US 2011/0207819 A1 BO (43) Pub

Total Page:16

File Type:pdf, Size:1020Kb

US 2011/0207819 A1 BO (43) Pub US 2011 0207819A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0207819 A1 BO (43) Pub. Date: Aug. 25, 2011 (54) FATEMULSION FOR ARTIFICIALLY Publication Classification FEEDING SERIOUSLY LL INTENSIVE CARE PATIENTS (51) Int. Cl. A6II 3L/23 (2006.01) A6II 3L/23 (2006.01) (75)75) InventorI tOr: Michaelichael Boll, MelsungenMel (DE)DE A6IP 43/00 (2006.01) (73) Assignee: B. BRAUN MELSUNGEN AG, A23D 7700 (2006.01) Melsungen (DE) A23D 9/00 (2006.01) (21) Appl. No.: 13/126,245 (52) U.S. Cl. ......................................... 514/547: 426/602 (22) PCT Filed: Nov. 9, 2009 (57) ABSTRACT (86). PCT No.: PCT/EP2009/064839 The present invention relates to a pharmaceutical preparation for the prophylaxis and treatment of critical illness polyneur S371 (c)(1) opathy (CIP) and critical illness myopathy (CIM). The inven (2), (4) Date: Apr. 27, 2011 tion further relates to an isotonic fat emulsion comprising at s 9 least one triglyceride that comprises at least one fatty acid (30) Foreign Application Priority Data group having an odd number of carbon atoms, wherein the fatty acid group comprises a carbon chain having 5 to 15 Nov. 18, 2008 (DE) ......................... 102008.057867.3 carbon atoms. US 2011/0207819 A1 Aug. 25, 2011 FATEMULSION FOR ARTIFICIALLY in the intravenous administration of immunoglobulins (M. FEEDING SERIOUSLY LL INTENSIVE CARE Alb, S. Hirner, T. Luecke, Anästhesiol. Intensivmed. Not PATIENTS fallmed. Schmerzther. 2007, 4, 250-258). 0003. Another background of the present invention is in the field of artificial feeding of intensive care patients by fat 0001. The present invention relates to a pharmaceutical emulsions for intravenous application or by lipid-containing formulation for the prophylaxis and treatment of critical ill dietary products. ness polyneuropathy (CIP) and critical illness myopathy 0004 Fat emulsion for parenteral nutrition serve for Sup (CIM). Further, the invention relates to an isotonic fat emul plying fats in an intravenously acceptable dosage form if sion comprising at least one triglyceride including at least one normal oral feeding is not possible or medically contraindi fatty acid residue with an odd number of carbon atoms, cated. Fat emulsions common in the prior art are prepared wherein said fatty acid residue includes a carbon chain with from vegetable oils, such as safflower oil or soybean oil; in from 5 to 15 carbonatoms. In addition, the invention relates to Some cases, they additionally contain triglycerides of the use of the isotonic fat emulsion as a dietary product, and medium-chain fatty acids (so-called medium-chain triglycer the invention further relates to the use of the pharmaceutical ides (MCT)) and/or oils of marine origin (fish oils, mostly formulation/isotonic fat emulsion within the scope of from cold-water fish). parenteral nutrition or as a component of a dietary product, 0005 Thus, DE-0S-3721 137 describes lipid emulsions especially the use of a fat emulsion for artificially feeding for parenteral nutrition comprising eicosapentaenic acid trig septic intensive care patients. lyceride and/or docosahexaenic acid triglyceride, or fish oils 0002. Due to the progress in intensive care medicine of containing Such triglycerides, as well as Vegetable oils con recent years and decades, which has been due to among others taining omega-6 fatty acids, and MCT. novel treatment concepts, classification systems and well 0006 EP 0120 169 B1 discloses synthetic triglycerides aimed interventions, the survival times of extremely ill inten which may bear a polyunsaturated fatty acid (preferably sive care patients could be prolonged significantly. However, eicosapentaenic acid) at the central carbonatom of the glyc consequently, clinical pictures that were previously rare or erol molecule. The glycerides prepared according to this defi unknown have been observed in this group of patients. Thus, nition may be used for nutrition, as a food Supplement or intensive care patients have a particularly high risk of devel medicament for