Biopolymers: Making Materials Nature's Way

Total Page:16

File Type:pdf, Size:1020Kb

Biopolymers: Making Materials Nature's Way Biopolymers: Making Materials Nature's Way September 1993 OTA-BP-E-102 NTIS order #PB94-107638 Recommended Citation: U.S. Congress, Office of Technology Assessment, Biopolymers: Making Materials Nature’s Way-Background Paper, OTA-BP-E-102 (Washington, DC: U.S. Government Printing Office, September 1993). Foreword ver the past century, global economic activities have increased more than fifty- fold. This extraordinary growth has raised serious concerns about current pat- terns of production and consumption. As society has increased its understanding of the environmental implications of its industrial practices, greater attention haso been given to the concept of sustainable economic systems that rely on renewable sources of energy and materials. The use of biologically derived polymers—biopoly - mers-could emerge as an important component of this new paradigm of economic development. By transforming agricultural or marine feedstocks, or harnessing the enzymes found in nature, a new class of renewable, biodegradable, and biocompatible materials is being introduced. Emerging applications of biopolymers range from packaging to indus- trial chemicals, to medical implant devices, to computer storage media. In addition to producing “green” materials with unique physicaI and functional properties, the process- es used to create biopolymers could lead to new manufacturing approaches that minimize energy consumption and waste generation. As the United States and other countries address a growing list of environmen- tal problems, the possibility of using proteins, carbohydrates, and other biopolymers to meet the materials requirements of an expanding economy is likely to receive increasing attention. However, as with other nascent technologies, difficult engineering and eco- nomic hurdles stand in the way of biopolymer commercialization efforts. With its current areas of emphasis, the extensive U.S. public investment in agricultural science and biotechnology can only be expected to provide modest assistance in overcoming some of these barriers. Advances in biopolymer technology have been driven principally by industry and academia, with Federal programs being relatively limited in scope. Because biopolymers have applications in many different sectors of the economy, their wide- spread use could have important competitive implications. At present, Japan and the European Community are sponsoring major programs in biopolymer science and manu- facturing. Due to the potential importance of biopolymer technology, the Federal role in this interdisciplinary field warrants closer scrutiny. This Background Paper was requested by the Senate Committee on Energy and Natural Resources. The study provides a basic introduction to biopolymer technology; profiles some of the more promising polymer materials; reviews research activities in the United States, Europe, and Japan; and describes the principal technical challenges and regulatory issues that may affect biopolymer commercialization efforts. OTA appreciates the assistance provided by its contractors and the many reviewers whose comments helped to ensure the accuracy of the study. Roger C. Herdman, Director .,. Ill Reviewers and Contributors G. Graham AlIan Dai Kim Julie Saad University of Washington Hiechst-Celanese Research Co. ICI America/Zeneca Bio Products Norbert Bikales Gretchen Kolsrud Steven Scale U.S. National Science Foundation U.S. Congress Tennessee Valley Authority Office of Technology Assessment James Brown Karen Shannon U.S. National Science Foundation Randolf Lewis Oblon, Spivak, McClelland, Maier, University of Wyoming and Neustadt, P.C. Robert Campbell U.S. Army Research Office Bernard Liebler Steven Sikes Health Industry Manufacturers University of South Alabama David Clements Association U.S. Department of Agriculture Kenneth Smith Congressional Research Service David Manyak National Sanitation Foundation Adheron Corp. Yoshiharu Doi Rodney Sobin Institute of Physical and Chemical Michael Marron U.S. Congress Research (RIKEN), Japan Office of Naval Research Office of Technology Assessment Greg Eyring Edward Mueller Graham Swift U.S. Congress U.S. Food and Drug Administration Rohm and Haas Co. Office of Technology Assessment Wolf-Rudiger Muller Ken Tracy Thomas Barrington Stuttgart University, Germany Warner-Lambert Co. Ashland Chemical Co. Ramani Narayan John Walker Joel Hirschorn Michigan Biotechnology Institute U.S. Environmental Protection Hirschorn & Associates, Inc. Agency D.A. Nicholson David Jensen Procter and Gamble Co. A.P. Wheeler U.S. Congress Clemson University Office of Technology Assessment Norman Oblon Oblon, Spivak, McClelland, Maier, David Kaplan and Neustadt, P.C. U.S. Army Research Development & Engineering Kevin O’Connor Center U.S. Congress Office of Technology Assessment NOTE: OTA appreciates and is grateful for the valuable assistance and thoughtful critiques provided by the reviewers and contributors. The reviewers and contributors do not, however, necessarily approve, disapprove, or endorse this background paper,OTA assumes full responsibility for the background paper and the accuracy of its contents. iv —- . —.