Supporting the Design of Management Control Systems in Engineering Companies from Management Cybernetics Perspective

Total Page:16

File Type:pdf, Size:1020Kb

Supporting the Design of Management Control Systems in Engineering Companies from Management Cybernetics Perspective TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Produktentwicklung Supporting the Design of Management Control Systems in Engineering Companies from Management Cybernetics Perspective Fatos Elezi Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing. Michael Zäh Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Udo Lindemann 2. Prof. Iris D. Tommelein, Ph. D., University of California, Berkeley / USA Die Dissertation wurde am 28.09.2015 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 02.12.2015 angenommen. FOREWORD BY THE SUPERVISOR As the environment is becoming more volatile and unpredictable, adaptability to environmental changes has become a top priority for engineering companies. Fluctuations of customer preferences, changing legislation, constant pressure from competitors, new technologies, all these represent some of the external influences that contemporary engineering companies need to deal with dynamically. Management Control Systems (MCS) are management systems that provide mechanisms for dealing with these changes by ensuring the attainment of strategic and operational goals despite the high environmental volatility. Hence, they play a vital role in the competitiveness of engineering companies and their proper design is essential for success in the market. Although frameworks for understanding MCS exist, a systematical, method-based MCS design is still missing. This thesis takes a first step in this direction, by adopting a systemic view on MCS and by contemplating the complexity involved in MCS design. It recognizes that engineering companies are highly complex socio-technical systems, and that the design of MCS encompasses the planning, modeling and embedding of MCS into these systems. In order to tackle this complex task from systemic perspective, this thesis suggests three stages for MCS design: functional, social and organizational stage. The functional stage involves the modeling of necessary functional mechanisms that determine what needs to be accomplished. The social stage is concerned with the conceptualization of the functional mechanisms by means of social structures. The last stage, the organizational stage, involves the embodiment of the social structures into the organizational structures and their support with the right tools and incentives. The thesis claims that it is essential for the contemporary MCS not only to ensure strategic goal achievement but also to provide the mechanisms for adapting these goals to environmental changes. For this purpose, the author of this thesis departs from the mainstream MCS research that considers MCS to be simple homeostatic regulators, and adopts a more holistic systemic perspective that uses Viable System Model as a canonical model for understanding the functional structures of MCS. Based on this premise, the author introduces a method that provides a systematic support for managers in engineering companies for designing MCS at the functional level. This method is applied and evaluated in three industrial case studies along three criteria: applicability, usefulness and usability of the method. In all these evaluation criteria, the method performed well and the added-value of the method in industrial settings is confirmed. As a conclusion, it can be said that the thesis of Fatos Elezi opens a new perspective for understanding MCS and their design. This perspective is based on systems thinking, which provides a potential to address new challenges in MCS design that cannot be tackled with the existing theoretical frameworks. As such, this thesis represents a great academic and industrial contribution and paves the way for new and exciting research in the field of MCS. Garching, March 2016 Prof. Dr.-Ing. Udo Lindemann Institute of Product Development Technical University of Munich ACKNOWLEDGEMENTS This work was conceptualized and written during my tenure as a scientific research assistant at the Institute of Product Development at the Technical University of Munich (TUM) from January 2010 until February 2015. I would like to cordially thank my doctoral advisor, Prof. Dr.