therapeutic nutrition. oping a sepsis, which may entail serious complications in the 0007 U.S. Pat. No. 4,526,902 describes mixtures com further course thereof. Among these, critical illness polyneur prising 25-75% by weight of eicosapentaenic acid and an opathy (CIP) and critical illness myopathy (CIM) were deter omega-6 fatty acid that are used as a component of pharma mined in Systematic studies on neurological and muscular ceuticals or fat-containing foods, such as butter or the like. problems in intensive care patients. Both cases involve 0008 U.S. Pat. No. 6,740,679 describes n-heptanoic acid acquired muscle weakness, namely CIP, which is primarily as an energy source for patients suffering from disorders of axonal, and CIM, which is primarily muscular. A clinical the degradation of long-chain fatty acids. delimitation of CIP from CIM is extremely difficult, since 0009 US 2008/0132571 A1 discloses formulations and generalized paralysis, myasthenia and respirator weaning methods for the treatment of catabolic effects in patients, problems are the most important and common symptoms in wherein odd-numbered fatty acids and their glycerides are both cases, and in addition, both diseases can occur together applied for enhancing the intracellular ratio of AMP to ATP (O. Friedrich, E. Hund, Anaesthesist 2006, 55, 1271-1280). and for enhancing the activity of AMP-activated protein For the prevalence of CIP/CIM, a value of 70-80% is cur kinase (AMPK). rently stated for patients with severe sepsis and multiple organ 0010. Effective treatment methods for CIP and CIM are failure. Although there is probably not a higher lethality due hardly known. In addition, effective nutritive methods for to CIP/CIM alone, the occurrence of CIP/CIM prolongs the treating sepsis and the secondary complications of intensive intensive care therapy, delays the rehabilitation and thereby care therapy, such as CIP and/or CIM, are hardly known to leads to an enormous increase of the treatment and macro date. economic costs. In addition, muscular weakness and rapid 0011 Thus, there is a need for substances and formula exhaustion of patients who are suffering from severe ARDS, tions for artificial feeding and the accompanying nutritive for example, is considered the most important cause of lim treatment of intensive care patients, and there is an urgent ited quality of life even after 12 months from the end of the need for formulations and methods for the prophylaxis and intensive care medical treatment (M. S. Herridge, A. M. Che therapy of CIP and/or CIM. ung, C. M. Tansey, N. Engl. Med. 2003, 348, 683-693). The 0012 Before this background, the object of the present exact causes of CIP/CIM are currently still unclear and under invention is to provide a pharmaceutical formulation for the research in intensive care medicine. Inflammation mediators, accompanying nutritive treatment of critically ill, for catabolism, insulin resistance, the application of corticoster example, septic, intensive care patients and for the prophy oids, increased glucagon sensitivity, energy Supply disorder, laxis and therapy of secondary complications of intensive the application of muscle relaxants, oxidative stress as well as care therapy, such as CIP and/or CIM. general microcirculatory and/or inflammation reactions 0013 Surprisingly, it has been found that the frequency of among others are discussed as risk factors. For this reason, the occurrence of the mentioned complications can be specific therapies for CIA/CIM are still unknown. From the reduced, or the severity of the disease alleviated, or its course literature, it can be seen that many authors consider the shortened, by Supplying a fat emulsion containing triglycer aggressive therapy of SIRS and sepsis ("early-goal directed ides with fatty acid residues having an odd number of carbon therapy') as the most important component of a CIP/CIM atOmS. therapy. Further, an intensified insulin therapy could decrease 0014 Thus, the present invention relates to a pharmaceu the incidence by 44%, and another therapeutic option is seen tical formulation for the prophylaxis or treatment