinosaurs SUPPL.Pdf
    science.sciencemag.org/content/371/6532/941/suppl/DC1 Supplementary Materials for The influence of juvenile dinosaurs on community structure and diversity Katlin Schroeder*, S. Kathleen Lyons, Felisa A. Smith *Corresponding author. Email: [email protected] Published 26 February 2021, Science 371, 941 (2021) DOI: 10.1126/science.abd9220 This PDF file includes: Materials and Methods Supplementary Text Figs. S1 and S2 Tables S1 to S7 References Other Supplementary Material for this manuscript includes the following: (available at science.sciencemag.org/content/371/6532/941/suppl/DC1) MDAR Reproducibility Checklist (PDF) Materials and Methods Data Dinosaur assemblages were identified by downloading all vertebrate occurrences known to species or genus level between 200Ma and 65MA from the Paleobiology Database (PaleoDB 30 https://paleobiodb.org/#/ download 6 August, 2018). Using associated depositional environment and taxonomic information, the vertebrate database was limited to only terrestrial organisms, excluding amphibians, pseudosuchians, champsosaurs and ichnotaxa. Taxa present in formations were confirmed against the most recent available literature, as of November, 2020. Synonymous taxa or otherwise duplicated taxa were removed. Taxa that could not be identified to genus level 35 were included as “Taxon X”. GPS locality data for all formations between 200MA and 65MA was downloaded from PaleoDB to create a minimally convex polygon for each possible formation. Any attempt to recreate local assemblages must include all potentially interacting species, while excluding those that would have been separated by either space or time. We argue it is 40 acceptable to substitute formation for home range in the case of non-avian dinosaurs, as range increases with body size.
    [Show full text]