Karl, 2015. “Solar Energy Capture and Transformation in the Sea”
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide
antioxidants Review Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide Ivan Kushkevych 1,* , Veronika Bosáková 1,2 , Monika Vítˇezová 1 and Simon K.-M. R. Rittmann 3,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] (V.B.); [email protected] (M.V.) 2 Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic 3 Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Vienna, Austria * Correspondence: [email protected] (I.K.); [email protected] (S.K.-M.R.R.); Tel.: +420-549-495-315 (I.K.); +431-427-776-513 (S.K.-M.R.R.) Abstract: Hydrogen sulfide is a toxic compound that can affect various groups of water microorgan- isms. Photolithotrophic sulfur bacteria including Chromatiaceae and Chlorobiaceae are able to convert inorganic substrate (hydrogen sulfide and carbon dioxide) into organic matter deriving energy from photosynthesis. This process takes place in the absence of molecular oxygen and is referred to as anoxygenic photosynthesis, in which exogenous electron donors are needed. These donors may be reduced sulfur compounds such as hydrogen sulfide. This paper deals with the description of this metabolic process, representatives of the above-mentioned families, and discusses the possibility using anoxygenic phototrophic microorganisms for the detoxification of toxic hydrogen sulfide. Moreover, their general characteristics, morphology, metabolism, and taxonomy are described as Citation: Kushkevych, I.; Bosáková, well as the conditions for isolation and cultivation of these microorganisms will be presented. V.; Vítˇezová,M.; Rittmann, S.K.-M.R. -
Myoglobin with Modified Tetrapyrrole Chromophores: Binding Specificity and Photochemistry ⁎ Stephanie Pröll A, Brigitte Wilhelm A, Bruno Robert B, Hugo Scheer A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1757 (2006) 750–763 www.elsevier.com/locate/bbabio Myoglobin with modified tetrapyrrole chromophores: Binding specificity and photochemistry ⁎ Stephanie Pröll a, Brigitte Wilhelm a, Bruno Robert b, Hugo Scheer a, a Department Biologie I-Botanik, Universität München, Menzingerstr, 67, 80638 München, Germany b Sections de Biophysique des Protéines et des Membranes, DBCM/CEA et URA CNRS 2096, C.E. Saclay, 91191 Gif (Yvette), France Received 2 August 2005; received in revised form 2 March 2006; accepted 28 March 2006 Available online 12 May 2006 Abstract Complexes were prepared of horse heart myoglobin with derivatives of (bacterio)chlorophylls and the linear tetrapyrrole, phycocyanobilin. Structural factors important for binding are (i) the presence of a central metal with open ligation site, which even induces binding of phycocyanobilin, and (ii) the absence of the hydrophobic esterifying alcohol, phytol. Binding is further modulated by the stereochemistry at the isocyclic ring. The binding pocket can act as a reaction chamber: with enolizable substrates, apo-myoglobin acts as a 132-epimerase converting, e.g., Zn-pheophorbide a' (132S) to a (132R). Light-induced reduction and oxidation of the bound pigments are accelerated as compared to solution. Some flexibility of the myoglobin is required for these reactions to occur; a nucleophile is required near the chromophores for photoreduction (Krasnovskii reaction), and oxygen for photooxidation. Oxidation of the bacteriochlorin in the complex and in aqueous solution continues in the dark. © 2006 Elsevier B.V. -
A Study of Differences in Vertical Phosphorus Profiles Within the Sediments of Selected Florida Lakes As Related to Trophic Dynamics
University of Central Florida STARS Retrospective Theses and Dissertations 1976 A Study of Differences in Vertical Phosphorus Profiles Within the Sediments of Selected Florida Lakes as Related to Trophic Dynamics Edgar Allen Stewart III University of Central Florida, [email protected] Part of the Engineering Commons Find similar works at: https://stars.library.ucf.edu/rtd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Stewart, Edgar Allen III, "A Study of Differences in Vertical Phosphorus Profiles Within the Sediments of Selected Florida Lakes as Related to Trophic Dynamics" (1976). Retrospective Theses and Dissertations. 258. https://stars.library.ucf.edu/rtd/258 • A STUDY OF DIFFEREilCES IN VERTICAL PHOSPHORUS PRO FILES WliHIN THE SEDIMENTS OF SELECTED FLORIUA LAKES AS [{ELATED TO °fROPfiiC DYNArHCS BY EDGAR ALLE N STEHART III B.S., University of Florida, 1971 THESIS SubmHted o'n partial fulfiliment of the requirements for the degree of Mdster of Science °in the Graduate Studies Program of the Co 11 eye of Engi neer i ng of Florida Technological University , Or l ando, Florida 1976 • A STUDY OF DIFFERENCES IN VERTICAL PHOSPHOROUS PROFILES WITHIN THE SEDIMENTS OF SELECTED FLORIDA LAKES AS RELATED TO TROPHIC DYNAMICS BY E. ALLEIJ STEWART I II \ ABSTRACT Seve"a 1 Flori da 1akes with different docu'llcnted traphi c sta te indi ces were se lected for sediment analysis . -