of CIP US 2011/0207819 A1 Aug. 25, 2011 and/or CIM comprising a fat emulsion containing at least one origin ("fish oil’) as a source of omega-3 fatty acids in intra triglyceride (A) of formula (I): venous fat emulsions (EP-A-0298.293), wherein highly puri fied fish oil concentrates are preferred, which are obtained from cold-water fish, Such as Salmons, herrings, Sardines or (I) mackerels. Their content of omega-3 fatty acids is preferably 40% or more. 0022. Further preferred is triglyceride (A) in which at least one fatty acid residue is selected from the group consisting of medium-chain fatty acids (e.g., caprylic acid C8:0, capric acid C10:0, lauric acid C12:0), long-chain saturated fatty wherein at least one of radicals R', R or R is independently acids (e.g., myristic acid C14:0, palmitic acid C16:0, Stearic an alkanoyl radical having an odd number of from 5 to 15 acid C18:0), monounsaturated fatty acids (palmitoleic acid carbon atoms. C16:1, oleic acid C18:1), polyunsaturated fatty acids of 0015 The triglyceride (A) of the fat emulsion to be used omega-3 and omega-6 type, for example, eicosapentaenic according to the invention consists of glycerol esterified with acid (EPA, C20:5 omega-3), docosahexaenic acid (DHA, fatty acids at least one of which has an odd number of carbon C22:6 omega-3), linolic acid (LA, C 18:2 omega-6) or atoms with from
Recommended publications
  • Effect of Parity on Fatty Acids of Saudi Camels Milk and Colostrum
    International Journal of Research in Agricultural Sciences Volume 4, Issue 6, ISSN (Online): 2348 – 3997 Effect of Parity on Fatty Acids of Saudi Camels Milk and Colostrum Magdy Abdelsalam1,2*, Mohamed Ali1 and Khalid Al-Sobayil1 1Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Al-Qassim 51452, Saudi Arabia. 2Department of Animal Production, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria 21545, Egypt. Date of publication (dd/mm/yyyy): 29/11/2017 Abstract – Fourteen Saudi she-camels were machine milked locations and different feeding regimes, but there is a scare twice daily and fatty acids of colostrum (1-7 days post partum) on the effect of parity of lactating camels on the fatty acids. and milk (10-150 days post partum) were analyzed. Short Therefore, the objective of this experiment was to study the chain fatty acids were found in small percentage in colostrums changes in the fatty acids profile of colostrums and milk of and milk at different parities without insignificant differences she-camel during the first three parities. and the C4:0 and C6:0 don't appear in the analysis. Colostrums has higher unsaturated fatty acids percentage than that of saturated fatty acids while the opposite was found II. MATERIALS AND METHODS in milk of camels. Myiristic acid (C14:0), palmitic (C16:0), stearic (C18:0) and oleic (C18:1) showed the highest A. Animals and Management percentage in either colostrums or milk of she-camels. Parity The present study was carried out on fourteen Saudi she had significant effect on atherogenicity index (AI) which is camels raised at the experimental Farm, College of considered an important factor associated the healthy quality of camel milk.
    [Show full text]
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • WO 2017/074902 Al 4 May 20 17 (04.05.2017) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/074902 Al 4 May 20 17 (04.05.2017) W P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 8/37 (2006.01) A61Q 19/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, A61K 31/215 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, PCT/US2016/058591 MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 25 October 2016 (25.10.201 6) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (25) Filing Language: English ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/247,803 29 October 20 15 (29. 10.20 15) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: GLAXOSMITHKLINE CONSUMER TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, HEALTHCARE HOLDINGS (US) LLC [US/US]; 271 1 DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Centerville Road, Suite 400, Wilmington, DE 19808 (US).