-Ing. Udo Lindemann, not only for the scientific mentorship provided but also for granting me research freedom and for being an avid listener of my ideas. Through his challenging observations and valuable reviews this thesis reached its current state. I am also gratefully thankful to my second doctoral advisor, Prof. Iris D. Tommelein, for her continuous support and encouragement. Her belief in my ideas and constant feedback on research topics that we tackled together through numerous publications was instrumental for the maturity of this thesis. A special acknowledgement goes to my fellow colleagues at the Institute of Product Development, many of whom have become close friends of mine through our cooperation in different research projects and learning activities. In particular, the support of Martin Graebsch, Stefan Langer, Wolfgang Bauer, Charalampos Daniliidis, Katharina Kirner, Carlos Gorbea, Nepomuk Chucholowski, Sebastian Kortler, Andreas Kohn, Florian Behncke, Arne Herberg, and Robert Orawski need to be mentioned. I want to thank also those colleagues who have helped me proofread this work, especially Danilo Schmidt and Srinivasan Venkataraman. Special mention and thanks go to all my students that greatly contributed to the maturation of this thesis. Here I would mention the members of the PE cybernetic group - Thomas Maier, Tobias Steinhäußer, David Resch, Michael Schmidt (also proofread this work), Julian Wilberg, and Sebastian Spörl, who were key student contributors to this work for which I am very grateful. Throughout my academic experience at the TUM, I came in contact with three academic organizations: the Design Society, the Institute of Electrical and Electronics Engineers (IEEE) and the American Society of Mechanical Engineers (ASME). I participated in numerous conferences organized by these organizations through the generous sponsorship of the Institute of Product Development. These conferences served as platforms for discussions with researchers and practitioners and as such provided a substantial contribution to the maturity of this thesis. Most importantly, this work would have not been possible without the support from my wife Charlynne Elezi, who always encouraged me in my work and offered patience and comprehension. I want to also thank my adorable daughter Lea, for being who she is and for filling my life with joy. Finally, I am very grateful to my Kosovar and French families. Their love and permanent support offered me the strength to reach this milestone. At the end, I would like to pay a special tribute to my mother, whose unconditional love and support has always been present in all my endeavors. Garching, March 2016 Fatos Elezi The following publications are part of the work presented in this thesis: Elezi, F.; Tschaut, R.; Bauer, W.; Chucholowski, N.; Maurer, M.: Integration of Strategic Flexibility into the Platform Development Process. In: ICoRD’15–Research into Design Across Boundaries, Volume 2, 2015. Springer p. 483-493. ISBN: 978-81- 322-2228-6. Steinhaeusser, T.; Elezi, F.; Tommelein, I. D.; Lindemann, U.: Management Cybernetics as a Theoretical Basis for Lean Construction Thinking. Lean Construction Journal, 2015. Elezi, F.; Schmidt, M.; Tommelein, I. D.; Lindemann, U.: Analyzing Implementation of Lean Production Control with the Viable System Model. IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Kuala Lumpur, Malaysia, 2014. Elezi, F.; Resch, D.; Tommelein, I. D.; Bauer, W.; Maurer, M.; Lindemann, U.: A Viable System Model Perspective on Variant Management based on a Structural Complexity Management Approach. Risk and change management in complex systems: Proceedings of the 16th International DSM Conference, Paris, France, 2014. Bauer, W.; Chucholowski, N.; Elezi, F.; Lindemann, U.; Maurer, M.: Zyklenorientiertes Modul- und Plattformdenken - Ein Leitfaden für Praktiker. Maurer, M.; Lindemann, U.; Eigenverlag 2014. ISBN: 978-3-00-048286-1 Maurer, M.; Bauer, W.; Elezi, F.; Chucholowski, N.: Methodik zur Erstellung zyklengerechter Modul- und Plattformstrategien. In: Vogel-Heuser, B. et al. (Eds.): Innovationsprozesse zyklenorientiert managen. Springer Vieweg 2014, p. 139-154. ISBN: 978-3-662-44931-8. Schmidt, M.; Elezi, F.; Berghede, K.; Tommelein, I. D.; Lindemann, U.: Supporting Organizational Design Towards Lean With The Viable System Model. In: The Proceedings of the 22nd Annual Conference of the International Group for Lean Construction, Oslo, Norway, 2014. Schmidt, M.; Elezi, F.; Tommelein, I. D.; Lindemann, U.: Towards recursive plan-do- check-act cycles for continuous improvement. In: 2014 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Kuala Lumpur, Malaysia, 2014. Elezi, F.; Maier, T. G.; Lindemann, U.: Engineering change management challenges and management cybernetics. In: 2013 IEEE International Systems Conference (SysCon), Orlando, 2013. ISBN: 978-1-4673-3107-4. Elezi, F.; Schmidt, M.; Tommelein, I. D.; Lindemann, U.: Enhanced Viability in Organizations: An Approach to Expanding the Requirements of the Viable System Model. In: IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Bangkok, Thailand, 2013. Elezi,
Recommended publications
  • Warren Mcculloch and the British Cyberneticians
    Warren McCulloch and the British cyberneticians Article (Accepted Version) Husbands, Phil and Holland, Owen (2012) Warren McCulloch and the British cyberneticians. Interdisciplinary Science Reviews, 37 (3). pp. 237-253. ISSN 0308-0188 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/43089/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk Warren McCulloch and the British Cyberneticians1 Phil Husbands and Owen Holland Dept. Informatics, University of Sussex Abstract Warren McCulloch was a significant influence on a number of British cyberneticians, as some British pioneers in this area were on him.