Aerobic Respiration
Life is based on redox • All energy generation in biological systems is due to redox (reduction-oxidation) reactions Aerobic Respiration: + - C6H12O6 + 6 H2O ==> 6 CO2 + 24 H +24 e oxidation electron donor (aka energy source) + - (O2+ 4H + 4e ==> 2H2O) x6 reduction electron acceptor --------------------------------------- C6H12O6 + 6 O2 ==> 6 CO2 + 6 H2O overall reaction (24 electrons) Types of bacterial metabolisms • While eukaryotes only reduce O2 and oxidize organic compounds, prokaryotes can use a variety of electron donors and acceptors, organic and inorganic. - • Aerobic respiration: e acceptor is O2 - • Anaerobic respiration: e acceptor is not O2 • Fermentation: e- donor and acceptor are organic molecules • Chemolithotrophy: e- donor and acceptor are inorganic molecules • Phototrophy: e- donor is light and e- acceptor is either organic or inorganic all microorganisms energy source? chemical light chemotroph phototroph carbon source? carbon source? organic organic CO CO compound 2 compound 2 chemoheterotroph chemoautotroph photoheterotroph photoautotroph e- acceptor? Nitrifying and sulfur- use H O to reduce CO ? oxidizing bacteria 2 2 green non-sulfur and O Other than O 2 2 purple non-sulfur bacteria anoxygenic oxygenic photosynthesis: photosynthesis: green sulfur and most bacteria Organic Inorganic cyanobacteria compound compound purple sulfur bacteria fermentative organism anaerobic respiration: nitrate, sulfate, Fe(III) Aerobic or anaerobic respiration Chemolithotrophy Important molecules Redox Electron Carrier: for example the -
Biofilm Forming Purple Sulfur Bacteria Enrichment from Trunk River
Different biofilm-forming purple sulfur bacteria enriched from Trunk River Xiaolei Liu Abstract Three different types of biofilm were developed on the bottles of purple sulfur bacteria enrichments. The original inoculum is a piece of sea grass covered with purple biofilm that collected from Trunk River during the course. Microscopy imaging showed that two of the three biofilms were apparently composed of two major species. MonoFISH probing supports the recognition of purple sulfur bacteria as Chromatium in the class of gammaproteobacteria which grow together with a deltaproteobacteria species. Such a combination of Chromatium colonize with deltaproteobacteria species is also originally present in the purple biofilm on sea grass. Further work is needed to investigate the potential interactions between these two species. Introduction Purple sulfur bacteria are photosynthetic anearobes in the phylum of Proteobacteria (Fowler et al., 1984), which is capable of fixing carbon dioxide with sulfide other than water as the electron donors. Since oxygen is not produced during their photosynthesis these purple sulfur bacteria are also known as anoxygenic photoautotrophs. Most purple sulfur bacteria synthesize bacteriochlorophyll and carotenoids as their light-harvesting pigment complex (Iba et al., 1988). Because their photosynthesis reQuires anoxic condition and sulfide, these purple sulfur bacteria are often found in organic rich aquatic environments where sulfate reducing heterotrophic bacteria thrive. Both planktonic and benthic species of purple sulfur bacteria exist in different sulfidic environments. In the habitat of stratified meromictic lakes with external sulfate input, such as Green Lake, Mahoney Lake and Lake Cadagno, the phototrophic chemocline microbial communities are often dominated by planktonic purple sulfur bacteria living on sulfide diffused up from organic rich sediment (e.g. -
SCI Grade 7 Invasive Species