—-—- .— Preject Staff Peter D. Blair Matthew Weinberg CONTRACTORS Assistant Director, OTA Project Director Oliver Peoples (beginning February 1993) Anthony Sinskey Industry, Commerce, Joe Raguso Bio Information Associates and International Analyst Boston, MA Security Division Energy and Materials Program ADMINISTRATIVE STAFF Florence Poillon Manager Editor (until August 1993) Lillian Chapman Office Administrator Lionel S. Johns Assistant Director, OTA Linda Long (until February 1993) Administrative Secretary Energy, Materials, and International Tina Aikens Security Division Secretary Emilia Govan Energy and Materials Program Manager (beginning August 1993) v contents 1 Introduction 1 Polymers: A Primer 4 Biopolymers 5 Impact of Genetic Engineering on Biopolymer Technology 8 The Role of Chemistry in Biopolymer Technology 12 The Policy Context 12 2 Technical Overview of Biopolymer Field 19 Selected Polymers Produced by Microbial Systems 19 Selected Polymers of Plants and Higher Organisms 35 Polymers Produced by Chemical Polymerization of Biological Starting Materials 43 3 Biopolymer Research and Development in Europe and Japan 51 Europe 51 Japan 59 4 Biopolymer Research and Development in the United States 67 Activities of the Federal Government 67 Private Sector Activities 73 vii — Introduction 1 hroughout history, humans have relied extensively on biological materials like wool, leather, silk, and cellu- lose.l Today, such natural polymers can be tailored to meet specific needs. The advent of modern biotechnol- ogyT has fundamentally transformed the way scientists view organisms and the materials they produce. For example, the genetic manipulation of some plant species could give rise to a new source of structural polymers that supplant traditional commodity plastics. By harnessing the enzymes found in nature, or transforming agricultural or marine feedstocks, a new class of biodegradable, biocompatible, and renewable materials is on the horizon. Polymers play a central role both in the natural world and in modern industrial economies. Some natural polymers, such as nucleic acids and proteins, carry and manipulate essential biological information, while other polymers such as the polysaccharides—nature’s family of sugars-provide fuel for cell activity and serve as structural elements in living systems. With advances in chemistry and materials science, a vast array of novel synthetic polymers has been introduced over the past century. Synthetic polymers such as nylon, polyethylene, and 1 These four materials are natural polymers. Polymers are substances composed of repeating structural units that are linked together to form long chains. 1 .——. 2 Biopolymers: Making Materials Nature’s Way polyurethane have transformed daily life.2 From precursors or are produced by using the methods automobile bodies to packaging, compact discs to of modern biotechnology.6 Such biopolymers clothing, and food additives to medicine, man- may prove to have a variety of environmental made polymers pervade virtually every aspect of benefits. Possible applications range from agri- modern society.3 culturally or bacterially derived thermoplastics However, the growing reliance on synthetic that are truly biodegradable, to novel medical polymers has raised a number of environmental materials that are biocompatible, to water treat- and human health concerns. Most plastic materi- ment compounds that prevent mineral buildup als, for instance, are not biodegradable and are and corrosion.7 However, because materials typi- 4 derived from nonrenewable resources. The very cally have many different properties, in certain properties of durability and strength that make applications biopolymers may not necessarily these materials so useful also ensure their persis- provide environmental advantages over conven- tence in the environment and complicate their 8 tional polymers. In practice, it is extremely disposal. In addition, the synthesis of some difficult to develop testing methods that assess polymeric materials involves the use of toxic 9 the environmental characteristics of materials. compounds or the generation of toxic bypro- ducts.5 In recent years, a number of significant techni- These problems have focused increased atten- cal developments, particularly in the area of tion on polymers that are derived from biological genetic engineering, have enhanced the commer- 2 These
Recommended publications
  • A Review on Revolutionary Natural Biopolymer-Based Aerogels for Antibacterial Delivery