    [Show full text]
  • Unit 15 Monocarboxylic and Sulphonjc Acids
    UNIT 15 MONOCARBOXYLIC AND SULPHONJC ACIDS Structure Introduction Objectives Carboxylic Acids Preparation of Monocarboxylic Acids physical Properties of ~onocarbox~licAcids Spectral Properties of Carboxylic Acids Reactions of Carboxylic Acids Sulphonic Acids Preparation of Benzenesulphonic acid Reactions of Benzenesulphonic acid Industrial Uses of Carboxylic and Sulphonic Acids Laboratory Detection of Carboxylic and Sulphonic Acids Summary Terminal Questions Answers 15.1 INTRODUCTION 0 I Carboxylic acids are the compounds which contain the carboxy (-COH) functional 0 I1 group and can be represented either as RCOH or as RCOOH. The carboxylic acids not only form an important class of organic compounds but are also the parent compounds of a large group of compounds called the functional derivatives of carboxylic acids which can be further classified as acid halides, acid anhydrides, acid .amides and esters. These classes of compounds \kill be discussed in Unit 17. Carboxylic acids also play an important role in various biological processes. In Unit 16, you will study about some such acids ..Besides carboxylic acids, there is another important class of organic acids, called sulphonic adds. The sulphonic acids are the compounds which contain a S03H group, called the sulphonic acid soup. Sulphonic acids are organic acids related to sulphuric acid. Sulphonic acids and carboxylic acids are closely related in their chemistry. Therefore, in this unit, we will first study the chemistry of carboxylic acids and then that of the sulphonic acids. Objectives
    [Show full text]
  • Chemical Specificity in Short-Chain Fatty Acids and Their Analogues in Increasing Osmotic Fragility in Rat Erythrocytes in Vitro
    Chemical specificity in short-chain fatty acids and their analogues in increasing osmotic fragility in rat erythrocytes in Title vitro. Author(s) Mineo, Hitoshi; Hara, Hiroshi Biochimica et Biophysica Acta (BBA) - Biomembranes, 1768(6), 1448-1453 Citation https://doi.org/10.1016/j.bbamem.2007.02.008 Issue Date 2007-06 Doc URL http://hdl.handle.net/2115/28208 Type article (author version) File Information BBA1768-6.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP 1 1 Chemical specificity in short-chain fatty acids and their analogues in increasing osmotic 2 fragility in rat erythrocytes in vitro 3 4 Hitoshi Mineo, Hiroshi Hara* 5 6 Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, 7 Hokkaido 060-8589, Japan 8 9 10 *Corresponding author. 11 Hiroshi HARA Ph.D. 12 Division of Applied Bioscience, 13 Graduate School of Agriculture, 14 Hokkaido University, 15 Kita-9, Nishi-9, Sapporo, 16 Hokkaido 060-8589, 17 Tel.: +81-11-706-3352; 18 fax: +81-11-706-2504. 19 E-mail address: [email protected] 20 21 22 23 24 25 2 1 Abstract 2 3 We examined the role of the chemical specificity of short-chain fatty acids 4 (SCFAs) and their derivatives in increasing osmotic fragility (OF) in rat red blood cells 5 (RBCs). Except for formic acid, normal SCFAs with 2 to 8 carbons increased the OF in 6 rat RBCs with increasing number of hydrocarbons in a dose-dependent manner. 7 Replacement of the carboxylic group with sulfonic group inhibited, but did not abolish, 8 the SCFA-mediated increase in OF.
    [Show full text]
  • Essential Oils and Oil from Seeds of Syagrus Coronata
    Vol. 10(23), pp. 310-317, 17 June, 2016 DOI: 10.5897/JMPR2016.6098 Article Number: 89CD55858997 ISSN 1996-0875 Journal of Medicinal Plants Research Copyright © 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/JMPR Full Length Research Paper Syagrus coronata seed oils have antimicrobial action against multidrug-resistant Staphylococcus aureus Cibele Maria Alves da Silva Bessa1, Rodrigo Santana do Nascimento1, Renata Carla Corrêa Alves1*, José Matias Anselmo2, Ana Paula Sant'Anna da Silva1, Alexandre Gomes da Silva1, Vera Lúcia de Menezes Lima1, Josean Fechine Tavares3, Luís Cláudio Nascimento da Silva1,2, Márcia Vanusa da Silva1 and Maria Tereza dos Santos Correia1 1Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, Cidade Universitária, 1235, 50670-901, Recife, Pernambuco, Brazil. 2Faculdade Pernambucana de Saúde, Av. Jean Emile Favre, 420, Imbiribeira, 51200-060, Recife, Pernambuco, Brazil. 3Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, Campus I, Castelo Branco, 58051-970, Joao Pessoa, Paraíba, Brazil. Received 15 March, 2016; Accepted 20 May, 2016 Syagrus coronata (Mart.) Becc. (Arecaceae) is a native Brazilian palm (ouricuri) and despite the use of its derived products by traditional communities, few scientific reports have been published regarding its biomedical activity. This study investigates the chemical composition and anti-Staphylococcus aureus effects of both manufactured oil (SCO) and essential oil (SCEO) from S. coronata seeds. SCO was provided by rural inhabitants, while SCEO was obtained by hydrodistillation. Chemical characterization was performed by gas chromatography-mass spectrometry (GC/MS). In vitro antimicrobial activity was determined against 17 S. aureus strains, including multidrug-resistant strains.