    [Show full text]
  • Management Cybernetics As a Theoretical Basis for Lean Construction Thinking
    Steinhaeusser et al. (2014). Management Cybernetics as a Theoretical Basis for Lean Construction Thinking. Lean Construction Journal 2015 pp 01-14 www.leanconstructionjournal.org (submitted 08Aug2014; resubmitted 11Mar2015; accepted 28Mar2015) Management Cybernetics as a Theoretical Basis for Lean Construction Thinking Tobias Steinhaeusser1, Fatos Elezi2, Iris D. Tommelein3, Udo Lindemann4 Abstract Question: Management cybernetics claims that any successful organization responds to its laws. As there are numerous successful enterprises that use lean thinking as a management philosophy, including increasing numbers of construction companies, does this claim hold and if so, do these laws offer the opportunity to sharpen understanding of Lean Construction practices? Purpose: The purpose of this paper is to explore the use of management cybernetics— specifically Stafford Beer’s Viable Systems Model—as a theoretical basis for Lean Construction thinking. Research Method: Review, analyze, and compare literature on management cybernetics and Lean Construction. Develop an example to illustrate such use. Findings: Through a theoretical approach of describing lean thinking rules from the perspective of management cybernetics, we were able to show that following this argumentation, the Lean Construction idea of Built-in Quality (BiQ) fulfills all requirements of a viable system in management cybernetics. Limitations: Only a small selection of rules is analyzed in this paper. Implications: Management cybernetics can help sharpen understanding when implementing lean thinking in an industrial context. It may also help identify new concepts that can be incorporated into lean thinking. Conversely, understanding lean thinking principles from the perspective of management cybernetics may also help to identify problems where the implementation of lean thinking does not live up to the desired results.
    [Show full text]
  • “The Action of the Brain” Machine Models and Adaptive Functions in Turing and Ashby
    “The Action of the Brain” Machine Models and Adaptive Functions in Turing and Ashby Hajo Greif1,2 1 Munich Center for Technology in Society, Technical University of Munich, Germany 2 Department of Philosophy, University of Klagenfurt, Austria [email protected] Abstract Given the personal acquaintance between Alan M. Turing and W. Ross Ashby and the partial proximity of their research fields, a comparative view of Turing’s and Ashby’s works on modelling “the action of the brain” (in a 1946 letter from Turing to Ashby) will help to shed light on the seemingly strict symbolic / embodied dichotomy: while it is a straightforward matter to demonstrate Turing’s and Ashby’s respective commitments to formal, computational and material, analogue methods of modelling, there is no unambiguous mapping of these approaches onto symbol-based AI and embodiment-centered views respectively. Instead, it will be argued that both approaches, starting from a formal core, were at least partly concerned with biological and embodied phenomena, albeit in revealingly distinct ways. Keywords: Artificial Intelligence, Cybernetics, Models, Embodiment, Darwinian evolution, Morphogenesis, Functionalism 1 Introduction Not very much has been written to date on the relation between Alan M. Turing and W. Ross Ashby, both of whom were members of the “Ratio Club” (1949– 1958).1 Not much of the communication between the two seems to have been preserved or discovered either, the major exception being a letter from Turing to Ashby that includes the following statement: In working on the ACE [an early digital computer] I am more interested in the possibility of producing models of the action of the brain than in the practical applications of computing.