    antibiotics Review A Review on Revolutionary Natural Biopolymer-Based Aerogels for Antibacterial Delivery Esam Bashir Yahya 1 , Fauziah Jummaat 2,*, A. A. Amirul 3,* , A. S. Adnan 2, N. G. Olaiya 1 , C. K. Abdullah 1 , Samsul Rizal 4, M. K. Mohamad Haafiz 1 and H. P. S. Abdul Khalil 1,* 1 School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; [email protected] (E.B.Y.); [email protected] (N.G.O.); [email protected] (C.K.A.); mhaafi[email protected] (M.K.M.H.) 2 Management Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam, Selangor 40100, Malaysia; [email protected] 3 School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia 4 Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; [email protected] * Correspondence: [email protected] (F.J.); [email protected] (A.A.A.); [email protected] (H.P.S.A.K.) Received: 10 September 2020; Accepted: 27 September 2020; Published: 28 September 2020 Abstract: A biopolymer-based aerogel has been developed to become one of the most potentially utilized materials in different biomedical applications. The biopolymer-based aerogel has unique physical, chemical, and mechanical properties and these properties are used in tissue engineering, biosensing, diagnostic, medical implant and drug delivery applications. Biocompatible and non-toxic biopolymers such as chitosan, cellulose and alginates have been used to deliver antibiotics, plants extract, essential oils and metallic nanoparticles. Antibacterial aerogels have been used in superficial and chronic wound healing as dressing sheets. This review critically analyses the utilization of biopolymer-based aerogels in antibacterial delivery.
    [Show full text]
  • A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds
    polymers Review A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds M. Sai Bhargava Reddy 1 , Deepalekshmi Ponnamma 2 , Rajan Choudhary 3,4,5 and Kishor Kumar Sadasivuni 2,* 1 Center for Nanoscience and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University, Hyderabad 500085, India; [email protected] 2 Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; [email protected] 3 Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia; [email protected] 4 Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia 5 Center for Composite Materials, National University of Science and Technology “MISiS”, 119049 Moscow, Russia * Correspondence: [email protected] Abstract: Tissue engineering (TE) and regenerative medicine integrate information and technology from various fields to restore/replace tissues and damaged organs for medical treatments. To achieve this, scaffolds act as delivery vectors or as cellular systems for drugs and cells; thereby, cellular material is able to colonize host cells sufficiently to meet up the requirements of regeneration and repair. This process is multi-stage and requires the development of various components to create the desired neo-tissue or organ. In several current TE strategies, biomaterials are essential compo- nents. While several polymers are established for their use as biomaterials, careful consideration of the cellular environment and interactions needed is required in selecting a polymer for a given Citation: Reddy, M.S.B.; Ponnamma, application.
    [Show full text]
  • Biopolymer Films and Potential Applications to Meat and Poultry Products
    FRESH MEAT/PACKAGING II Biopolymer Films and Potential Applications to Meat and Poultry Products Paul L. Dawson, James C. Acton* and Amod A. Ogale Introduction developing bio-based packaging in Europe and some U.S. companies are utilizing modified starch materials. Commer- Large amounts of packaging waste are discarded into the cial raw materials include polylactate produced by Cargill U.S. municipal waste system each year. Over 23 million Dow (trade name NatureWorks PLA) and by Mitsui under tons of plastic packaging waste was generated in 1998 (EPA the trade name LACEA. Other starch-based raw packaging 1999). To reduce the amount of synthetic polymer waste, a materials include Novamont (Mater Bi), Biotec (Bioplast), considerable amount of research has been devoted to the and Earth (Earth Shell). These materials require chemical production of bio-based polymer films derived from natural modification of native starch materials and have been tested sources. The use of plant material to form films is an active as molded containers (Salvage, 2001). Much of the re- research topic (Jane et al., 1996). As new applications for search on biopolymer films has involved the production of such materials are still emerging, characterization of renew- films from the method of solvent casting. In contrast, ther- able biopolymers is very important if these materials are to mal processing methods such as compression molding and be used for packaging applications. extrusion have received limited attention. Jane and Wang A question concerning the use of biopolymers as packag- (1996) and Huang et al. (1995) reported on an extru- ing materials is why should these materials be used instead sion/molding technique, whereas Paetau et al.