Invasive Species: A Study of the Disruption of an Ecosystem’s Dynamics Life Science: Ecosystems, Interactions, Energy, and Dynamics, Grade 7 This unit engages students in an exploration of ecosystem dynamics as seen through the study of invasive species. The unit focuses on the effects of resource availability in an ecosystem and changes in biological or physical components of an ecosystem on organism populations. Students explore how invasive species are introduced and what impact they have on local food webs; and how ecosystems react to the introduction of invasive species. This unit is designed for students in grade 7, using research, models, data analysis, and writing about invasive species to understand changes in an ecosystem. This Model Curriculum Unit is designed to illustrate effective curriculum that lead to expectations outlined in the Draft Revised Science and Technology/Engineering Standards (www.doe.mass.edu/STEM/review.html) as well as the MA Curriculum Frameworks for English Language Arts/Literacy and Mathematics. This unit includes lesson plans, a Curriculum Embedded Performance Assessment, and related resources. In using this unit it is important to consider the variability of learners in your class and make adaptations as necessary. This work is licensed by the MA Department of Elementary & Secondary Education under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (CC BY-NC-SA 3.0). Educators may use, adapt, and/or share. Not for commercial use. To view a copy of the license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ July 2015 Page 1 of 77 This document was prepared by the Massachusetts Department of Elementary and Secondary Education Mitchell D. -
102: Trophic Dynamics
102: Trophic Dynamics CORY C CLEVELAND, ALAN R TOWNSEND AND DIANE M MCKNIGHT Institute of Arctic and Aipine Research, University of Coiorado, Bouider, CO, US The carbon (C) and water cycles are intimately linked in terrestrial ecosystems. Thus, an understanding of the processes regulating transfers of water in terrestrial ecosystems requires an understanding of the carbon cycle, and in particular, the factors constraining carbon movement in the soii-piant-atmo sphere continuum and through trophic levels in ecosystems. The linkages between the C and the water cycles are mediated primarily through biological processes, and are bidirectional in nature. For example, precipitation (and hence ecosystem water avaiiabiiity) strongly regulates plant growth and biogeochemicai cycling in soils. Subsequently, plant growth and soil biogeochemistry strongly influence evaporation and atmospheric water vapor (and hence precipitation). Plant growth and soil processes are also cyciicaiiy linked. Thus, plant and soil interactions can have important implications for water cycling. However, while major climatic variables (including precipitation) may drive biological patterns and processes at large scales, other ecological interactions also regulate both plant and soil processes. An appreciation of these ecological factors is important to understanding the relationship between C and water, and to predicting how global environmental change is likely to affect the interactions between the C and water cycles. INTRODUCTION ecosystems is fnndamental to onr nnderstanding of ecosys tem water balance, both at present and in the fntnre. From an ecological perspective, plant photosynthesis regn- lates the carbon balance and prodnctivity of the biosphere, PRIMARY PRODUCTION controls linxes of C between the biosphere and the atmo Gross Primary Production sphere, and is responsible for virtnally all of the biochemi In 1942, Lindeman ontlined the fnndamental ecological cal prodnction of organic matter. -
Structure of the Biliverdin Radical Intermediate in Phycocyanobilin
Published on Web 01/21/2009 Structure of the Biliverdin Radical Intermediate in Phycocyanobilin:Ferredoxin Oxidoreductase Identified by High-Field EPR and DFT Stefan Stoll,*,† Alexander Gunn,† Marcin Brynda,†,| Wesley Sughrue,†,‡ Amanda C. Kohler,‡,⊥ Andrew Ozarowski,§ Andrew J. Fisher,†,‡ J. Clark Lagarias,‡ and R. David Britt*,† Department of Chemistry and Section of Molecular and Cellular Biology, UniVersity of California DaVis, 1 Shields AVenue, DaVis, California 95616, and National High Magnetic Field Laboratory, Florida State UniVersity, 1800 East Paul Dirac DriVe, Tallahassee, Florida 32310 Received October 31, 2008; E-mail: [email protected] (S.S.); [email protected] (R.D.B.) The cyanobacterial enzyme phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the two- step