    [Show full text]
  • Improvement of Lipid Production from an Oil-Producing Filamentous Fungus, Penicillium Brevicompactum NRC 829, Through Central Composite Statistical Design
    Ann Microbiol (2017) 67:601–613 DOI 10.1007/s13213-017-1287-x ORIGINAL ARTICLE Improvement of lipid production from an oil-producing filamentous fungus, Penicillium brevicompactum NRC 829, through central composite statistical design Thanaa H. Ali1 & Mamdouh S. El-Gamal2 & Dina H. El-Ghonemy1 & Ghada E. Awad3 & Amir E. Tantawy1 Received: 12 March 2017 /Accepted: 13 July 2017 /Published online: 7 August 2017 # Springer-Verlag GmbH Germany and the University of Milan 2017 Abstract In the present study, 13 filamentous fungi were commercial development for the production of LA by fer- screened for their lipid production and an oleaginous fun- mentation using cheap raw material. gus, Penicillium brevicompactum NRC 829, was found to be the highest lipid producer. Screening of various agro- Keywords Linoleic acid . Penicillium brevicompactum NRC industrial residues was performed and sunflower oil cake 829 . Response surface methodology . Unsaturated fatty acids proved to be the best substrate for lipid production. A central composite design was employed to investigate the optimum concentrations of the most significant medi- Introduction um components required to improve the lipid production by P. brevicompactum. The results clearly revealed that Polyunsaturated fatty acids (PUFAs) are long-chain fatty − the maximal lipid production of 8.014 ± 0.06 gL 1 acids containing two or more double bonds in their acyl (representing 57.6% lipid/dry biomass) was achieved by chains. Biosynthesis of PUFAs involves both methyl- the fungus when grown for 6 days at 30 °C under static directed and carboxyl-directed desaturases. The primary condition in a medium containing sunflower oil cake, product of fatty acid biosynthesis in oilseed crops is the NaNO3 and KCl at final concentrations of 8, 0.75 and 18-carbon monounsaturated oleic acid (C18:1–9).
    [Show full text]
  • National Food Safety Standard Determination of Fatty Acids in Foods
    National Standard of the People’s Republic of China GB 5413.27 – 2010 National food safety standard Determination of fatty acids in foods for infants and young children, milk and milk products Issued on: 2010-03-26 Implemented on: 2010-06-01 Issued by the Ministry of Health of People’s Republic of China GB 5413.27–2010 Preface This standard replaces GB/T 21676 - 2008 Determination of Fatty Acids in Formula Foods and Milk Powder for Infants and Young Children, GB/T 5413.27 – 1997 Determination of DHA and EPA in Formula Foods and Milk Powder for Infants and Young Children and GB/T 5413.4 - 1997 Determination of Linoleic Acid in Formula Foods and Milk Powder for Infants and Young Children. Comparing with the original standards, the following main changes have been made to the Standard: the first method is Acetyl Chloride - Methanol Esterification; Integrate GB/T 21676 - 2008, GB/T 5413.27 – 1997 and GB/T 5413.4 – 1997 to the second method of this standard, Ammonia Water - Ethanol Extraction Method. Appendix A of this standard is informative. The versions replaced by this standard are: - GB/T 5413.4 – 1997, GB/T 5413.27 - 1997; - GB/T 21676 - 2008. 1 GB 5413.27–2010 National food safety standard Determination of fatty acids in foods for infants and young children, milk and milk products 1 Scope This standard provides the determination of fatty acids in infant foods and dairy. This standard applies to determination of fatty acids in infant foods and dairy; the second method doesn’t apply to determination of embedded fatty acid.