    [Show full text]
  • Updated Modeling for Evaluating Systems Approaches for Mitigating
    United States Updated Modeling for Evaluating Department of Agriculture Systems Approaches for Mitigating the Risk of European Cherry Fruit Fly, Animal and Rhagoletis cerasi (L.), in New York State Plant Health Inspection Cherry Fruit Under Quarantine Service Probabilistic Model Descriptions January 2020 Ver. 1 Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 EXECUTIVE SUMMARY The presence of European cherry fruit fly (ECFF), Rhagoletis cerasi (L.), in New York State has resulted in a large area being quarantined since 2017. As a host of ECFF, cherry (principally P. avium L.) fruit produced in quarantine areas in New York State pose a risk to cherry-producing areas where fruit could be distributed. We evaluated systems approaches designed to mitigate the pest risk enough to allow safe movement of quarantine fruit to non-endangered areas. In 2018, we used a probabilistic model to evaluate the effectiveness of a systems approach at mitigating the risk of establishment of ECFF in new areas, to allow for limited movement of cherries from the quarantine area. The following three independent mitigation measures were the components of the tested systems approaches: • Low pest prevalence, as determined by regulatory trapping • Certified insecticide spraying, to kill flies • Limiting distribution of fruit to areas with no commercial cherry production Now, ECFF can be considered to have established in New York State, which brings into question low pest prevalence status. The simulation models depend on estimates of ECFF population sizes as a function of trap density, and our approach is unchanged from before.
    [Show full text]
  • The Cybernetic Brain
    THE CYBERNETIC BRAIN THE CYBERNETIC BRAIN SKETCHES OF ANOTHER FUTURE Andrew Pickering THE UNIVERSITY OF CHICAGO PRESS CHICAGO AND LONDON ANDREW PICKERING IS PROFESSOR OF SOCIOLOGY AND PHILOSOPHY AT THE UNIVERSITY OF EXETER. HIS BOOKS INCLUDE CONSTRUCTING QUARKS: A SO- CIOLOGICAL HISTORY OF PARTICLE PHYSICS, THE MANGLE OF PRACTICE: TIME, AGENCY, AND SCIENCE, AND SCIENCE AS PRACTICE AND CULTURE, A L L PUBLISHED BY THE UNIVERSITY OF CHICAGO PRESS, AND THE MANGLE IN PRAC- TICE: SCIENCE, SOCIETY, AND BECOMING (COEDITED WITH KEITH GUZIK). THE UNIVERSITY OF CHICAGO PRESS, CHICAGO 60637 THE UNIVERSITY OF CHICAGO PRESS, LTD., LONDON © 2010 BY THE UNIVERSITY OF CHICAGO ALL RIGHTS RESERVED. PUBLISHED 2010 PRINTED IN THE UNITED STATES OF AMERICA 19 18 17 16 15 14 13 12 11 10 1 2 3 4 5 ISBN-13: 978-0-226-66789-8 (CLOTH) ISBN-10: 0-226-66789-8 (CLOTH) Library of Congress Cataloging-in-Publication Data Pickering, Andrew. The cybernetic brain : sketches of another future / Andrew Pickering. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-226-66789-8 (cloth : alk. paper) ISBN-10: 0-226-66789-8 (cloth : alk. paper) 1. Cybernetics. 2. Cybernetics—History. 3. Brain. 4. Self-organizing systems. I. Title. Q310.P53 2010 003’.5—dc22 2009023367 a THE PAPER USED IN THIS PUBLICATION MEETS THE MINIMUM REQUIREMENTS OF THE AMERICAN NATIONAL STANDARD FOR INFORMATION SCIENCES—PERMA- NENCE OF PAPER FOR PRINTED LIBRARY MATERIALS, ANSI Z39.48-1992. DEDICATION For Jane F. CONTENTS Acknowledgments / ix 1. The Adaptive Brain / 1 2. Ontological Theater / 17 PART 1: PSYCHIATRY TO CYBERNETICS 3.