four-electron reduction of biliverdin IXR to phycocyanobilin, the precursor of biliprotein chromophores found in phycobilisomes. It is known that catalysis proceeds via paramagnetic radical intermediates, but the structure of these intermediates and the transfer pathways for the four protons involved are not known. In this study, high-field electron paramagnetic resonance (EPR) spectroscopy of frozen solutions and single crystals of the one-electron reduced protein-substrate complex of two PcyA mutants D105N from the cyanobacteria Synechocystis sp. PCC6803 and Nostoc sp. PCC7120 are examined. Detailed analysis of Synechocystis D105N mutant spectra at 130 and 406 GHz reveals a biliverdin radical with a very narrow g tensor with principal values 2.00359(5), 2.00341(5), and 2.00218(5). Using density-functional theory (DFT) computations to explore the possible protonation states of the biliverdin radical, it is shown that this g tensor is consistent with a biliverdin radical where the carbonyl oxygen atoms on both the A and the D pyrroleringsareprotonated.Thisexperimentallconfirmsthereactionmechanismrecentlyproposed(Tu, et al. -
Long-Term Nutrient Enrichment Decouples Predator and Prey Production
Long-term nutrient enrichment decouples predator and prey production John M. Davisa,1,2, Amy D. Rosemonda, Susan L. Eggertb, Wyatt F. Crossa,3, and J. Bruce Wallacec aOdum School of Ecology, University of Georgia, Athens, GA 30602; bUS Department of Agriculture Forest Service, Northern Research Station, Grand Rapids, MN 55744; and cDepartment of Entomology, University of Georgia, Athens, GA 30602 Edited by William Bowden, University of Vermont, and accepted by the Editorial Board November 23, 2009 (received for review July 28, 2009) Increased nutrient mobilization by human activities represents one amplify variability in predator–prey cycles and even extirpate of the greatest threats to global ecosystems, but its effects on predator populations (i.e., “the paradox of enrichment”) (9). ecosystem productivity can differ depending on food web structure. More recent models predict that nutrient enrichment can fur- When this structure facilitates efficient energy transfers to higher ther alter predator–prey interactions by increasing the dominance trophic levels, evidence from previous large-scale enrichments of predator-resistant primary consumers, diverting energy flow to suggests that nutrients can stimulate the production of multiple predator-resistant pathways that are relatively inaccessible to top trophic levels. Here we report results from a 5-year continuous predators (10, 11). Small-scale mesocosm experiments have nutrient enrichment of a forested stream that increased primary shown that such a reduction in trophic efficiency can ultimately consumer production, but not predator production. Because of decrease predator production, even with sustained increases in strong positive correlations between predator and prey production primary consumer productivity (i.e., resulting in a trophic decou- (evidence of highly efficient trophic transfers) under reference pling) (12, 13). -
Bacteriochlorophyll Biosynthesis in Rhodopseudomonas Capsulata in Response to Oxygen
JOURNAL OF BACTERIOLOGY, Nov. 1983, p. 686-694 Vol. 156, No. 2 0021-9193/83/110686-09$02.00/0 Copyright © 1983, American Society for Microbiology Transcriptional Regulation of Several Genes for Bacteriochlorophyll Biosynthesis in Rhodopseudomonas capsulata in Response to Oxygen ALAN J. BIELt AND BARRY L. MARRSt* E. A. Doisy Department ofBiochemistry, Saint Louis University School of Medicine, St. Louis, Missouri 63104 Received 27 June 1983/Accepted 23 August 1983 Although it has been shown that bacteriochlorophyll synthesis in Rhodopseudo- monas capsulata is repressed by oxygen and high light intensity, few details of regulation by these environmental factors are known, primarily owing to a lack of assays for the biosynthetic enzymes. We have examined regulation at the transcriptional level by isolating and studying fusions between the Mu dl(Apr lac) phage and various bch genes. In these strains, the lacZ gene of the phage is under the control of bch gene promoters. We have found that atmospheric oxygen tension (20% 02) reduces the expression of these fusions at least twofold compared with low oxygen tension (2% 02). Therefore, transcription of the bchA, bchB, bchC, bchG, and bchH genes is regulated in response to oxygen. In Rhodopseudomonas capsulata, the biosyn- by whole-cell suspensions of Rhodopseudo- thesis of protoheme and bacteriochlorophyll fol- monas spheroides. This conversion only oc- lows a common pathway from the condensation curred when the cells were grown under low of succinyl coenzyme A with glycine to the oxygen tension. However, further work was formation of protoporphyrin IX. Biosynthesis of hampered by the inability of cell extracts to protoheme and bacteriochlorophyll proceeds catalyze the chelation of magnesium. -