    [Show full text]
  • Fatty Acid Composition of Milk Fat in Milk of Tzigay Sheep and Their F2 Cross-Breeds with Chios
    Biotechnology in Animal Husbandry 31 (1), p 45-53 , 2015 ISSN 1450-9156 Publisher: Institute for Animal Husbandry, Belgrade-Zemun UDC 637.043:637.12'632 DOI: 10.2298/ BAH1501045G FATTY ACID COMPOSITION OF MILK FAT IN MILK OF TZIGAY SHEEP AND THEIR F2 CROSS-BREEDS WITH CHIOS G. Gerchev1, N. Naydenova2, S. Slavkova1, G. Mihaylova2 1Research Institute of Mountain Stockbreeding and Agriculture, 281 Vasil Levski Str., 5600, Troyan, Bulgaria 2Agrarian Faculty of Thracian University, Students’ campus, 6000, Stara Zagora, Bulgaria Corresponding author: [email protected] Original scientific paper Abstract: The study was conducted on aggregate milk samples, which were taken every month during the milking period from Tzigay sheep and their F2 cross-breeds of Chios, raised in the conditions of the Central Balkan Mountain. The fat extraction of milk samples was done by the Rose-Gottlieb method. Fatty acid composition was determined on a gas chromatograph with flame ionization detector and capillary column. The aim of the study was to follow the changes in the composition of fatty acids in the milk fat of milk of Tzigay sheep and their F2 cross-breeds. The saturated fatty acids in milk of the two groups had high values during both consecutive years, as they varied from 67.05% in milk of Tzigay sheep in the second lactation up to 70.87% at their F2 cross-breeds. The content of myristic acid was correspondingly 8.22-8.88% at Tzigay sheep and 8.45-8.74% at their F2 cross-breeds. The total amount of polyunsaturated fatty acids in the examined milk for the two types of sheep was comparatively low with near concentrations (4.39-5.20%) in the period of the two years.
    [Show full text]
  • 01 Excipients Prelims 1..9
    Triolein 757 and tablets). Included in the Canadian List of Acceptable Non- 3 Steurnagel CR. Latex emulsions for controlled drug delivery. McGinity medicinal Ingredients. JW, ed. Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms. New York: Marcel Dekker, 1989; 1–61. 4 Gutierrez-Rocca JC, McGinity JW. Influence of aging on the physical– 17 Related Substances mechanical properties of acrylic resin films cast from aqueous Acetyltributyl citrate; acetyltriethyl citrate; tributyl citrate. dispersions and organic solutions. Drug Dev Ind Pharm 1993; 19(3): 315–332. 5 Liu J, Williams R. Properties of heat-humidity cured cellulose acetate 18 Comments phthalate free films. Eur J Pharm Sci 2002; 17(1–2): 31–41. 6 Lewis RJ, ed. Sax’s Dangerous Properties of Industrial Materials, 11th A specification for triethyl citrate is contained in the Food (7) edn. New York: Wiley, 2004; 3546. Chemicals Codex (FCC). 7 Food Chemicals Codex, 6th edn. Bethesda, MD: United States The EINECS number for triethyl citrate is 201-070-7. The Pharmacopeia, 2008; 988. PubChem Compound ID (CID) for triethyl citrate is 6506. 20 General References 19 Specific References Vertellus Specialties Inc. Technical data sheet: Citroflex 2, 2007. 1 Gutierrez-Rocca JC, McGinity JW. Influence of water soluble and insoluble plasticizers on the physical and mechanical properties of 21 Author acrylic resin copolymers. Int J Pharm 1994; 103: 293–301. J Teckoe. 2 Lehmann K. Chemistry and application properties of polymethacrylate coating systems. McGinity JW, ed. Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms. New York: Marcel Dekker, 1989; 153– 22 Date of Revision 245. 24 February 2009. Triolein 1 Nonproprietary Names 6 Functional Category None adopted.