    [Show full text]
  • The Coherent Architecture of Team Syntegrity ® : From
    THE COHERENT ARCHITECTURE OF TEAM SYNTEGRITY®: FROM SMALL TO MEGA FORMS Truss, J., Cullen, C. and Leonard, A. Team Syntegrity Inc. (TSI), 150 Yonge Blvd, Toronto, Ontario, CANADA M5M 3H4 E-mail: [email protected] Professor Stafford Beer’s book Beyond Dispute: The Invention of Team Syntegrity, (Wiley 1994) describes the invention of a group methodology for dealing with complex issues. Beer applied principles of managerial cybernetics to work out how to achieve high levels of ‘syzygy’ (cooperation and commitment) in groups that are large enough to satisfy issues of requisite variety, and small enough to accomplish something. The result is Syntegration®, a collaborative group process for thirty people that takes five days. In 1992, Team Syntegrity Inc. (TSI) was founded to find viable markets for Syntegration, and to continue the development of the methodology together with Beer. Delving deeply into the underlying geometry of the icosahedron, Joe Truss led the development of a suite of applications of the TS method that remove the constraints of thirty people and five days. Truss showed how the TS method could be used for groups of virtually any size, in sessions lasting from one to many days, without compromising the mathematical integrity of the technique. This paper describes the development of the TS protocols since Beer invented Syntegration and explains how the application of TS architecture and protocols can support viable, connected, self-organizing and truly empowered groups and learning communities. Keywords Syntegration, Management, Cybernetics, Community, Collaboration INTRODUCING TEAM SYNTEGRITY Since 1992, TSI and its growing international network of licensees and practitioners have delivered well over 100 Syntegration® events in many contexts, countries and languages, building on the early experiments and theoretical bases reported by Beer in Beyond Dispute: The Invention of Team Syntegrity (Beer, 1994).
    [Show full text]
  • Biological Homeostasis - Pietro Omodeo
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. I – Biological Homeostasis - Pietro Omodeo BIOLOGICAL HOMEOSTASIS Omodeo Pietro Department of Evolutionary Biology and Department of Environmental Sciences, University of Siena. Italy Keywords: Homeostasis, homeorrhesis, stabilisers, physiological control, control of stores, control of development, flux of genetic information. Contents 1. Introduction 2. Stabilization 3. Homeostasis 3.1. Logic and Structure of the Homeostat 3.2. The Components of the Homeostat: the Measuring Unit 3.3 The Components of the Homeostat: The Effector 3.4 The Control of Controllers 3.5. The Control of Stores 4. Homeorrhesis, the Automatic Control of Behavior 4.1. Trajectory Control 4.2. Smooth Control 4.3.Coordinate Control in Homeostasis and Homeorrhesis 5. Control of Development and Reproduction 5.1. Exogenous and Endogenous Clock and the Calendar 5.2. Embryonic Regulation 5.3. Control of the Flux of Genetic Information 6. Conclusion Acknowledgements Glossary Bibliography Biographical Sketch Summary HomeostasisUNESCO is a fundamental concept –in biology EOLSS because it helps to understand the aims of physiological functions and their behavior, and aids in explaining the mechanisms of regulation during ontogeny. Homeostasis is based on the principle of comparing the actualSAMPLE value of the parameters CHAPTERSunder control with an intended optimum. In case of discrepancy, the energetic or material input is regulated through a feedback loop conveying the error signal to the effectors. The effectors governing this input may have the nature of a switch or of a pump; in the latter case, the fatigue, or the défaillance, of the pump is controlled in its turn. This additional control is particularly important for the regulation of stores, because it primes a search program that directs motile organisms towards a food source that enables the restoration of optimum conditions.