Finding the Final Pieces of the Vitamin B12 Biosynthetic Jigsaw
COMMENTARY Finding the final pieces of the vitamin B12 biosynthetic jigsaw Martin J. Warren* Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom ver since Dorothy Hodgkin gate anaerobe Eubacterium limosum min B12 deficiency in the photosynthetic solved the structure of vitamin (13). Here, labeling revealed that the bacterium Rhodobacter capsulatus (18). B12 some 50 years ago, research- DMB framework was synthesized anaer- Campbell et al. (1) demonstrate that ers have been puzzling over how obically from erythrose, glycine, for- their S. meliloti bluB mutant strain is Ethis amazing molecular jigsaw is pieced mate, glutamine, and methionine. also a B12 auxotroph but, more specifi- together. In essence, vitamin B12 is However, as with the synthesis of the cally, that it is deficient in the biosyn- a modified tetrapyrrole (corrinoid ring) corrin ring, it also was noted that some thesis of DMB. There appears to be to which is attached either an upper ad- organisms synthesized DMB aerobically a certain amount of serendipity in the enosyl or methyl group and a lower and required molecular oxygen to allow isolation of their bluB strain, because base, usually dimethylbenzimidazole its synthesis (14). In the aerobic path- there is no obvious connection between (DMB) (Fig. 1). Although significant way, it was shown that riboflavin is a requirement for B12 and the produc- success has been achieved toward an transformed into DMB through FMN tion of succinyloglycan. The blu prefix understanding of the construction of the (15) (Fig. 1). This amazing transforma- refers to the fact that the blu genes are corrin ring component of the coenzyme, tion, for which no precedent exists in required to make an aerobic culture of there has been a paucity of information chemistry, sees the C-2 carbon of DMB R. -
Picoplankton Distribution and Activity in the Deep Waters of the Southern Adriatic Sea
water Article Picoplankton Distribution and Activity in the Deep Waters of the Southern Adriatic Sea Danijela Šanti´c 1,* , Vedrana Kovaˇcevi´c 2, Manuel Bensi 2, Michele Giani 2 , Ana Vrdoljak Tomaš 1 , Marin Ordulj 3 , Chiara Santinelli 2, Stefanija Šestanovi´c 1, Mladen Šoli´c 1 and Branka Grbec 1 1 Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovi´ca63, POB 500, 21000 Split, Croatia 2 National Institute of Oceanography and Applied Geophysics, Borgo Grotta Gigante 42/c, 34010 Sgonico (Ts), Italy 3 University of Split, University Department of Marine Studies, Ruđera Boškovi´ca37, 21000 Split, Croatia * Correspondence: [email protected]; Tel.: +385-21-408-006; Fax: +385-21-358-650 Received: 19 July 2019; Accepted: 8 August 2019; Published: 10 August 2019 Abstract: Southern Adriatic (Eastern Mediterranean Sea) is a region strongly dominated by large-scale oceanographic processes and local open-ocean dense water formation. In this study, picoplankton biomass, distribution, and activity were examined during two oceanographic cruises and analyzed in relation to environmental parameters and hydrographic conditions comparing pre and post-winter phases (December 2015, April 2016). Picoplankton density with the domination of autotrophic biomasses was higher in the pre-winter phase when significant amounts of picoaoutotrophs were also found in the meso-and bathy-pelagic layers, while Synechococcus dominated the picoautotrophic group. Higher values of bacterial production and domination of High Nucleic Acid content bacteria (HNA bacteria) were found in deep waters, especially during the post-winter phase, suggesting that bacteria can have an active role in the deep-sea environment. Aerobic anoxygenic phototrophic bacteria accounted for a small proportion of total heterotrophic bacteria but contributed up to 4% of bacterial carbon content.