    [Show full text]
  • Sergio Rotstein (Pfizer)
    What About the Big Guys? The emerging HELM standard for macromolecular representation and the Pistoia Alliance Sergio H. Rotstein – Pfizer Incorporated [email protected] Introduction • Pfizer Goal: “Top-tier biotherapeutics company by 2015” –But informatics infrastructure was inadequate • Biomolecules Team Goal: Remediate infrastructure to enable biomolecule –Registration –Visualization –Analysis and design –Workflows • Many companies facing a similar challenge • Pistoia HELM Goal: Facilitate the public release of HELM, providing a standard for data exchange and reducing need for other companies to develop their own equivalent systems 2 What is a “Biomolecule”? For our purposes, anything that is not a small molecule is ASOs a biomolecule siRNAs Peptides Goal • Eliminate biomolecule Therapeutic Antibodies Proteins penalty • Make these entities first- class citizens of the Informatics tool portfolio ADCs Vaccines 3 So what’s the problem? G A Small Molecule Tools P Sequence-Based Tools HN O Small O N O Sequences Molecules Biomolecules 4 “Fit-for-Purpose” Structure Representation We need to enable the representation, manipulation and visualization of each molecule type in a way that is appropriate for its size and complexity 5 Fit for Purpose: “Monomer” Level • While you could draw out an oligonucleotide like this: • The representation is likely more intuitive / practical: 6 Fit for Purpose: Sequence Level • But even the monomer level representation would not scale well to proteins with hundreds of amino acids. Larger molecules require a more sequence-oriented representation: 7 Fit for Purpose: Component Level • For multi-component structures such as antibody drug conjugates, component level representations are required to enable each component to dealt with separately.
    [Show full text]
  • A Resonant Capacitive Test Structure for Biomolecule Sensing
    A RESONANT CAPACITIVE TEST STRUCTURE FOR BIOMOLECULE SENSING Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Electrical Engineering By Danielle Nichole Bane UNIVERSITY OF DAYTON Dayton, Ohio August, 2015 A RESONANT CAPACITIVE TEST STRUCTURE FOR BIOMOLECULE SENSING Name: Bane, Danielle Nichole APPROVED BY: Guru Subramanyam, Ph.D. Karolyn M. Hansen, Ph.D. Advisor Committee Chairman Advisor Committee Member Professor and Chair, Department of Professor, Department of Biology Electrical and Computer Engineering Partha Banerjee, Ph.D Committee Member Professor, Department of Electrical and Computer Engineering John G. Weber, Ph.D. Eddy M. Rojas, Ph.D., M.A., P.E. Associate Dean Dean School of Engineering School of Engineering ii c Copyright by Danielle Nichole Bane All rights reserved 2015 ABSTRACT A RESONANT CAPACITIVE TEST STRUCTURE FOR BIOMOLECULE SENSING Name: Bane, Danielle Nichole University of Dayton Advisors: Dr. Guru Subramanyam and Dr. Karolyn M. Hansen Detection of biomolecules in aqueous or vapor phase is a valuable metric in the assessment of health and human performance. For this purpose, resonant capacitive sensors are designed and fab- ricated. The sensor platform used is a resonant test structure (RTS) with a molecular recognition element (MRE) functionalized guanine dielectric layer used as the sensing layer. The sensors are designed such that the selective binding of the biomarkers of interest with the MREs is expected to cause a shift in the test structure’s resonant frequency, amplitude, and phase thereby indicating the biomarker’s presence. This thesis covers several aspects of the design and development of these biosensors.