    [Show full text]
  • How Cybernetics Connects Computing, Counterculture, and Design
    Walker Art Center — Hippie Modernism: The Struggle for Utopia — Exhibit Catalog — October 2015 How cybernetics connects computing, counterculture, and design Hugh Dubberly — Dubberly Design Office — [email protected] Paul Pangaro — College for Creative Studies — [email protected] “Man is always aiming to achieve some goal language, and sharing descriptions creates a society.[2] and he is always looking for new goals.” Suddenly, serious scientists were talking seriously —Gordon Pask[1] about subjectivity—about language, conversation, and ethics—and their relation to systems and to design. Serious scientists were collaborating to study Beginning in the decade before World War II and collaboration. accelerating through the war and after, scientists This turn away from the mainstream of science designed increasingly sophisticated mechanical and became a turn toward interdisciplinarity—and toward electrical systems that acted as if they had a purpose. counterculture. This work intersected other work on cognition in Two of these scientists, Heinz von Foerster and animals as well as early work on computing. What Gordon Pask, took an interest in design, even as design emerged was a new way of looking at systems—not just was absorbing the lessons of cybernetics. Another mechanical and electrical systems, but also biological member of the group, Gregory Bateson, caught the and social systems: a unifying theory of systems and attention of Stewart Brand, systems thinker, designer, their relation to their environment. This turn toward and publisher of the Whole Earth Catalog. Bateson “whole systems” and “systems thinking” became introduced Brand to von Foerster.[3] Brand’s Whole Earth known as cybernetics. Cybernetics frames the world in Catalog spawned a do-it-yourself publishing revolution, terms of systems and their goals.
    [Show full text]
  • Insights of Digital Transformation Processes in Industrial Symbiosis from the Viable Systems Approach (VSA)
    sustainability Article Insights of Digital Transformation Processes in Industrial Symbiosis from the Viable Systems Approach (VSA) Sergio Barile 1, Clara Bassano 2,*, Raffaele D’Amore 1, Paolo Piciocchi 3, Marialuisa Saviano 2 and Pietro Vito 1,* 1 Department of Management, Sapienza University of Rome, 00161 Rome, RM, Italy; [email protected] (S.B.); [email protected] (R.D.) 2 Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy; [email protected] 3 Department of Political Sciences and Communication, University of Salerno, 84084 Fisciano, SA, Italy; [email protected] * Correspondence: [email protected] (C.B.); [email protected] (P.V.) Abstract: The main purpose of this contribution is twofold: from a scientific point of view, to interpret the symbiotic logic through the framework of the Viable Systems approach (VSA), and from a managerial viewpoint, to provide the actors of industrial symbiosis initiatives, at any stage of their life cycle, with a guide to the most promising web-based solutions in terms of defining the best configuration for the symbiotic network. The article, therefore, aims to provide an in-depth study of the existing literature, which is still not exhaustive, and to consider synoptically and comparatively the modern platforms capable of supporting industrial symbiosis initiatives. The objective was pursued by examining 10 existing and functioning Web-based platforms, of which only a few were previously explored in the previous literature, while the recognition of the latter was carried out on a bibliometric basis to articulate in more detail the existing gap based on a panel of contributions as large as possible.