    [Show full text]
  • Intravenous Treatment with a Long-Chain Omega-3 Lipid Emulsion Provides Neuroprotection in a Murine Model of Ischemic Stroke – a Pilot Study
    RESEARCH ARTICLE Intravenous Treatment with a Long-Chain Omega-3 Lipid Emulsion Provides Neuroprotection in a Murine Model of Ischemic Stroke ± A Pilot Study Dirk Berressem1*, Konrad Koch1, Nicole Franke1, Jochen Klein1, Gunter P. Eckert1,2 1 Goethe-University of Frankfurt, Department of Pharmacology, Germany, 2 Justus-Liebig-University Giessen, Institute of Nutritional Sciences, Germany * [email protected] a11111 Abstract Single long-chain omega-3 fatty acids (e.g. docosahexaenoic acid (DHA) or eicosapentae- noic acid (EPA)) are known for their neuroprotective properties associated with ischemic stroke. This pilot study aimed to test the effectiveness of an acute treatment with a long- OPEN ACCESS chain omega-3 lipid emulsion (Omegaven 10%®, OGV) that contains fish oil (DHA 18 mg/ Citation: Berressem D, Koch K, Franke N, Klein J, Eckert GP (2016) Intravenous Treatment with a ml; EPA 21 mg/ml) and α-tocopherol (0.2 mg/ml) in a transient middle cerebral artery occlu- Long-Chain Omega-3 Lipid Emulsion Provides sion (MCAO) model of ischemic stroke in mice. For this purpose, female CD-1 mice were Neuroprotection in a Murine Model of Ischemic anesthetized and subjected to 90 minutes of MCAO. To reflect a clinically relevant situation Stroke ± A Pilot Study. PLoS ONE 11(11): for an acute treatment, either after induction of stroke or after reperfusion, a single dose of e0167329. doi:10.1371/journal.pone.0167329 OGV was injected intravenously into the tail vein (5 ml/kg b.w.). A neurological severity Editor: Muzamil Ahmad, Indian Institute of score was used to assess motor function and neurological outcome.
    [Show full text]
  • Fatty Acids As Essential Adjuvants to Treat Various Ailments and Their Role in Drug Delivery: a Review
    Nutrition 65 (2019) 138À157 Contents lists available at ScienceDirect Nutrition journal homepage: www.nutritionjrnl.com Review article Fatty acids as essential adjuvants to treat various ailments and their role in drug delivery: A review Aakash Katdare B. Pharm, MS. Pharm, Shreya Thakkar B. Pharm, M. Pharm, Shivshankar Dhepale B. Pharm, MS. Pharm, Dignesh Khunt B. Pharm, M. Pharm, Manju Misra B. Pharm, M. Pharm, Ph.D. * Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Ahmedabad, India ARTICLE INFO ABSTRACT Article History: Since the discovery of fatty acids, a niche has been carved for their vital role as adjuvants in drug delivery and Received 23 May 2018 as treatment for various diseases. The literature has repeatedly described the essential role of various fatty Received in revised form 1 February 2019 acids in treating a wide range of diseases and disorders, from central nervous system diseases to wound heal- Accepted 20 March 2019 ing. The use of fatty acids has expanded to many horizons and in recent decades they have gained impor- tance as drug delivery adjuvants in addition to their auxiliary benefits in treating various diseases. Although Keywords: fatty acids aid in solving both formulation-based and therapeutic challenges to our knowledge, they have Polyunsaturated FA never been viewed as dual agents in modern scientific literature. The aim of this review was to provide this FA Lipids perspective and combine the very discreet literature about fatty acids, which includes their role as therapeu- Oils tic adjuvants and drug delivery agents. It gives insights on the use of fatty acids in treating the diseases of the Penetration enhancers eye, skin, central nervous system, viral diseases, and so on.
    [Show full text]