    [Show full text]
  • Biopolymer Production by Bacterial Species Using Glycerol, a Byproduct of Biodiesel
    International Journal of Scientific and Research Publications, Volume 3, Issue 8, August 2013 1 ISSN 2250-3153 Biopolymer production by Bacterial Species using Glycerol, a byproduct of biodiesel S.Sathianachiyar*, Aruna Devaraj** *Research Scholar, Natural Resource Management Centre, Periyakulam,Theni. Tamil Nadu **Director Natural Resource Management Centre, Periyakulam, Theni Tamil Nadu Abstract- Biopolymer producing bacterial species (Bacillus Azotobacter vinelandii, Bacillus subtilis, Haemophilus influenzae and Pseudomonas )were isolated from rhizosphere soil of and Escherichia coli and also in eukaryotic membranes like in Jatropha curcas by using standard morphological, cultural and mitochondria and microsomes as complexes of calcium ions biochemical characteristics.PHB production by bacterial sps (Ca2+) and polyphosphates in a ratio of 2 : 1 : 2 (Reusch,1992). were screened by Sudan black B staining method. The main aim of the present study to production of biopolymers using crude The production of biodiesel generates significant glycerol is a byproduct of biodiesel, act as a sole carbon source quantities of co-product stream rich in glycerol. New uses for for PHB producing microorganisms, under the limitation of glycerol have been the subject of much research to alleviate a nitrogen and phosphate . Ammonium molybdate and ammonium market glut of this commodity and to leverage the economics of sulphate were used in nitrogen deficient medium instead of biodiesel production. One potential use of glycerol is in industrial ammonium chloride. Maximum biopolymer production were fermentation where it can be employed as a substrate for noted in Bacillus spp13.3 gm/100ml.Pseudomonas spp yielded microbial growth and the biosynthesis of microbial products. The 11.2 gm/100 ml.
    [Show full text]
  • Biomolecular Materials. Report of the January 13-15, 2002 Workshop
    Cover Illustrations (from top): Molecular graphics representation looking into the channel of the a hemolysin pore. Song!et al., 1996 (Figure 24). Complexation of F-actin and cationic lipids leads to the hierarchical self-assembly of a network of tubules; shown here in cross-section. Wong 2000 (Figure 9). Depiction of an array of hybrid nanodevices powered by F1-ATPase. Soong et al., 2000 (Figure 1). Electronmicrograph, after fixation, of neuron from the A cluster of the pedal ganglia in L. stagnalis immobilized within a picket fence of polyimide after 3 days in culture on silicon chip. (Scale bar = 20!mm.). Zeck and Fromherz 2001 (Figure 16). Biomolecular Materials Report of the January 13-15, 2002 Workshop Supported by the Basic Energy Sciences Advisory Committee U.S. Department of Energy Co-Chairs: Mark D. Alper Materials Sciences Division Lawrence Berkeley National Laboratory and Department of Molecular and Cell Biology University of California at Berkeley Berkeley, CA 94720 Samuel I. Stupp Department of Materials Science and Engineering Department of Chemistry Feinberg School of Medicine Northwestern University Evanston, IL 60208 This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract DE-AC03-76SF00098 This report is dedicated to the memory of Iran L. Thomas, Deputy Director of the Department of Energy Office of Basic Energy Sciences and Director of the Division of Materials Sciences and Engineering until his death in February, 2003. Iran was among the first to recognize the potential impact of the biological sciences on the physical sciences, organizing workshops and initiating programs in that area as early as 1988.
    [Show full text]
  • Batch Cultivation Model for Biopolymer Production, Chem
    C. E. Torres-Cerna et al., Batch Cultivation Model for Biopolymer Production, Chem. Biochem. Eng. Q., 31 (1) 89–99 (2017) 89 Batch Cultivation Model for Biopolymer Production This work is licensed under a a,◊ a,◊,* b Creative Commons Attribution 4.0 C. E. Torres-Cerna, A. Y. Alanis, I. Poblete-Castro, International License and E. A. Hernandez-Vargasc,d,* aCUCEI, Universidad de Guadalajara, Blvd. Marcelino Garcia Barragan 1421, Col. Olimpica, Guadalajara, Jalisco, México, C. P. 44430 bUniversidad Andrés Bello, Faculty of Biological Sciences, Center for Bioinformatics and Integrative Biology, Biosystems Engineering Laboratory, 8340176 Santiago, Chile cSystems Medicine of Infectious Diseases, Helmholtz Centre doi: 10.15255/CABEQ.2016.952 for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany Original scientific paper dFrankfurt Institute for Advanced Studies (FIAS), Received: July 19, 2016 Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany Accepted: March 7, 2017 This paper presents a mathematical model to evaluate the kinetics of two different Pseudomonas putida strains, wild and mutant-type for the microbial production of poly- hydroxyalkanoates (PHAs). Model parameters were estimated to represent adequately experimental data from the batch reactor using the differential evolution algorithm. Based on the mathematical model with the best-fit parameter values, simulations suggested that the high production of PHA by the mutant strain can be attributed not only to the higher production of PHA but also to a reduction in the consumption rate of the substrates of approximately 66 %. Remarkably, the cell growth rate value is higher for the wild type than the mutant type, suggesting that the PHA increase is not only to an increase in the production rate but also to the metabolism of the cells.
