PUBLICATIONS Paleoceanography RESEARCH ARTICLE Pliocene-Pleistocene evolution of sea surface 10.1002/2016PA002954 and intermediate water temperatures Key Points: from the southwest Pacific • Reconstructed Tasman Sea surface and Antarctic Intermediate Water Erin L. McClymont1, Aurora C. Elmore1, Sev Kender2,3, Melanie J. Leng2,3, Mervyn Greaves4, and temperatures fi 4,5 • Long-term cooling trends from ~3.0 to Henry Elder eld 2.6 Ma and from 1.5 Ma to present 1 2 • Complex subtropical front displacement Department of Geography, Durham University, Durham, UK, Centre for Environmental Geochemistry, School of and subantarctic cooling trends since Geography, University of Nottingham, Nottingham, UK, 3British Geological Survey, Nottingham, UK, 4Department of Earth Pliocene Sciences, University of Cambridge, Cambridge, UK, 5Deceased 19 April 2016 Abstract Over the last 5 million years, the global climate system has evolved toward a colder mean state, Correspondence to: E. L. McClymont, marked by large-amplitude oscillations in continental ice volume. Equatorward expansion of polar waters
[email protected] and strengthening temperature gradients have been detected. However, the response of the mid latitudes and high latitudes of the Southern Hemisphere is not well documented, despite the potential importance for Citation: climate feedbacks including sea ice distribution and low-high latitude heat transport. Here we reconstruct the McClymont, E. L., A. C. Elmore, S. Kender, Pliocene-Pleistocene history of both sea surface and Antarctic Intermediate Water (AAIW) temperatures on M. J. Leng, M. Greaves, and H. Elderfield orbital time scales from Deep Sea Drilling Project Site 593 in the Tasman Sea, southwest Pacific. We confirm (2016), Pliocene-Pleistocene evolution of sea surface and intermediate water overall Pliocene-Pleistocene cooling trends in both the surface ocean and AAIW, although the patterns are temperatures from the southwest complex.