    [Show full text]
  • STAFFORD BEER Is an International Consultant in the Management Sciences
    BIOGRAPHIES OF CONTRIBUTORS STAFFORD BEER is an international consultant in the management sciences. For twenty years he was a manager himself, and has held the positions of company director, managing director, and Chairman of the Board. He is currently a director of the British software house, Metapraxis Ltd. In part-time academic appointments, he is visiting professor of cybernetics at Manchester University in the Business School, and adjunct professor of social sciences at Pennsylvania University in the Wharton School, where his previous position was in statistics and operations research. He is President of the World Organization of General Systems and Cybernetics, and holds its Wiener Memorial Gold Medal. His consultancy has covered small and large companies, national and international agencies, together with government-based contracts in some fifteen countries. He is cybernetics advisor to Ernst and Whinney in Canada. Publications cover more than two hundred items, and nine books. He has exhibited paintings, published poetry, teaches yoga, and lists his recreations as spinning wool and staying put in his remote Welsh cottage. Address: Prof.Stafford Beer Cwarel Isaf Pont Creuddyn Llanbedr Pont Steffan Dyfed SA48 8PG UK ERNST VON GLASERSFELD was born in 1917 of Austrian parents, went to school in Italy and Switzerland, briefly studied mathematics in Zuerich and Vienna, and survived the war as a farmer in IrelaMd. In 1948 he joined the research group of Silvio Ceccato who subsequently founded the Center for Cybernetics in Milan. In 1963 he received a contract from the U.S. Air Force Office of Scientific Research for work in computational linguistics, and in 1966 he and his team moved to Athens, Georgia.
    [Show full text]
  • Sustainability and the Viable Systems Approach: Opportunities and Issues for the Governance of the Territory
    sustainability Article Sustainability and the Viable Systems Approach: Opportunities and Issues for the Governance of the Territory Sergio Barile, Bernardino Quattrociocchi, Mario Calabrese ID and Francesca Iandolo * ID Department of Management, Sapienza University, Rome 00161, Italy; [email protected] (S.B.); [email protected] (B.Q.); [email protected] (M.C.) * Correspondence: [email protected] Received: 22 January 2018; Accepted: 3 March 2018; Published: 13 March 2018 Abstract: The aim of this paper is to propose an approach for representing the territory as a dynamic system of intersubjective relationships that is able to guarantee not only the efficiency of the processes within organizations, but also effective results in the general context and a sustainable impact on the broader environment. This contribution is developed on the basis of the viable systems approach (vSa), which is intended as a theoretical framework for the analysis of social phenomena as well as for orienting government processes. Using this theoretical framework, the proposed approach leads to the representation of the territory as a viable system that is capable of surviving in its own context by creating value for the other entities of the context (public groups of governments, communities, investors, natural environment, future generations, non-human species), thus defining the essential conditions for a sustainable equilibrium. The consideration that social phenomena have to be analyzed by taking into account the different relations and interactions that orient the behavior of individuals and, as a consequence, their main collective manifestations, i.e., organizations, underlines the importance of shifting from a traditional reductionist approach to a systemic approach.
    [Show full text]
  • Cybernetic Aspects in the Agile Process Model Scrum
    ICSEA 2014 : The Ninth International Conference on Software Engineering Advances Cybernetic Aspects in the Agile Process Model Scrum Michael Bogner, Maria Hronek, Andreas Hofer, Franz Wiesinger University of Applied Sciences Upper Austria Department of Embedded Systems Engineering Hagenberg, Austria Email: [michael.bogner, maria.hronek, andreas.hofer, franz.wiesinger]@fh-hagenberg.at Abstract—Agile process models provide guidelines for modern It comprises various theories, primarily the theories of infor- software development. As one of their main purposes is to mation and communication, and the theory of regulation and complete projects under external influences as successfully as control. Without the laws of cybernetics, almost nothing would possible, the question arises as to how reliably and routinely work - no aircraft, no computer, no large city and no organism given project goals can be achieved by means of such process [4]. As one of the most fundamental and powerful sciences, models. This is all the more relevant as today, unfinished software cybernetics incorporates the essential mechanisms in order to projects frequently lack certain functionality, or missed project deadlines are still on the daily agenda in software development. cope with complexity: self-control, self-regulation and self- Therefore, research has been done to identify the coherences organization. In our world of increasing complexity, cyber- between agile process models and cybernetics. Cybernetics is a netics provides the invariant laws of functioning. This holds natural science based on biocybernetics which forms the basis true for biological, technical, physical, social and economic for well-functioning processes. It was analysed how it helps to systems, but most people are not aware of that [5] [6].
    [Show full text]