    [Show full text]
  • Production of Biopolymer from Bacteria - a Review
    Environmental and Earth Sciences Research Journal Vol. 8, No. 2, June, 2021, pp. 91-96 Journal homepage: http://iieta.org/journals/eesrj Production of Biopolymer from Bacteria - A Review Ranganadha Reddy Aluru1*, Sravani Koyi1, Sanjana Nalluru1, Chandrasekhar Chanda2 1 Department of Biotechnology, VFSTR, Vadlamudi, Guntur 522213, Andhra Pradesh, India 2 Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur 522502, Andhra Pradesh, India Corresponding Author Email: [email protected] https://doi.org/10.18280/eesrj.080205 ABSTRACT Received: 10 March 2021 Polyhydroxyalkanoates (PHA) producers have been found in a variety of ecological Accepted: 29 May 2021 niche’s that are naturally or unintentionally exposed to high organic matter or growth limiting substances such as dairy wastes, hydrocarbon contaminated sites, pulp and paper Keywords: mill wastes, agricultural wastes, activated sludges of treatment plants, rhizosphere, and polyhydroxyalkanoates, bacteria, biopolymer, industrial effluents. Few of them also create extracellular byproducts such as bioplastic, polyhydroxubutyrate rhamnolipids, extracellular polymeric compounds, and biohydrogen gas. These microbes can use waste materials of various origin as substrates while producing valuable bioproducts such as PHB. As a result, these microbes are industrially important candidates for production; Implementation of an integrated system to separate their by- products (intracellular and extracellular) could be an economical method. In this study, we reviewed several microorganisms that live in diverse environmental situations and are stimulated to collect carbon as polyhydroxyalkanoates granules, as well as variables that influence their production and composition. Ultimately, the current cost of bioplastic manufacture from stored PHA granules can be decreased by investigating capabilities such as dual generation of microorganisms and utilization of wastes as renewable substrate under optimal growth conditions in either a batch or continuous process.
    [Show full text]
  • Biopolymer Networks and Cellular Mechanosensing
    University of Pennsylvania ScholarlyCommons Institute for Medicine and Engineering Papers Institute for Medicine and Engineering June 2004 Biopolymer Networks and Cellular Mechanosensing Penelope Georges University of Pennsylvania Oliver Wagner University of Pennsylvania Tony Yeung University of Pennsylvania Paul Janmey University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/ime_papers Georges, Penelope; Wagner, Oliver; Yeung, Tony; and Janmey, Paul, "Biopolymer Networks and Cellular Mechanosensing" (2004). Institute for Medicine and Engineering Papers. 20. https://repository.upenn.edu/ime_papers/20 Reprinted from Gravitational and Space Biology, Volume 17, Issue 2, June 2004, pages 45-50. Publisher URL: http://gravitationalandspacebiology.org/index.php/journal This paper is posted at ScholarlyCommons. https://repository.upenn.edu/ime_papers/20 For more information, please contact [email protected]. Biopolymer Networks and Cellular Mechanosensing Abstract Cells and tissues are mechanical as well as biochemical machines, and cellular response to mechanical cues can have as large an influence on structure and function as chemical signals. The mechanical properties of cells are largely determined by networks of semiflexible polymers forming the cytoskeleton, which has viscoelastic properties that differ in important ways from the viscoelasticity of common synthetic materials. Two such features are the high resistance to deformation achieved by a remarkably low volume fraction of protein, and the increase in stiffness that occurs when the cytoskeletal network is deformed. The actin filaments, microtubules and intermediate filaments that comprise the cytoskeleton of most cell types are linear polymers with some important similarities but also some fundamental differences. The stiffness of the individual polymer types is vastly different, with persistence lengths ranging from 1 mm for the 24 nm diameter microtubules to a few 100 nm for the 10-14 nm diameter intermediate filaments.
    [Show full text]
  • Bioplastic and Biopolymer Production - Ian W
    BIOTECHNOLOGY - Vol. V - Bioplastic and Biopolymer Production - Ian W. Sutherland BIOPLASTIC AND BIOPOLYMER PRODUCTION Ian W. Sutherland, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh, United Kingdom Keywords: ABC-transporters, Archae, Bacterial alginate, Bioplastics, Biopolymers, Biosynthesis, Carbon and energy reserves,Cellulose, Curdlan, Dextrans, Dextransucrase, β-D-Glucans, α-D-Glucans, Exopolysaccharides (EPS), Fructans, Gellan, Heparinm, Heteropolysaccharides , Hyaluronic Acid, Levan, levansucrase, Negative regulation, Polyhydroxyalkanoic acids (PHAs), β-hydroxybutyric acid (PHB), Polysaccharides, Positive regulation, Regulation of synthesis, Scleroglucan, lucan, Xanthan Contents 1. Bioplastics 1.1. Introduction 1.2. Occurrence & Composition 1.3. Biosynthesis 1.4. Products 1.5. Production and Recovery 2. Biopolymers (Polysaccharides) 2.1. Introduction 2.2. Occurrence and Composition 2.3. Polysaccharide biosynthesis 2.3.1. Biosynthetic mechanisms 2.3.2. Genetics and Regulation of Exopolysaccharides Synthesis 2.4. Commercial Products 2.4.1. β-D-Glucans 2.4.2. α-D-Glucans 2.4.3. Bacterial Alginates 2.4.4. Gellan and Related Polymers 2.4.5. Hyaluronic Acid and Heparin 2.4.6. Succinoglycan and Galactoglucans 2.4.7. XanthanUNESCO – EOLSS 2.5. Production of exopolysaccharides 3. Future Developments 3.1. Bioplastics SAMPLE CHAPTERS 3.2. Biopolymers Glossary Bibliography Biographical Sketch Summary Micro-organisms provide a source of bioplastics and biopolymers (polysaccharides) from renewable sources. Although currently considerably more expensive than plastic ©Encyclopedia of Life Support Systems (EOLSS) BIOTECHNOLOGY - Vol. V - Bioplastic and Biopolymer Production - Ian W. Sutherland derived from petrochemicals, bacteria have proved capable of yielding bioplastics with comparable properties. They have the additional advantage of being biodegradable. The processes, which have been developed for their production, have been optimised and a range of products obtained.
    [Show full text]
  • Amino Acids, Peptides, and Proteins. Monomer Unit: Α-Amino Acids H NH2 R = Sidechain R CO2H
    Chapter 27: Amino Acids, Peptides, and Proteins. monomer unit: α-amino acids H NH2 R = sidechain R CO2H !- Amino Acid Biopolymer: the monomeric amino acids are linked through an amide bond (the carboxylic acids of one AA with the α-amino group of a second) R R1 R 1 H + 2 - H2O N CO2 H3N CO2 H3N H3N CO2 C-terminus O R N-terminus 2 O R O R O R O H 2 H 4 H 6 H N N N N N N N N H H H H R1 O R3 O R5 O R7 Peptide or protein (polypeptide) peptide (< 50 amino acids) protein (> 50 amino acids) 307 27.1: Classification of Amino Acids. AA’s are classified according to the location of the amino group. H H H H H H H2N C CO2H H2N C C CO2H H2N C C C CO2H H H H H H H !-amino acid "-amino acid #-amino acid (2-amino carboxylic acid) (3-amino carboxylic acid) (4-amino carboxylic acid) There are 20 genetically encoded α-amino acids found in peptides and proteins 19 are primary amines, 1 (proline) is a secondary amine 19 are “chiral”, 1 (glycine) is achiral; the natural configuration of the α-carbon is L. CHO CHO CO2H CO2H H OH HO H H2N H H2N H CH OH CH OH 2 2 CH3 R D-glyceraldehyde L-glyceraldehyde L-alanine CHO CHO CO2H CO2H HO H H OH H2N H H2N H H OH HO H H OH H3C H CH2OH CH2OH CH3 CH2CH3 308 D-erythrose L-erythrose L-theronine L-isoleucine (2S,3R) (2S,3S) 157 α-Amino acids are classified by the properties of their sidechains.
    [Show full text]